Evaluating Digital Soil Mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France)
Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236km2 French region located in the Northern Mediterranean area, this study evaluated four well-known Digita...
Saved in:
Published in | Geoderma Regional Vol. 4; pp. 20 - 30 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2015
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236km2 French region located in the Northern Mediterranean area, this study evaluated four well-known Digital Soil Mapping approaches that were possibly applicable in the French context for inferring the GlobalSoilMap (GSM) grid using freely available data from the French spatial data infrastructure. These approaches used for soil input either a legacy 1:250,000 scale soil map—an area-weighted mean of soil mapping units and spatial disaggregation of soil mapping units (simulated)—or a set of 2024 legacy-measured soil profiles (1 profile/13.5km2) associated with a set of soil covariates using random forest and random forest plus kriging. These methods provided estimates of 29 soil properties over a 100m by 100m grid, i.e., clay, sand, silt, coarse fragment, organic carbon contents, pH and CEC, at the four upper GSM-specified depth intervals, plus soil depth.
This experiment showed that the performances in mapping soil properties were highly variable (from R2=0 to R2=0.79). They were strongly correlated with the amount of spatially-structured variance of the soil properties captured by the available soil data. For example better performances were observed for organic carbon that is driven by large-scale climate variations than for texture and soil depth that are driven by short scale variations of parent materials and erosion–deposition ratio along a slope. Furthermore, the profile-based DSM models generally outperformed the soil map-based DSM models, and kriging did not improve the results of random forest. Finally improving the quality of soil data input was considered as the best way to improve the current mapping performances.
In addition to providing a GlobalSoilMap proof-of-concept for Northern Mediterranean areas, this paper illustrates how a prior analysis of the available soil data may help in the anticipated estimation of the mapping performances and in the prior selection of the most promising DSM models to reach these performances.
•Four DSM models were tested to map 29 GSM-specified soil properties in Southern France.•Mapping performances were highly variable (from R2=0 to R2=0.79).•Soil profile-based DSM models generally outperformed soil map-based DSM models.•The soil database used as an input of DSM models was the most limiting factor. |
---|---|
AbstractList | Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236 km2 French region located in the Northern Mediterranean area, this study evaluated four well-known Digital Soil Mapping approaches that were possibly applicable in the French context for inferring the GlobalSoilMap (GSM) grid using freely available data from the French spatial data infrastructure. These approaches used for soil input either a legacy 1:250,000 scale soil map—an area-weighted mean of soil mapping units and spatial disaggregation of soil mapping units (simulated)—or a set of 2024 legacy-measured soil profiles (1 profile/13.5 km2) associated with a set of soil covariates using random forest and random forest plus kriging. These methods provided estimates of 29 soil properties