Evaluating Digital Soil Mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)

Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236km2 French region located in the Northern Mediterranean area, this study evaluated four well-known Digita...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Regional Vol. 4; pp. 20 - 30
Main Authors Vaysse, K., Lagacherie, P.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2015
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236km2 French region located in the Northern Mediterranean area, this study evaluated four well-known Digital Soil Mapping approaches that were possibly applicable in the French context for inferring the GlobalSoilMap (GSM) grid using freely available data from the French spatial data infrastructure. These approaches used for soil input either a legacy 1:250,000 scale soil map—an area-weighted mean of soil mapping units and spatial disaggregation of soil mapping units (simulated)—or a set of 2024 legacy-measured soil profiles (1 profile/13.5km2) associated with a set of soil covariates using random forest and random forest plus kriging. These methods provided estimates of 29 soil properties over a 100m by 100m grid, i.e., clay, sand, silt, coarse fragment, organic carbon contents, pH and CEC, at the four upper GSM-specified depth intervals, plus soil depth. This experiment showed that the performances in mapping soil properties were highly variable (from R2=0 to R2=0.79). They were strongly correlated with the amount of spatially-structured variance of the soil properties captured by the available soil data. For example better performances were observed for organic carbon that is driven by large-scale climate variations than for texture and soil depth that are driven by short scale variations of parent materials and erosion–deposition ratio along a slope. Furthermore, the profile-based DSM models generally outperformed the soil map-based DSM models, and kriging did not improve the results of random forest. Finally improving the quality of soil data input was considered as the best way to improve the current mapping performances. In addition to providing a GlobalSoilMap proof-of-concept for Northern Mediterranean areas, this paper illustrates how a prior analysis of the available soil data may help in the anticipated estimation of the mapping performances and in the prior selection of the most promising DSM models to reach these performances. •Four DSM models were tested to map 29 GSM-specified soil properties in Southern France.•Mapping performances were highly variable (from R2=0 to R2=0.79).•Soil profile-based DSM models generally outperformed soil map-based DSM models.•The soil database used as an input of DSM models was the most limiting factor.
AbstractList Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236 km2 French region located in the Northern Mediterranean area, this study evaluated four well-known Digital Soil Mapping approaches that were possibly applicable in the French context for inferring the GlobalSoilMap (GSM) grid using freely available data from the French spatial data infrastructure. These approaches used for soil input either a legacy 1:250,000 scale soil map—an area-weighted mean of soil mapping units and spatial disaggregation of soil mapping units (simulated)—or a set of 2024 legacy-measured soil profiles (1 profile/13.5 km2) associated with a set of soil covariates using random forest and random forest plus kriging. These methods provided estimates of 29 soil properties over a 100 m by 100 m grid, i.e., clay, sand, silt, coarse fragment, organic carbon contents, pH and CEC, at the four upper GSM-specified depth intervals, plus soil depth. This experiment showed that the performances in mapping soil properties were highly variable (from R2 = 0 to R2 = 0.79). They were strongly correlated with the amount of spatially-structured variance of the soil properties captured by the available soil data. For example better performances were observed for organic carbon that is driven by large-scale climate variations than for texture and soil depth that are driven by short scale variations of parent materials and erosion–deposition ratio along a slope. Furthermore, the profile-based DSM models generally outperformed the soil map-based DSM models, and kriging did not improve the results of random forest. Finally improving the quality of soil data input was considered as the best way to improve the current mapping performances. In addition to providing a GlobalSoilMap proof-of-concept for Northern Mediterranean areas, this paper illustrates how a prior analysis of the available soil data may help in the anticipated estimation of the mapping performances and in the prior selection of the most promising DSM models to reach these performances.
Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236km² French region located in the Northern Mediterranean area, this study evaluated four well-known Digital Soil Mapping approaches that were possibly applicable in the French context for inferring the GlobalSoilMap (GSM) grid using freely available data from the French spatial data infrastructure. These approaches used for soil input either a legacy 1:250,000 scale soil map—an area-weighted mean of soil mapping units and spatial disaggregation of soil mapping units (simulated)—or a set of 2024 legacy-measured soil profiles (1 profile/13.5km²) associated with a set of soil covariates using random forest and random forest plus kriging. These methods provided estimates of 29 soil properties over a 100m by 100m grid, i.e., clay, sand, silt, coarse fragment, organic carbon contents, pH and CEC, at the four upper GSM-specified depth intervals, plus soil depth.This experiment showed that the performances in mapping soil properties were highly variable (from R²=0 to R²=0.79). They were strongly correlated with the amount of spatially-structured variance of the soil properties captured by the available soil data. For example better performances were observed for organic carbon that is driven by large-scale climate variations than for texture and soil depth that are driven by short scale variations of parent materials and erosion–deposition ratio along a slope. Furthermore, the profile-based DSM models generally outperformed the soil map-based DSM models, and kriging did not improve the results of random forest. Finally improving the quality of soil data input was considered as the best way to improve the current mapping performances.In addition to providing a GlobalSoilMap proof-of-concept for Northern Mediterranean areas, this paper illustrates how a prior analysis of the available soil data may help in the anticipated estimation of the mapping performances and in the prior selection of the most promising DSM models to reach these performances.
Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236km2 French region located in the Northern Mediterranean area, this study evaluated four well-known Digital Soil Mapping approaches that were possibly applicable in the French context for inferring the GlobalSoilMap (GSM) grid using freely available data from the French spatial data infrastructure. These approaches used for soil input either a legacy 1:250,000 scale soil map—an area-weighted mean of soil mapping units and spatial disaggregation of soil mapping units (simulated)—or a set of 2024 legacy-measured soil profiles (1 profile/13.5km2) associated with a set of soil covariates using random forest and random forest plus kriging. These methods provided estimates of 29 soil properties over a 100m by 100m grid, i.e., clay, sand, silt, coarse fragment, organic carbon contents, pH and CEC, at the four upper GSM-specified depth intervals, plus soil depth. This experiment showed that the performances in mapping soil properties were highly variable (from R2=0 to R2=0.79). They were strongly correlated with the amount of spatially-structured variance of the soil properties captured by the available soil data. For example better performances were observed for organic carbon that is driven by large-scale climate variations than for texture and soil depth that are driven by short scale variations of parent materials and erosion–deposition ratio along a slope. Furthermore, the profile-based DSM models generally outperformed the soil map-based DSM models, and kriging did not improve the results of random forest. Finally improving the quality of soil data input was considered as the best way to improve the current mapping performances. In addition to providing a GlobalSoilMap proof-of-concept for Northern Mediterranean areas, this paper illustrates how a prior analysis of the available soil data may help in the anticipated estimation of the mapping performances and in the prior selection of the most promising DSM models to reach these performances. •Four DSM models were tested to map 29 GSM-specified soil properties in Southern France.•Mapping performances were highly variable (from R2=0 to R2=0.79).•Soil profile-based DSM models generally outperformed soil map-based DSM models.•The soil database used as an input of DSM models was the most limiting factor.
Author Vaysse, K.
Lagacherie, P.
Author_xml – sequence: 1
  givenname: K.
  surname: Vaysse
  fullname: Vaysse, K.
  email: kevin.vaysse@supagro.inra.fr
  organization: INRA, UMR LISAH, Montpellier, France
– sequence: 2
  givenname: P.
  surname: Lagacherie
  fullname: Lagacherie, P.
  organization: INRA, UMR LISAH, Montpellier, France
BackLink https://hal.inrae.fr/hal-02629696$$DView record in HAL
BookMark eNqFkc1q3DAUhU1JoWmaN-hCy2RhV5Ilj9VFIeS3MKXQn7W4I107GjTWVNIM5AX63JVxCqWLdnXF4TsX3XNeVydTmLCq3jLaMMq6d9tmxGBjajhlomGsobR9UZ3yVvKaUiVO_ni_qs5T2lJKuZLtquOn1c_bI_gDZDeN5MaNLoMnX4Pz5BPs97NYRgxgHjGRIUSye5bvfdiAn8kCkjQ7CrfHmN1MxrAjHkcwT8RCBuImsoZpPKANpv4SDik578NELu4iTAYv31QvB_AJz5_nWfX97vbb9UO9_nz_8fpqXRve97lGKbrVwBmgAKZW0CMdjDDWdr3dSJTStIr3rZIWFYPWQruSEqllVgwoNqo9qy6XvY_g9T66HcQnHcDph6u1njXKO6461R1ZYS8Wthz244Ap651LBr2HCcsFms85tp2koqDvF9TEkFLEQZuSZHZhyhGc14zquSu91UtXeu5KM6ZLV8Us_jL__th_bB8WG5a8jg6jTsZhCdO6iCZrG9y_F_wCgZOzyQ
CitedBy_id crossref_primary_10_1016_j_geoderma_2024_116873
crossref_primary_10_7717_peerj_5518
crossref_primary_10_5194_soil_3_191_2017
crossref_primary_10_1016_j_geoderma_2018_08_024
crossref_primary_10_1016_j_seh_2023_100049
crossref_primary_10_1016_j_still_2024_106007
crossref_primary_10_5194_tc_14_1763_2020
crossref_primary_10_1016_j_geoderma_2020_114575
crossref_primary_10_1016_j_catena_2021_105196
crossref_primary_10_1016_j_geodrs_2017_03_003
crossref_primary_10_1016_j_geoderma_2024_116912
crossref_primary_10_1016_j_scitotenv_2016_11_078
crossref_primary_10_1002_ldr_5194
crossref_primary_10_1016_j_catena_2018_12_015
crossref_primary_10_1016_j_geoderma_2016_12_011
crossref_primary_10_1016_j_geoderma_2017_05_048
crossref_primary_10_1016_j_catena_2020_104940
crossref_primary_10_1016_j_compag_2020_105217
crossref_primary_10_1016_j_geodrs_2020_e00337
crossref_primary_10_1371_journal_pone_0218563
crossref_primary_10_3390_f12111430
crossref_primary_10_1016_j_geoderma_2023_116740
crossref_primary_10_1016_j_geodrs_2020_e00334
crossref_primary_10_3390_rs16152712
crossref_primary_10_1016_j_geodrs_2021_e00437
crossref_primary_10_1016_j_geoderma_2016_04_019
crossref_primary_10_5194_soil_4_123_2018
crossref_primary_10_5194_soil_4_1_2018
crossref_primary_10_5194_soil_6_371_2020
crossref_primary_10_1016_j_geoderma_2016_06_006
crossref_primary_10_1071_SR21067
crossref_primary_10_1016_j_scitotenv_2020_143644
crossref_primary_10_1007_s11629_019_5409_8
crossref_primary_10_1016_j_scitotenv_2017_05_239
crossref_primary_10_1016_S2095_3119_17_61762_3
crossref_primary_10_1016_j_apm_2019_12_016
crossref_primary_10_1016_j_earscirev_2020_103359
crossref_primary_10_1016_j_geoderma_2021_114968
crossref_primary_10_1016_j_geodrs_2016_11_003
crossref_primary_10_1016_j_geoderma_2020_114503
crossref_primary_10_1016_j_catena_2020_105062
crossref_primary_10_1016_j_rsase_2023_100990
crossref_primary_10_1016_j_geodrs_2020_e00342
crossref_primary_10_1590_18069657rbcs20170183
crossref_primary_10_1016_j_geoderma_2021_115282
crossref_primary_10_1016_j_geodrs_2020_e00269
crossref_primary_10_1590_1678_992x_2016_0097
crossref_primary_10_1016_j_geoderma_2015_12_025
crossref_primary_10_1016_j_jag_2019_101905
crossref_primary_10_1016_j_geoderma_2022_115840