over a 100 m by 100 m grid, i.e., clay, sand, silt, coarse fragment, organic carbon contents, pH and CEC, at the four upper GSM-specified depth intervals, plus soil depth. This experiment showed that the performances in mapping soil properties were highly variable (from R2 = 0 to R2 = 0.79). They were strongly correlated with the amount of spatially-structured variance of the soil properties captured by the available soil data. For example better performances were observed for organic carbon that is driven by large-scale climate variations than for texture and soil depth that are driven by short scale variations of parent materials and erosion–deposition ratio along a slope. Furthermore, the profile-based DSM models generally outperformed the soil map-based DSM models, and kriging did not improve the results of random forest. Finally improving the quality of soil data input was considered as the best way to improve the current mapping performances. In addition to providing a GlobalSoilMap proof-of-concept for Northern Mediterranean areas, this paper illustrates how a prior analysis of the available soil data may help in the anticipated estimation of the mapping performances and in the prior selection of the most promising DSM models to reach these performances. Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236km² French region located in the Northern Mediterranean area, this study evaluated four well-known Digital Soil Mapping approaches that were possibly applicable in the French context for inferring the GlobalSoilMap (GSM) grid using freely available data from the French spatial data infrastructure. These approaches used for soil input either a legacy 1:250,000 scale soil map—an area-weighted mean of soil mapping units and spatial disaggregation of soil mapping units (simulated)—or a set of 2024 legacy-measured soil profiles (1 profile/13.5km²) associated with a set of soil covariates using random forest and random forest plus kriging. These methods provided estimates of 29 soil properties over a 100m by 100m grid, i.e., clay, sand, silt, coarse fragment, organic carbon contents, pH and CEC, at the four upper GSM-specified depth intervals, plus soil depth.This experiment showed that the performances in mapping soil properties were highly variable (from R²=0 to R²=0.79). They were strongly correlated with the amount of spatially-structured variance of the soil properties captured by the available soil data. For example better performances were observed for organic carbon that is driven by large-scale climate variations than for texture and soil depth that are driven by short scale variations of parent materials and erosion–deposition ratio along a slope. Furthermore, the profile-based DSM models generally outperformed the soil map-based DSM models, and kriging did not improve the results of random forest. Finally improving the quality of soil data input was considered as the best way to improve the current mapping performances.In addition to providing a GlobalSoilMap proof-of-concept for Northern Mediterranean areas, this paper illustrates how a prior analysis of the available soil data may help in the anticipated estimation of the mapping performances and in the prior selection of the most promising DSM models to reach these performances. Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical” applications across the planet. In a 27,236km2 French region located in the Northern Mediterranean area, this study evaluated four well-known Digital Soil Mapping approaches that were possibly applicable in the French context for inferring the GlobalSoilMap (GSM) grid using freely available data from the French spatial data infrastructure. These approaches used for soil input either a legacy 1:250,000 scale soil map—an area-weighted mean of soil mapping units and spatial disaggregation of soil mapping units (simulated)—or a set of 2024 legacy-measured soil profiles (1 profile/13.5km2) associated with a set of soil covariates using random forest and random forest plus kriging. These methods provided estimates of 29 soil properties over a 100m by 100m grid, i.e., clay, sand, silt, coarse fragment, organic carbon contents, pH and CEC, at the four upper GSM-specified depth intervals, plus soil depth. This experiment showed that the performances in mapping soil properties were highly variable (from R2=0 to R2=0.79). They were strongly correlated with the amount of spatially-structured variance of the soil properties captured by the available soil data. For example better performances were observed for organic carbon that is driven by large-scale climate variations than for texture and soil depth that are driven by short scale variations of parent materials and erosion–deposition ratio along a slope. Furthermore, the profile-based DSM models generally outperformed the soil map-based DSM models, and kriging did not improve the results of random forest. Finally improving the quality of soil data input was considered as the best way to improve the current mapping performances. In addition to providing a GlobalSoilMap proof-of-concept for Northern Mediterranean areas, this paper illustrates how a prior analysis of the available soil data may help in the anticipated estimation of the mapping performances and in the prior selection of the most promising DSM models to reach these performances. •Four DSM models were tested to map 29 GSM-specified soil properties in Southern France.•Mapping performances were highly variable (from R2=0 to R2=0.79).•Soil profile-based DSM models generally outperformed soil map-based DSM models.•The soil database used as an input of DSM models was the most limiting factor. |
Author | Vaysse, K. Lagacherie, P. |
Author_xml | – sequence: 1 givenname: K. surname: Vaysse fullname: Vaysse, K. email: kevin.vaysse@supagro.inra.fr organization: INRA, UMR LISAH, Montpellier, France – sequence: 2 givenname: P. surname: Lagacherie fullname: Lagacherie, P. organization: INRA, UMR LISAH, Montpellier, France |
BackLink | https://hal.inrae.fr/hal-02629696$$DView record in HAL |
BookMark | eNqFkc1q3DAUhU1JoWmaN-hCy2RhV5Ilj9VFIeS3MKXQn7W4I107GjTWVNIM5AX63JVxCqWLdnXF4TsX3XNeVydTmLCq3jLaMMq6d9tmxGBjajhlomGsobR9UZ3yVvKaUiVO_ni_qs5T2lJKuZLtquOn1c_bI_gDZDeN5MaNLoMnX4Pz5BPs97NYRgxgHjGRIUSye5bvfdiAn8kCkjQ7CrfHmN1MxrAjHkcwT8RCBuImsoZpPKANpv4SDik578NELu4iTAYv31QvB_AJz5_nWfX97vbb9UO9_nz_8fpqXRve97lGKbrVwBmgAKZW0CMdjDDWdr3dSJTStIr3rZIWFYPWQruSEqllVgwoNqo9qy6XvY_g9T66HcQnHcDph6u1njXKO6461R1ZYS8Wthz244Ap651LBr2HCcsFms85tp2koqDvF9TEkFLEQZuSZHZhyhGc14zquSu91UtXeu5KM6ZLV8Us_jL__th_bB8WG5a8jg6jTsZhCdO6iCZrG9y_F_wCgZOzyQ |