crossref_primary_10_1016_j_geoderma_2020_114552
crossref_primary_10_1080_17445647_2015_1113896
crossref_primary_10_1002_jeq2_20254
crossref_primary_10_1016_j_still_2021_105134
crossref_primary_10_1016_j_geoderma_2016_02_021
crossref_primary_10_21523_gcj1_2022060102
crossref_primary_10_1016_j_gecco_2023_e02555
crossref_primary_10_1016_j_geoderma_2019_03_037
crossref_primary_10_1016_j_geoderma_2018_01_020
crossref_primary_10_1016_j_geoderma_2015_08_035
crossref_primary_10_1016_j_geoderma_2023_116683
crossref_primary_10_1016_j_geoderma_2019_03_016
crossref_primary_10_1016_j_geoderma_2019_03_017
crossref_primary_10_1071_SR18319
crossref_primary_10_3390_su16104312
crossref_primary_10_1007_s13593_022_00774_8
crossref_primary_10_1016_j_grj_2017_06_001
crossref_primary_10_1016_j_foreco_2021_119226
crossref_primary_10_1016_j_jenvman_2021_113556
crossref_primary_10_3390_agronomy12081858
crossref_primary_10_1016_j_catena_2016_07_045
crossref_primary_10_1007_s11119_023_10099_5
crossref_primary_10_1016_j_geoderma_2021_115316
crossref_primary_10_1016_j_geodrs_2022_e00489
crossref_primary_10_1007_s10113_017_1239_9
crossref_primary_10_3390_ijgi9020102
crossref_primary_10_36783_18069657rbcs20190037
crossref_primary_10_1016_j_catena_2021_105702
crossref_primary_10_1016_j_geodrs_2016_02_006
crossref_primary_10_1016_j_geoderma_2020_114253
crossref_primary_10_3390_soilsystems3020034
crossref_primary_10_1590_s0100_204x2016000900035
crossref_primary_10_1016_j_still_2021_105114
crossref_primary_10_5194_soil_8_541_2022
crossref_primary_10_1007_s12665_024_11985_5
crossref_primary_10_1016_j_egyai_2024_100386
crossref_primary_10_1016_j_geoderma_2020_114779
crossref_primary_10_17491_jgsi_2024_173873
crossref_primary_10_1016_j_geoderma_2015_05_003
crossref_primary_10_3390_rs13234772
crossref_primary_10_1016_j_catena_2016_01_001
crossref_primary_10_3390_rs16040642
crossref_primary_10_1016_j_geoderma_2019_05_024
crossref_primary_10_1016_j_geomat_2024_100002
crossref_primary_10_1016_j_geoderma_2018_05_020
crossref_primary_10_1007_s00477_022_02284_1
crossref_primary_10_1016_j_geodrs_2021_e00359
crossref_primary_10_1016_j_microb_2024_100085
crossref_primary_10_37394_23206_2021_20_72
crossref_primary_10_1016_j_geodrs_2015_02_001
crossref_primary_10_1016_j_geoderma_2019_05_031
crossref_primary_10_1016_j_geodrs_2021_e00400
crossref_primary_10_1590_18069657rbcs20170021
crossref_primary_10_1016_j_catena_2018_01_015
crossref_primary_10_3390_rs14225803
crossref_primary_10_1016_j_geoderma_2022_116052
crossref_primary_10_1016_j_soisec_2022_100034
crossref_primary_10_1016_j_compag_2021_106640
crossref_primary_10_1111_ejss_12382
crossref_primary_10_3389_fsoil_2022_890437
crossref_primary_10_1007_s10661_017_5830_9
crossref_primary_10_1016_j_rse_2019_01_006
crossref_primary_10_1016_j_geoderma_2016_10_019
crossref_primary_10_3390_soilsystems3040065
crossref_primary_10_1002_saj2_20525
crossref_primary_10_1016_j_geoderma_2016_04_026
crossref_primary_10_1016_j_geoderma_2024_117065
crossref_primary_10_1016_j_scitotenv_2015_08_088
crossref_primary_10_1016_j_crm_2016_05_001
crossref_primary_10_1590_0103_9016_2015_0293
crossref_primary_10_1016_j_catena_2019_104149
crossref_primary_10_1111_tgis_12831
crossref_primary_10_1111_ejss_13589
crossref_primary_10_1111_ejss_13345
crossref_primary_10_1002_saj2_20080
crossref_primary_10_1016_j_jhydrol_2016_12_049
crossref_primary_10_1016_j_geodrs_2020_e00353
crossref_primary_10_2136_sssaj2017_04_0122
crossref_primary_10_1016_j_geoderma_2017_03_014
crossref_primary_10_1016_j_geoderma_2022_116182
crossref_primary_10_1016_j_geoderma_2017_03_015
crossref_primary_10_1016_j_geoderma_2016_12_017
crossref_primary_10_1007_s41742_024_00611_8
crossref_primary_10_1111_ejss_13463
crossref_primary_10_1016_j_ecolind_2020_106736
crossref_primary_10_1016_S2095_3119_19_62857_1
crossref_primary_10_1051_bioconf_20236801043
crossref_primary_10_3390_buildings15010140
crossref_primary_10_1016_j_geoderma_2020_114885
crossref_primary_10_1016_j_aiig_2024_100093
crossref_primary_10_1016_j_catena_2017_04_003
crossref_primary_10_1016_j_geodrs_2017_11_003
crossref_primary_10_1016_j_scitotenv_2016_07_066
crossref_primary_10_1111_sum_12350
crossref_primary_10_1016_j_ecoinf_2023_102279
crossref_primary_10_1016_j_foreco_2020_118557
crossref_primary_10_1016_j_catena_2022_106217
crossref_primary_10_1016_j_geoderma_2023_116769
crossref_primary_10_1111_sum_12874
crossref_primary_10_1590_1413_70542017414002017
Cites_doi 10.1126/science.1175084
10.1016/j.geoderma.2014.06.007
10.1016/j.geoderma.2009.10.007
10.1016/j.cie.2011.05.008
10.1079/SUM2004258
10.1007/s11119-008-9058-0
10.1016/S0016-7061(99)00003-8
10.1023/A:1010933404324
10.1016/S0341-8162(96)00035-5
10.1111/j.1365-2389.1994.tb00512.x
10.1016/j.cageo.2004.03.012
10.1002/joc.1276
10.1016/j.geoderma.2012.05.026
10.1016/j.geoderma.2013.09.024
10.1016/j.geoderma.2004.06.007
10.2136/sssaj2012.0275
10.1016/0016-7061(94)00040-H
10.1016/j.geoderma.2005.03.007
10.1016/j.geoderma.2014.04.033
10.1093/treephys/27.7.929
10.1016/S0016-7061(01)00070-2
10.1198/106186005X27518
10.1016/j.rse.2008.09.019
10.7717/peerj.71
10.1016/j.cageo.2005.12.009
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7S9
L.6
1XC
DOI 10.1016/j.geodrs.2014.11.003
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2352-0094
EndPage 30
ExternalDocumentID oai_HAL_hal_02629696v1
10_1016_j_geodrs_2014_11_003
S2352009414000418
GeographicLocations France
Mediterranean region
GeographicLocations_xml – name: Mediterranean region
– name: France
GroupedDBID --M
0R~
4.4
457
4G.