CitedBy_id | crossref_primary_10_1016_j_geoderma_2024_116873 crossref_primary_10_7717_peerj_5518 crossref_primary_10_5194_soil_3_191_2017 crossref_primary_10_1016_j_geoderma_2018_08_024 crossref_primary_10_1016_j_seh_2023_100049 crossref_primary_10_1016_j_still_2024_106007 crossref_primary_10_5194_tc_14_1763_2020 crossref_primary_10_1016_j_geoderma_2020_114575 crossref_primary_10_1016_j_catena_2021_105196 crossref_primary_10_1016_j_geodrs_2017_03_003 crossref_primary_10_1016_j_geoderma_2024_116912 crossref_primary_10_1016_j_scitotenv_2016_11_078 crossref_primary_10_1002_ldr_5194 crossref_primary_10_1016_j_catena_2018_12_015 crossref_primary_10_1016_j_geoderma_2016_12_011 crossref_primary_10_1016_j_geoderma_2017_05_048 crossref_primary_10_1016_j_catena_2020_104940 crossref_primary_10_1016_j_compag_2020_105217 crossref_primary_10_1016_j_geodrs_2020_e00337 crossref_primary_10_1371_journal_pone_0218563 crossref_primary_10_3390_f12111430 crossref_primary_10_1016_j_geoderma_2023_116740 crossref_primary_10_1016_j_geodrs_2020_e00334 crossref_primary_10_3390_rs16152712 crossref_primary_10_1016_j_geodrs_2021_e00437 crossref_primary_10_1016_j_geoderma_2016_04_019 crossref_primary_10_5194_soil_4_123_2018 crossref_primary_10_5194_soil_4_1_2018 crossref_primary_10_5194_soil_6_371_2020 crossref_primary_10_1016_j_geoderma_2016_06_006 crossref_primary_10_1071_SR21067 crossref_primary_10_1016_j_scitotenv_2020_143644 crossref_primary_10_1007_s11629_019_5409_8 crossref_primary_10_1016_j_scitotenv_2017_05_239 crossref_primary_10_1016_S2095_3119_17_61762_3 crossref_primary_10_1016_j_apm_2019_12_016 crossref_primary_10_1016_j_earscirev_2020_103359 crossref_primary_10_1016_j_geoderma_2021_114968 crossref_primary_10_1016_j_geodrs_2016_11_003 crossref_primary_10_1016_j_geoderma_2020_114503 crossref_primary_10_1016_j_catena_2020_105062 crossref_primary_10_1016_j_rsase_2023_100990 crossref_primary_10_1016_j_geodrs_2020_e00342 crossref_primary_10_1590_18069657rbcs20170183 crossref_primary_10_1016_j_geoderma_2021_115282 crossref_primary_10_1016_j_geodrs_2020_e00269 crossref_primary_10_1590_1678_992x_2016_0097 crossref_primary_10_1016_j_geoderma_2015_12_025 crossref_primary_10_1016_j_jag_2019_101905 crossref_primary_10_1016_j_geoderma_2022_115840 crossref_primary_10_1016_j_geoderma_2020_114552 crossref_primary_10_1080_17445647_2015_1113896 crossref_primary_10_1002_jeq2_20254 crossref_primary_10_1016_j_still_2021_105134 crossref_primary_10_1016_j_geoderma_2016_02_021 crossref_primary_10_21523_gcj1_2022060102 crossref_primary_10_1016_j_gecco_2023_e02555 crossref_primary_10_1016_j_geoderma_2019_03_037 crossref_primary_10_1016_j_geoderma_2018_01_020 crossref_primary_10_1016_j_geoderma_2015_08_035 crossref_primary_10_1016_j_geoderma_2023_116683 crossref_primary_10_1016_j_geoderma_2019_03_016 crossref_primary_10_1016_j_geoderma_2019_03_017 crossref_primary_10_1071_SR18319 crossref_primary_10_3390_su16104312 crossref_primary_10_1007_s13593_022_00774_8 crossref_primary_10_1016_j_grj_2017_06_001 crossref_primary_10_1016_j_foreco_2021_119226 crossref_primary_10_1016_j_jenvman_2021_113556 crossref_primary_10_3390_agronomy12081858 crossref_primary_10_1016_j_catena_2016_07_045 crossref_primary_10_1007_s11119_023_10099_5 crossref_primary_10_1016_j_geoderma_2021_115316 crossref_primary_10_1016_j_geodrs_2022_e00489 crossref_primary_10_1007_s10113_017_1239_9 crossref_primary_10_3390_ijgi9020102 crossref_primary_10_36783_18069657rbcs20190037 crossref_primary_10_1016_j_catena_2021_105702 crossref_primary_10_1016_j_geodrs_2016_02_006 crossref_primary_10_1016_j_geoderma_2020_114253 crossref_primary_10_3390_soilsystems3020034 crossref_primary_10_1590_s0100_204x2016000900035 crossref_primary_10_1016_j_still_2021_105114 crossref_primary_10_5194_soil_8_541_2022 crossref_primary_10_1007_s12665_024_11985_5 crossref_primary_10_1016_j_egyai_2024_100386 