7-5
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
HZ~
KOM
M41
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSA
SSE
SSJ
SSZ
T5K
~G-
AAHBH
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
1XC
ID FETCH-LOGICAL-c288t-e5467f21ae4a197a8e0fc4cdd68db5e55c3928395de91a3da3755e0d1d4fe4b93
IEDL.DBID AIKHN
ISSN 2352-0094
IngestDate Fri Jun 13 07:01:55 EDT 2025
Fri Jul 11 16:45:01 EDT 2025
Tue Jul 01 02:07:16 EDT 2025
Thu Apr 24 22:59:46 EDT 2025
Fri Feb 23 02:22:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Digital Soil Mapping
GlobalSoilMap.net
Random forest
Legacy soil survey
Mediterranean region
France
Kriging
mediterranean region
globalSoilMap.net
digital Soil Mapping
kriging
france
random forest
legacy soil survey
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-e5467f21ae4a197a8e0fc4cdd68db5e55c3928395de91a3da3755e0d1d4fe4b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2948-1966
PQID 2000236504
PQPubID 24069
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_02629696v1
proquest_miscellaneous_2000236504
crossref_citationtrail_10_1016_j_geodrs_2014_11_003
crossref_primary_10_1016_j_geodrs_2014_11_003
elsevier_sciencedirect_doi_10_1016_j_geodrs_2014_11_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150401
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 20150401
  day: 01
PublicationDecade 2010
PublicationTitle Geoderma Regional
PublicationYear 2015
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Bui, Moran (bb0055) 2001; 103
Ciampalini, Lagacherie, Hamrouni (bb0060) 2012
Lagacherie, Gomez (bb0125) 2014
Hijmans, Cameron, Parra, Jones, Jarvis (bb0090) 2005; 25
Mansy, Guennoc, Robaszynski, Amédro, Auffret, Vidier, Lamarche, Lefevre, Somme, Brice, Mistiaen, Prud'Homme, Rohart, Vachard (bb0150) 2008
Jarvis, Rey, Petsikos, Wingate, Rayment, Pereira, Banza, David, Miglietta, Borghetti, Manca, Valentini (bb0105) 2007; 27
Odgers, Sun, McBratney, Minasny, Clifford (bb0170) 2014; 214–215
Sanchez, Ahamed, Carre, Hartemink, Hempel, Huising, Lagacherie, McBratney, McKenzie, Mendonca-Santos, Minasny, Montanarella, Okoth, Palm, Sachs, Shepherd, Vagen, Vanlauwe, Walsh, Winowiecki, Zhang (bb0185) 2009; 325
Ben-Dor, Chabrillat, Demattê, Taylor, Hill, Whiting, Sommer (bb0020) 2009; 113
Bliss, Waltman, Petersen (bb0030) 1995
De Oliveira (bb0075) 2005; 14
Henderson, Bui, Moran, Simon (bb0085) 2005; 124
Pebesma (bb0175) 2004; 30
Arrouays, McBratney, Minasny, Heuvelink, Hempel, MacMillan, Hartemink, Lagacherie, McKenzie (bb0015) 2014
Breiman (bb0050) 2001; 45
Yaalon (bb0205) 1997; 28
Yin, Ng, Ng (bb0210) 2011; 61
Journel, Huijbregts (bb0110) 1978
Lagacherie, Legros, Burfough (bb0120) 1995; 65
De Carvalho Junior, Lagacherie, da Silva Chagas, Calderano Filho, Bhering (bb0070) 2014; 232–234
Bornand, Legros, Rouzet (bb0045) 1994; 1
Minasny, McBratney (bb0155) 2006; 32
Servant (bb0190) 1970
Adhikari, Kheir, Greve, Bocher, Malone, Minasny, McBratney, Greve (bb0005) 2013; 77
Liaw, Wiener (bb0135) 2002; 2
Gray, Bishop, Wilford (bb0080) 2014
Leehardt, Voltz, Bornand, Webster (bb0130) 1994; 45
Kerry, Oliver (bb0115) 2008; 9
Bishop, McBratney, Laslett (bb0025) 1999; 91
Malone, McBratney, Minasny, Laslett (bb0140) 2009; 154
Böhner, McCloy, Strobl (bb0035) 2006; 115
Hong, Minasny, Han, Kim, Lee (bb0095) 2013; 1
I.N.R.A. Infosol (bb0100) 2005
Rossiter (bb0180) 2004; 20
Viscarra Rossel, Walvoort, McBratney, Janik, Skjemstad (bb0200) 2006; 131
Ciampalini, Martin, Saby, Richer de Forges, Arrouays, Nehlig, Martelet (bb0065) 2014
Odgers, Libohova, Thompson (bb0165) 2012; 189–190
Nauman, Thompson, Odgers, Libohova (bb0160) 2012
Zinck (bb0215) 1990; 4
Arrouays, Jolivet, Boulonne, Bodineau, Saby, Grolleau (bb0010) 2002; 88
Malone, Minasny, Odgers, McBratney (bb0145) 2014; 232–234
Vaysse, Arrouays, McKenzie, Coste, Lagacherie (bb0195) 2014
Bornand, Legros, Rouzet (bb0040) 1993; 166
Bornand (10.1016/j.geodrs.2014.11.003_bb0045) 1994; 1
Lagacherie (10.1016/j.geodrs.2014.11.003_bb0125) 2014
Ben-Dor (10.1016/j.geodrs.2014.11.003_bb0020) 2009; 113
De Carvalho Junior (10.1016/j.geodrs.2014.11.003_bb0070) 2014; 232–234
I.N.R.A. Infosol (10.1016/j.geodrs.2014.11.003_bb0100) 2005
Odgers (10.1016/j.geodrs.2014.11.003_bb0170) 2014; 214–215
De Oliveira (10.1016/j.geodrs.2014.11.003_bb0075) 2005; 14
Hong (10.1016/j.geodrs.2014.11.003_bb0095) 2013; 1
Odgers (10.1016/j.geodrs.2014.11.003_bb0165) 2012; 189–190
Rossiter (10.1016/j.geodrs.2014.11.003_bb0180) 2004; 20
Bornand (10.1016/j.geodrs.2014.11.003_bb0040) 1993; 166
Hijmans (10.1016/j.geodrs.2014.11.003_bb0090) 2005; 25
Servant (10.1016/j.geodrs.2014.11.003_bb0190) 1970
Gray (10.1016/j.geodrs.2014.11.003_bb0080) 2014
Bui (10.1016/j.geodrs.2014.11.003_bb0055) 2001; 103
Yaalon (10.1016/j.geodrs.2014.11.003_bb0205) 1997; 28
Bishop (10.1016/j.geodrs.2014.11.003_bb0025) 1999; 91
Leehardt (10.1016/j.geodrs.2014.11.003_bb0130) 1994; 45
Adhikari (10.1016/j.geodrs.2014.11.003_bb0005) 2013; 77
Vaysse (10.1016/j.geodrs.2014.11.003_bb0195) 2014
Mansy (10.1016/j.geodrs.2014.11.003_bb0150) 2008
Nauman (10.1016/j.geodrs.2014.11.003_bb0160) 2012
Arrouays (10.1016/j.geodrs.2014.11.003_bb0015) 2014
Kerry (10.1016/j.geodrs.2014.11.003_bb0115) 2008; 9
Breiman (10.1016/j.geodrs.2014.11.003_bb0050) 2001; 45
Bliss (10.1016/j.geodrs.2014.11.003_bb0030) 1995
Journel (10.1016/j.geodrs.2014.11.003_bb0110) 1978
Pebesma (10.1016/j.geodrs.2014.11.003_bb0175) 2004; 30
Malone (10.1016/j.geodrs.2014.11.003_bb0140) 2009; 154
Liaw (10.1016/j.geodrs.2014.11.003_bb0135) 2002; 2
Malone (10.1016/j.geodrs.2014.11.003_bb0145) 2014; 232–234
Yin (10.1016/j.geodrs.2014.11.003_bb0210) 2011; 61
Henderson (10.1016/j.geodrs.2014.11.003_bb0085) 2005; 124
Arrouays (10.1016/j.geodrs.2014.11.003_bb0010) 2002; 88
Minasny (10.1016/j.geodrs.2014.11.003_bb0155) 2006; 32
Sanchez (10.1016/j.geodrs.2014.11.003_bb0185) 2009; 325
Zinck (10.1016/j.geodrs.2014.11.003_bb0215) 1990; 4
Böhner (10.1016/j.geodrs.2014.11.003_bb0035) 2006; 115
Ciampalini (10.1016/j.geodrs.2014.11.003_bb0065) 2014
Viscarra Rossel (10.1016/j.geodrs.2014.11.003_bb0200) 2006; 131
Ciampalini (10.1016/j.geodrs.2014.11.003_bb0060) 2012
Jarvis (10.1016/j.geodrs.2014.11.003_bb0105) 2007; 27
Lagacherie (10.1016/j.geodrs.2014.11.003_bb0120) 1995; 65
References_xml – volume: 189–190
  start-page: 153
  year: 2012
  end-page: 163
  ident: bb0165
  article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale
  publication-title: Geoderma
– start-page: 133
  year: 2014
  end-page: 138
  ident: bb0195
  article-title: Estimation of GlobalSoilMap.net grids cells from legacy soil data at the regional scale in Southern France
  publication-title: GlobalSoilMap: Basis of the Global Spatial Soil Information System
– volume: 30
  start-page: 683
  year: 2004
  end-page: 691
  ident: bb0175
  article-title: Multivariable geostatistics in S: the gstat package
  publication-title: Comput. Geosci.
– volume: 325
  start-page: 680
  year: 2009
  end-page: 681
  ident: bb0185
  article-title: Digital soil map of the world
  publication-title: Science
– volume: 4
  start-page: 335
  year: 1990
  end-page: 350
  ident: bb0215
  article-title: Soil survey: epistemology of a vital discipline
  publication-title: ITC J.
– start-page: 121
  year: 2014
  end-page: 126
  ident: bb0065
  article-title: Soil texture GlobalSoilMap products for the French region  ‘Centre’
  publication-title: GlobalSoilMap
– volume: 91
  start-page: 27
  year: 1999
  end-page: 45
  ident: bb0025
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
– volume: 131
  start-page: 59
  year: 2006
  end-page: 75
  ident: bb0200
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
– volume: 124
  start-page: 383
  year: 2005
  end-page: 398
  ident: bb0085
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
– volume: 9
  start-page: 33
  year: 2008
  end-page: 56
  ident: bb0115
  article-title: Determining nugget:sill ratios of standardized variograms from aerial photographs to krige sparse soil data
  publication-title: Precis. Agric.
– volume: 27
  start-page: 929
  year: 2007
  end-page: 940
  ident: bb0105
  article-title: Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”
  publication-title: Tree Physiol.