crossref_primary_10_1016_j_geoderma_2020_114779 crossref_primary_10_17491_jgsi_2024_173873 crossref_primary_10_1016_j_geoderma_2015_05_003 crossref_primary_10_3390_rs13234772 crossref_primary_10_1016_j_catena_2016_01_001 crossref_primary_10_3390_rs16040642 crossref_primary_10_1016_j_geoderma_2019_05_024 crossref_primary_10_1016_j_geomat_2024_100002 crossref_primary_10_1016_j_geoderma_2018_05_020 crossref_primary_10_1007_s00477_022_02284_1 crossref_primary_10_1016_j_geodrs_2021_e00359 crossref_primary_10_1016_j_microb_2024_100085 crossref_primary_10_37394_23206_2021_20_72 crossref_primary_10_1016_j_geodrs_2015_02_001 crossref_primary_10_1016_j_geoderma_2019_05_031 crossref_primary_10_1016_j_geodrs_2021_e00400 crossref_primary_10_1590_18069657rbcs20170021 crossref_primary_10_1016_j_catena_2018_01_015 crossref_primary_10_3390_rs14225803 crossref_primary_10_1016_j_geoderma_2022_116052 crossref_primary_10_1016_j_soisec_2022_100034 crossref_primary_10_1016_j_compag_2021_106640 crossref_primary_10_1111_ejss_12382 crossref_primary_10_3389_fsoil_2022_890437 crossref_primary_10_1007_s10661_017_5830_9 crossref_primary_10_1016_j_rse_2019_01_006 crossref_primary_10_1016_j_geoderma_2016_10_019 crossref_primary_10_3390_soilsystems3040065 crossref_primary_10_1002_saj2_20525 crossref_primary_10_1016_j_geoderma_2016_04_026 crossref_primary_10_1016_j_geoderma_2024_117065 crossref_primary_10_1016_j_scitotenv_2015_08_088 crossref_primary_10_1016_j_crm_2016_05_001 crossref_primary_10_1590_0103_9016_2015_0293 crossref_primary_10_1016_j_catena_2019_104149 crossref_primary_10_1111_tgis_12831 crossref_primary_10_1111_ejss_13589 crossref_primary_10_1111_ejss_13345 crossref_primary_10_1002_saj2_20080 crossref_primary_10_1016_j_jhydrol_2016_12_049 crossref_primary_10_1016_j_geodrs_2020_e00353 crossref_primary_10_2136_sssaj2017_04_0122 crossref_primary_10_1016_j_geoderma_2017_03_014 crossref_primary_10_1016_j_geoderma_2022_116182 crossref_primary_10_1016_j_geoderma_2017_03_015 crossref_primary_10_1016_j_geoderma_2016_12_017 crossref_primary_10_1007_s41742_024_00611_8 crossref_primary_10_1111_ejss_13463 crossref_primary_10_1016_j_ecolind_2020_106736 crossref_primary_10_1016_S2095_3119_19_62857_1 crossref_primary_10_1051_bioconf_20236801043 crossref_primary_10_3390_buildings15010140 crossref_primary_10_1016_j_geoderma_2020_114885 crossref_primary_10_1016_j_aiig_2024_100093 crossref_primary_10_1016_j_catena_2017_04_003 crossref_primary_10_1016_j_geodrs_2017_11_003 crossref_primary_10_1016_j_scitotenv_2016_07_066 crossref_primary_10_1111_sum_12350 crossref_primary_10_1016_j_ecoinf_2023_102279 crossref_primary_10_1016_j_foreco_2020_118557 crossref_primary_10_1016_j_catena_2022_106217 crossref_primary_10_1016_j_geoderma_2023_116769 crossref_primary_10_1111_sum_12874 crossref_primary_10_1590_1413_70542017414002017 |
Cites_doi | 10.1126/science.1175084 10.1016/j.geoderma.2014.06.007 10.1016/j.geoderma.2009.10.007 10.1016/j.cie.2011.05.008 10.1079/SUM2004258 10.1007/s11119-008-9058-0 10.1016/S0016-7061(99)00003-8 10.1023/A:1010933404324 10.1016/S0341-8162(96)00035-5 10.1111/j.1365-2389.1994.tb00512.x 10.1016/j.cageo.2004.03.012 10.1002/joc.1276 10.1016/j.geoderma.2012.05.026 10.1016/j.geoderma.2013.09.024 10.1016/j.geoderma.2004.06.007 10.2136/sssaj2012.0275 10.1016/0016-7061(94)00040-H 10.1016/j.geoderma.2005.03.007 10.1016/j.geoderma.2014.04.033 10.1093/treephys/27.7.929 10.1016/S0016-7061(01)00070-2 10.1198/106186005X27518 10.1016/j.rse.2008.09.019 10.7717/peerj.71 10.1016/j.cageo.2005.12.009 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2014 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7S9 L.6 1XC |