– year: 1970
  ident: bb0190
  article-title: Carte pédologique de France à moyenne échelle: Argelès-sur-Mer - Perpignan
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bb0135
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 103
  start-page: 79
  year: 2001
  end-page: 94
  ident: bb0055
  article-title: Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data
  publication-title: Geoderma
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  ident: bb0090
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol.
– volume: 32
  start-page: 1378
  year: 2006
  end-page: 1388
  ident: bb0155
  article-title: A conditioned Latin Hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
– start-page: 433
  year: 2014
  end-page: 439
  ident: bb0080
  article-title: Lithology as a powerful covariate in digital soil mapping
  publication-title: GlobalSoilMap
– volume: 166
  start-page: 15
  year: 1993
  end-page: 22
  ident: bb0040
  article-title: La banque de données des sols régionaux du Languedoc-Roussillon. Présentation, conception et possibilités d'exploitation
  publication-title: Revue Ecole Sup Agric Purpan
– volume: 214–215
  start-page: 91
  year: 2014
  end-page: 100
  ident: bb0170
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
– volume: 61
  start-page: 760
  year: 2011
  end-page: 777
  ident: bb0210
  article-title: Kriging metamodel with modified nugget-effect: the heteroscedastic variance case
  publication-title: Comput. Ind. Eng.
– volume: 45
  start-page: 293
  year: 1994
  end-page: 301
  ident: bb0130
  article-title: Evaluating soil maps for prediction of soil water properties
  publication-title: Eur. J. Soil Sci.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0050
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 28
  start-page: 157
  year: 1997
  end-page: 169
  ident: bb0205
  article-title: Soils in the Mediterranean region: what makes them different?
  publication-title: Catena
– volume: 232–234
  start-page: 34
  year: 2014
  end-page: 44
  ident: bb0145
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
– volume: 113
  start-page: S38
  year: 2009
  end-page: S55
  ident: bb0020
  article-title: Using imaging spectroscopy to study soil properties
  publication-title: Remote Sens. Environ.
– year: 2014
  ident: bb0015
  article-title: The GlobalSoilMap project specifications
  publication-title: GlobalSoilMap: Basis of the Global Spatial Soil Information System
– start-page: 387
  year: 2014
  end-page: 392
  ident: bb0125
  article-title: What can GlobalSoilMap expect from vis–NIR HyperSpectral imagery in the near future?
  publication-title: GlobalSoilMap
– volume: 232–234
  start-page: 479
  year: 2014
  end-page: 486
  ident: bb0070
  article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment
  publication-title: Geoderma
– start-page: 439
  year: 2012
  end-page: 450
  ident: bb0060
  article-title: Documenting GlobalSoilMap.net grid cells from legacy measured soil profile and global available covariates in Northern Tunisia
  publication-title: Digital Soil Assessments and Beyond
– year: 2005
  ident: bb0100
  article-title: Référentiel Régional Pédologique: Cahier des Clauses Techniques Générales
– volume: 115
  start-page: 130
  year: 2006
  ident: bb0035
  article-title: SAGA — analysis and modelling applications
  publication-title: Göttinger Geogr. Abh.
– volume: 154
  start-page: 138
  year: 2009
  end-page: 152
  ident: bb0140
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
– start-page: 203
  year: 2012
  end-page: 207
  ident: bb0160
  article-title: Fuzzy disaggregation of conventional soil maps using database knowledge extraction to produce soil property maps
  publication-title: Digital Soil Assessments and Beyond
– start-page: 275
  year: 1995
  end-page: 295
  ident: bb0030
  article-title: Preparing and soil carbon inventory for the United States using geographical information systems
  publication-title: Soil and Global Change
– volume: 20
  start-page: 296
  year: 2004
  end-page: 301
  ident: bb0180
  article-title: Digital soil resource inventories: status and prospects
  publication-title: Soil Use Manag.
– volume: 14
  start-page: 95
  year: 2005
  end-page: 115
  ident: bb0075
  article-title: Bayesian inference and prediction of gaussian random fields based on censored data
  publication-title: J. Comput. Graph. Stat.
– volume: 65
  start-page: 283
  year: 1995
  end-page: 301
  ident: bb0120
  article-title: A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area
  publication-title: Geoderma
– volume: 1
  start-page: 67
  year: 1994
  end-page: 82
  ident: bb0045
  article-title: Les Banques régionales de données-sols. L'exemple du Languedoc-Roussillon
  publication-title: Etude et Gestion des Sols
– volume: 1
  start-page: e71
  year: 2013
  ident: bb0095
  article-title: Predicting and mapping soil available water capacity in Korea
  publication-title: PeerJ
– volume: 77
  start-page: 860
  year: 2013
  end-page: 876
  ident: bb0005
  article-title: High-resolution 3-D mapping of soil texture in Denmark
  publication-title: Soil Sci. Soc. Am. J.
– volume: 88
  start-page: 93
  year: 2002
  end-page: 105
  ident: bb0010
  article-title: A new initiative in France: a multi-institutional soil quality monitoring network
  publication-title: C. R. Acad. Agric. Fr.
– year: 1978
  ident: bb0110
  article-title: Mining Geostatistics
– year: 2008
  ident: bb0150
  article-title: Notice explicative de la carte géologique de la France (1/50000)
– volume: 325
  start-page: 680
  year: 2009
  ident: 10.1016/j.geodrs.2014.11.003_bb0185
  article-title: Digital soil map of the world
  publication-title: Science
  doi: 10.1126/science.1175084
– volume: 232–234
  start-page: 479
  year: 2014
  ident: 10.1016/j.geodrs.2014.11.003_bb0070
  article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.06.007
– volume: 1
  start-page: 67
  year: 1994
  ident: 10.1016/j.geodrs.2014.11.003_bb0045
  article-title: Les Banques régionales de données-sols. L'exemple du Languedoc-Roussillon
  publication-title: Etude et Gestion des Sols
– volume: 154
  start-page: 138
  year: 2009
  ident: 10.1016/j.geodrs.2014.11.003_bb0140
  article-title: Mapping continuous depth functions of soil carbon storage and available water capacity
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.10.007
– start-page: 275
  year: 1995
  ident: 10.1016/j.geodrs.2014.11.003_bb0030
  article-title: Preparing and soil carbon inventory for the United States using geographical information systems
– volume: 61
  start-page: 760
  year: 2011
  ident: 10.1016/j.geodrs.2014.11.003_bb0210
  article-title: Kriging metamodel with modified nugget-effect: the heteroscedastic variance case
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2011.05.008
– volume: 20
  start-page: 296
  year: 2004
  ident: 10.1016/j.geodrs.2014.11.003_bb0180
  article-title: Digital soil resource inventories: status and prospects
  publication-title: Soil Use Manag.
  doi: 10.1079/SUM2004258
– year: 1970
  ident: 10.1016/j.geodrs.2014.11.003_bb0190
– volume: 9
  start-page: 33
  year: 2008
  ident: 10.1016/j.geodrs.2014.11.003_bb0115
  article-title: Determining nugget:sill ratios of standardized variograms from aerial photographs to krige sparse soil data
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-008-9058-0
– volume: 91
  start-page: 27
  year: 1999
  ident: 10.1016/j.geodrs.2014.11.003_bb0025
  article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(99)00003-8
– start-page: 439
  year: 2012
  ident: 10.1016/j.geodrs.2014.11.003_bb0060
  article-title: Documenting GlobalSoilMap.net grid cells from legacy measured soil profile and global available covariates in Northern Tunisia
– start-page: 133
  year: 2014
  ident: 10.1016/j.geodrs.2014.11.003_bb0195
  article-title: Estimation of GlobalSoilMap.net grids cells from legacy soil data at the regional scale in Southern France
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.geodrs.2014.11.003_bb0050
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 28
  start-page: 157
  year: 1997
  ident: 10.1016/j.geodrs.2014.11.003_bb0205
  article-title: Soils in the Mediterranean region: what makes them different?
  publication-title: Catena
  doi: 10.1016/S0341-8162(96)00035-5
– volume: 45
  start-page: 293
  year: 1994
  ident: 10.1016/j.geodrs.2014.11.003_bb0130
  article-title: Evaluating soil maps for prediction of soil water properties
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.1994.tb00512.x
– volume: 30
  start-page: 683
  year: 2004
  ident: 10.1016/j.geodrs.2014.11.003_bb0175
  article-title: Multivariable geostatistics in S: the gstat package
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.03.012
– year: 2014
  ident: 10.1016/j.geodrs.2014.11.003_bb0015
  article-title: The GlobalSoilMap project specifications
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.geodrs.2014.11.003_bb0135
  article-title: Classification and regression by random forest
  publication-title: R News
– volume: 115
  start-page: 130
  year: 2006
  ident: 10.1016/j.geodrs.2014.11.003_bb0035
  article-title: SAGA — analysis and modelling applications
  publication-title: Göttinger Geogr. Abh.
– year: 2005
  ident: 10.1016/j.geodrs.2014.11.003_bb0100
– start-page: 387
  year: 2014
  ident: 10.1016/j.geodrs.2014.11.003_bb0125
  article-title: What can GlobalSoilMap expect from vis–NIR HyperSpectral imagery in the near future?
– year: 2008
  ident: 10.1016/j.geodrs.2014.11.003_bb0150
– volume: 25
  start-page: 1965
  year: 2005
  ident: 10.1016/j.geodrs.2014.11.003_bb0090
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1276
– volume: 189–190
  start-page: 153
  year: 2012
  ident: 10.1016/j.geodrs.2014.11.003_bb0165
  article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.05.026
– volume: 214–215
  start-page: 91
  year: 2014
  ident: 10.1016/j.geodrs.2014.11.003_bb0170
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.024
– volume: 4
  start-page: 335
  year: 1990
  ident: 10.1016/j.geodrs.2014.11.003_bb0215
  article-title: Soil survey: epistemology of a vital discipline
  publication-title: ITC J.
– volume: 124
  start-page: 383
  year: 2005
  ident: 10.1016/j.geodrs.2014.11.003_bb0085
  article-title: Australia-wide predictions of soil properties using decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2004.06.007
– start-page: 433
  year: 2014
  ident: 10.1016/j.geodrs.2014.11.003_bb0080
  article-title: Lithology as a powerful covariate in digital soil mapping
– volume: 77
  start-page: 860
  year: 2013
  ident: 10.1016/j.geodrs.2014.11.003_bb0005
  article-title: High-resolution 3-D mapping of soil texture in Denmark
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0275
– volume: 65
  start-page: 283
  year: 1995
  ident: 10.1016/j.geodrs.2014.11.003_bb0120
  article-title: A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area
  publication-title: Geoderma
  doi: 10.1016/0016-7061(94)00040-H
– volume: 131
  start-page: 59
  year: 2006
  ident: 10.1016/j.geodrs.2014.11.003_bb0200
  article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.03.007
– start-page: 121
  year: 2014
  ident: 10.1016/j.geodrs.2014.11.003_bb0065
  article-title: Soil texture GlobalSoilMap products for the French region  ‘Centre’
– year: 1978
  ident: 10.1016/j.geodrs.2014.11.003_bb0110
– volume: 232–234
  start-page: 34
  year: 2014
  ident: 10.1016/j.geodrs.2014.11.003_bb0145
  article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.04.033
– volume: 27
  start-page: 929
  year: 2007
  ident: 10.1016/j.geodrs.2014.11.003_bb0105
  article-title: Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect”
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/27.7.929
– volume: 103
  start-page: 79
  year: 2001
  ident: 10.1016/j.geodrs.2014.11.003_bb0055
  article-title: Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(01)00070-2
– volume: 88
  start-page: 93
  year: 2002
  ident: 10.1016/j.geodrs.2014.11.003_bb0010
  article-title: A new initiative in France: a multi-institutional soil quality monitoring network
  publication-title: C. R. Acad. Agric. Fr.