DOI | 10.1016/j.geodrs.2014.11.003 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2352-0094 |
EndPage | 30 |
ExternalDocumentID | oai_HAL_hal_02629696v1 10_1016_j_geodrs_2014_11_003 S2352009414000418 |
GeographicLocations | France Mediterranean region |
GeographicLocations_xml | – name: Mediterranean region – name: France |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAHBH AAQFI AATTM AAXKI AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 1XC |
ID | FETCH-LOGICAL-c288t-e5467f21ae4a197a8e0fc4cdd68db5e55c3928395de91a3da3755e0d1d4fe4b93 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Fri Jun 13 07:01:55 EDT 2025 Fri Jul 11 16:45:01 EDT 2025 Tue Jul 01 02:07:16 EDT 2025 Thu Apr 24 22:59:46 EDT 2025 Fri Feb 23 02:22:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Digital Soil Mapping GlobalSoilMap.net Random forest Legacy soil survey Mediterranean region France Kriging mediterranean region globalSoilMap.net digital Soil Mapping kriging france random forest legacy soil survey |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-e5467f21ae4a197a8e0fc4cdd68db5e55c3928395de91a3da3755e0d1d4fe4b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2948-1966 |
PQID | 2000236504 |
PQPubID | 24069 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_02629696v1 proquest_miscellaneous_2000236504 crossref_citationtrail_10_1016_j_geodrs_2014_11_003 crossref_primary_10_1016_j_geodrs_2014_11_003 elsevier_sciencedirect_doi_10_1016_j_geodrs_2014_11_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150401 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 20150401 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2015 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Bui, Moran (bb0055) 2001; 103 Ciampalini, Lagacherie, Hamrouni (bb0060) 2012 Lagacherie, Gomez (bb0125) 2014 Hijmans, Cameron, Parra, Jones, Jarvis (bb0090) 2005; 25 Mansy, Guennoc, Robaszynski, Amédro, Auffret, Vidier, Lamarche, Lefevre, Somme, Brice, Mistiaen, Prud'Homme, Rohart, Vachard (bb0150) 2008 Jarvis, Rey, Petsikos, Wingate, Rayment, Pereira, Banza, David, Miglietta, Borghetti, Manca, Valentini (bb0105) 2007; 27 Odgers, Sun, McBratney, Minasny, Clifford (bb0170) 2014; 214–215 Sanchez, Ahamed, Carre, Hartemink, Hempel, Huising, Lagacherie, McBratney, McKenzie, Mendonca-Santos, Minasny, Montanarella, Okoth, Palm, Sachs, Shepherd, Vagen, Vanlauwe, Walsh, Winowiecki, Zhang (bb0185) 2009; 325 Ben-Dor, Chabrillat, Demattê, Taylor, Hill, Whiting, Sommer (bb0020) 2009; 113 Bliss, Waltman, Petersen (bb0030) 1995 De Oliveira (bb0075) 2005; 14 Henderson, Bui, Moran, Simon (bb0085) 2005; 124 Pebesma (bb0175) 2004; 30 Arrouays, McBratney, Minasny, Heuvelink, Hempel, MacMillan, Hartemink, Lagacherie, McKenzie (bb0015) 2014 Breiman (bb0050) 2001; 45 Yaalon (bb0205) 1997; 28 Yin, Ng, Ng (bb0210) 2011; 61 Journel, Huijbregts (bb0110) 1978 Lagacherie, Legros, Burfough (bb0120) 1995; 65 De Carvalho Junior, Lagacherie, da Silva Chagas, Calderano Filho, Bhering (bb0070) 2014; 232–234 Bornand, Legros, Rouzet (bb0045) 1994; 1 Minasny, McBratney (bb0155) 2006; 32 Servant (bb0190) 1970 Adhikari, Kheir, Greve, Bocher, Malone, Minasny, McBratney, Greve (bb0005) 2013; 77 Liaw, Wiener (bb0135) 2002; 2 Gray, Bishop, Wilford (bb0080) 2014 Leehardt, Voltz, Bornand, Webster (bb0130) 1994; 45 Kerry, Oliver (bb0115) 2008; 9 Bishop, McBratney, Laslett (bb0025) 1999; 91 Malone, McBratney, Minasny, Laslett (bb0140) 2009; 154 Böhner, McCloy, Strobl (bb0035) 2006; 115 Hong, Minasny, Han, Kim, Lee (bb0095) 2013; 1 I.N.R.A. Infosol (bb0100) 2005 Rossiter (bb0180) 2004; 20 Viscarra Rossel, Walvoort, McBratney, Janik, Skjemstad (bb0200) 2006; 131 Ciampalini, Martin, Saby, Richer de Forges, Arrouays, Nehlig, Martelet (bb0065) 2014 Odgers, Libohova, Thompson (bb0165) 2012; 189–190 Nauman, Thompson, Odgers, Libohova (bb0160) 2012 Zinck (bb0215) 1990; 4 Arrouays, Jolivet, Boulonne, Bodineau, Saby, Grolleau (bb0010) 2002; 88 Malone, Minasny, Odgers, McBratney (bb0145) 2014; 232–234 Vaysse, Arrouays, McKenzie, Coste, Lagacherie (bb0195) 2014 Bornand, Legros, Rouzet (bb0040) 1993; 166 Bornand (10.1016/j.geodrs.2014.11.003_bb0045) 1994; 1 Lagacherie (10.1016/j.geodrs.2014.11.003_bb0125) 2014 Ben-Dor (10.1016/j.geodrs.2014.11.003_bb0020) 2009; 113 De Carvalho Junior (10.1016/j.geodrs.2014.11.003_bb0070) 2014; 232–234 I.N.R.A. Infosol (10.1016/j.geodrs.2014.11.003_bb0100) 2005 Odgers (10.1016/j.geodrs.2014.11.003_bb0170) 2014; 214–215 De Oliveira (10.1016/j.geodrs.2014.11.003_bb0075) 2005; 14 Hong (10.1016/j.geodrs.2014.11.003_bb0095) 2013; 1 Odgers (10.1016/j.geodrs.2014.11.003_bb0165) 2012; 189–190 Rossiter (10.1016/j.geodrs.2014.11.003_bb0180) 2004; 20 Bornand (10.1016/j.geodrs.2014.11.003_bb0040) 1993; 166 Hijmans (10.1016/j.geodrs.2014.11.003_bb0090) 2005; 25 Servant (10.1016/j.geodrs.2014.11.003_bb0190) 1970 Gray (10.1016/j.geodrs.2014.11.003_bb0080) 2014 Bui (10.1016/j.geodrs.2014.11.003_bb0055) 2001; 103 Yaalon (10.1016/j.geodrs.2014.11.003_bb0205) 1997; 28 Bishop (10.1016/j.geodrs.2014.11.003_bb0025) 1999; 91 Leehardt (10.1016/j.geodrs.2014.11.003_bb0130) 1994; 45 Adhikari (10.1016/j.geodrs.2014.11.003_bb0005) 2013; 77 Vaysse (10.1016/j.geodrs.2014.11.003_bb0195) 2014 Mansy (10.1016/j.geodrs.2014.11.003_bb0150) 2008 Nauman (10.1016/j.geodrs.2014.11.003_bb0160) 2012 Arrouays (10.1016/j.geodrs.2014.11.003_bb0015) 2014 Kerry (10.1016/j.geodrs.2014.11.003_bb0115) 2008; 9 Breiman (10.1016/j.geodrs.2014.11.003_bb0050) 2001; 45 Bliss (10.1016/j.geodrs.2014.11.003_bb0030) 1995 Journel (10.1016/j.geodrs.2014.11.003_bb0110) 1978 Pebesma (10.1016/j.geodrs.2014.11.003_bb0175) 2004; 30 Malone (10.1016/j.geodrs.2014.11.003_bb0140) 2009; 154 Liaw (10.1016/j.geodrs.2014.11.003_bb0135) 2002; 2 Malone (10.1016/j.geodrs.2014.11.003_bb0145) 2014; 232–234 Yin (10.1016/j.geodrs.2014.11.003_bb0210) 2011; 61 Henderson (10.1016/j.geodrs.2014.11.003_bb0085) 2005; 124 Arrouays (10.1016/j.geodrs.2014.11.003_bb0010) 2002; 88 Minasny (10.1016/j.geodrs.2014.11.003_bb0155) 2006; 32 Sanchez (10.1016/j.geodrs.2014.11.003_bb0185) 2009; 325 Zinck (10.1016/j.geodrs.2014.11.003_bb0215) 1990; 4 Böhner (10.1016/j.geodrs.2014.11.003_bb0035) 2006; 115 Ciampalini (10.1016/j.geodrs.2014.11.003_bb0065) 2014 Viscarra Rossel (10.1016/j.geodrs.2014.11.003_bb0200) 2006; 131 Ciampalini (10.1016/j.geodrs.2014.11.003_bb0060) 2012 Jarvis (10.1016/j.geodrs.2014.11.003_bb0105) 2007; 27 Lagacherie (10.1016/j.geodrs.2014.11.003_bb0120) 1995; 65 |
References_xml | – volume: 189–190 start-page: 153 year: 2012 end-page: 163 ident: bb0165 article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale publication-title: Geoderma – start-page: 133 year: 2014 end-page: 138 ident: bb0195 article-title: Estimation of GlobalSoilMap.net grids cells from legacy soil data at the regional scale in Southern France publication-title: GlobalSoilMap: Basis of the Global Spatial Soil Information System – volume: 30 start-page: 683 year: 2004 end-page: 691 ident: bb0175 article-title: Multivariable geostatistics in S: the gstat package publication-title: Comput. Geosci. – volume: 325 start-page: 680 year: 2009 end-page: 681 ident: bb0185 article-title: Digital soil map of the world publication-title: Science – volume: 4 start-page: 335 year: 1990 end-page: 350 ident: bb0215 article-title: Soil survey: epistemology of a vital discipline publication-title: ITC J. – start-page: 121 year: 2014 end-page: 126 ident: bb0065 article-title: Soil texture GlobalSoilMap products for the French region ‘Centre’ publication-title: GlobalSoilMap – volume: 91 start-page: 27 year: 1999 end-page: 45 ident: bb0025 article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines publication-title: Geoderma – volume: 131 start-page: 59 year: 2006 end-page: 75 ident: bb0200 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma – volume: 124 start-page: 383 year: 2005 end-page: 398 ident: bb0085 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma – volume: 9 start-page: 33 year: 2008 end-page: 56 ident: bb0115 article-title: Determining nugget:sill ratios of standardized variograms from aerial photographs to krige sparse soil data publication-title: Precis. Agric. – volume: 27 start-page: 929 year: 2007 end-page: 940 ident: bb0105 article-title: Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect” publication-title: Tree Physiol. – year: 1970 ident: bb0190 article-title: Carte pédologique de France à moyenne échelle: Argelès-sur-Mer - Perpignan – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bb0135 article-title: Classification and regression by random forest publication-title: R News – volume: 103 start-page: 79 year: 2001 end-page: 94 ident: bb0055 article-title: Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data publication-title: Geoderma – volume: 25 start-page: 1965 year: 2005 end-page: 1978 ident: bb0090 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. – volume: 32 start-page: 1378 year: 2006 end-page: 1388 ident: bb0155 article-title: A conditioned Latin Hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. – start-page: 433 year: 2014 end-page: 439 ident: bb0080 article-title: Lithology as a powerful covariate in digital soil mapping publication-title: GlobalSoilMap – volume: 166 start-page: 15 year: 1993 end-page: 22 ident: bb0040 article-title: La banque de données des sols régionaux du Languedoc-Roussillon. Présentation, conception et possibilités d'exploitation publication-title: Revue Ecole Sup Agric Purpan – volume: 214–215 start-page: 91 year: 2014 end-page: 100 ident: bb0170 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma – volume: 61 start-page: 760 year: 2011 end-page: 777 ident: bb0210 article-title: Kriging metamodel with modified nugget-effect: the heteroscedastic variance case publication-title: Comput. Ind. Eng. – volume: 45 start-page: 293 year: 1994 end-page: 301 ident: bb0130 article-title: Evaluating soil maps for prediction of soil water properties publication-title: Eur. J. Soil Sci. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0050 article-title: Random forests publication-title: Mach. Learn. – volume: 28 start-page: 157 year: 1997 end-page: 169 ident: bb0205 article-title: Soils in the Mediterranean region: what makes them different? publication-title: Catena – volume: 232–234 start-page: 34 year