– volume: 14
  start-page: 95
  year: 2005
  ident: 10.1016/j.geodrs.2014.11.003_bb0075
  article-title: Bayesian inference and prediction of gaussian random fields based on censored data
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186005X27518
– volume: 166
  start-page: 15
  year: 1993
  ident: 10.1016/j.geodrs.2014.11.003_bb0040
  article-title: La banque de données des sols régionaux du Languedoc-Roussillon. Présentation, conception et possibilités d'exploitation
  publication-title: Revue Ecole Sup Agric Purpan
– volume: 113
  start-page: S38
  issue: Supplement 1
  year: 2009
  ident: 10.1016/j.geodrs.2014.11.003_bb0020
  article-title: Using imaging spectroscopy to study soil properties
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.09.019
– volume: 1
  start-page: e71
  year: 2013
  ident: 10.1016/j.geodrs.2014.11.003_bb0095
  article-title: Predicting and mapping soil available water capacity in Korea
  publication-title: PeerJ
  doi: 10.7717/peerj.71
– volume: 32
  start-page: 1378
  year: 2006
  ident: 10.1016/j.geodrs.2014.11.003_bb0155
  article-title: A conditioned Latin Hypercube method for sampling in the presence of ancillary information
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.12.009
– start-page: 203
  year: 2012
  ident: 10.1016/j.geodrs.2014.11.003_bb0160
  article-title: Fuzzy disaggregation of conventional soil maps using database knowledge extraction to produce soil property maps
SSID ssj0002953762
Score 2.3797731
Snippet Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical”...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20
SubjectTerms carbon
clay
climate
Digital Soil Mapping
Environmental Sciences
France
GlobalSoilMap.net
infrastructure
Kriging
Legacy soil survey
Life Sciences
Mediterranean region
Random forest
sand
silt
soil depth
soil profiles
soil properties
soil surveys
spatial data
texture
variance
Title Evaluating Digital Soil Mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)
URI https://dx.doi.org/10.1016/j.geodrs.2014.11.003
https://www.proquest.com/docview/2000236504
https://hal.inrae.fr/hal-02629696
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZguXBBoBaxtCCDemgPZpPYZpPjioeWLnCAonKLHHsSUm2T1bJU6h_gdzOTOCtRDkg9RbE8SjRjz8Oe-YaxL9YZDGWtFTLOnVC4SkQSu1w4HYBE98IkimqHr66Px3fq-72-X2EnXS0MpVV63d_q9EZb-5GB5-ZgVpaD20g2kEEKQwRCjYpX2VqE1jXosbXRxWR8vTxqiRLCLImaNnM6EkTTFdE1mV4F1G5O0N2hOiJEz66B1lsjtfpA2ZL_KO3GEp1vsg3vQvJR-5dbbAWqD-z5zMN2VwU_LQtqBcJv63LKrwwhMBS8Aw-HR45-Kv_th1vMf5qJE_kjUczofH5OQKucik_4FApj_3LKJeVlxS_phBNcbcVN_YQ7ii7u-demQQd8-8juzs9-nIyF77EgbBTHCwEaNWUehQYUCm1oYghyq6xzx7HLNGht0YFCJ0o7SEIjnZFDrSFwoVM5qCyR26xX1RXsMC4zSZwOyIVTJtEJuiJGxQaCLFdZKPtMdkxNrQcgpz4Y07TLNPuVtqJISRQYmxBwaZ-JJdWsBeB4Z_6wk1f6aiGlaCPeoTxE8S4_Qrjb49FlSmMYqEYEI_Qn7LODTvopbkS6XTEVILupnyeh8etA7f73L3xi6_im28ygz6y3mD_BHjo9i2zfL2p6Tm5-Tl4AtgcCZg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEICt0h7gUhUBYikPg0CCg9k87G5y4LCirbLs40Bbqbfg2JOQapusdrdF_QP8If4gM4mzEnCohNSrYyvWjD2eScbfMPbWWI2hrDEijHIrJK4SEUc2F1Z5EKJ7oWNJd4ens4PkTH45V-db7Fd3F4bSKp3tb216Y61dS99Js78oy_5JEDbIIIkhAlGjIpdZOYabHxi3rT6NDlHJ74Lg-Oj0cyJcaQFhgihaC1BoIPLA1yBxrgMdgZcbaaw9iGymQCmDfgP6DspC7OvQ6nCgFHjWtzIHmRGBCe3-DtGwcFvtDEfjZLb5tBPExEgJmrJ2KhA0x-7SXpNZVkBtl4QK9-VHIoh2Bbv-PRTvfafszL8OiebkO95ju85l5cNWKg_ZFlSP2M8jhwmvCn5YFlR6hJ_U5ZxPNREfCt7BymHF0S_ml665rTFAPbEjX9GIBf0PWBLYldNlFz6HQpsbTrmrvKz4hL6ogq2N-Fpf4Q6mRAH-vikIAh8es7M7EfwTtl3VFTxlPMxCkrRHLqPUsYrR9dEy0uBlucz8sMfCTqipccBzqrsxT7vMtou0VUVKqsBYiECpPSY2oxYt8OOW_oNOX-kfCzfFM-mWkW9QvZuXEOc7GU5SasPAOCBs0bXfY6877ae48elvjq4AxU31Q4n-rzz57L-n8IrdT06nk3Qymo332QN8otqspOdse728ghfocK2zl26Bc_btrvfUb09BPtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Digital+Soil+Mapping+approaches+for+mapping+GlobalSoilMap+soil+properties+from+legacy+data+in+Languedoc-Roussillon+%28France%29&rft.jtitle=Geoderma+Regional&rft.au=Vaysse%2C+K.&rft.au=Lagacherie%2C+P.&rft.date=2015-04-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=4&rft.spage=20&rft.epage=30&rft_id=info:doi/10.1016%2Fj.geodrs.2014.11.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geodrs_2014_11_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon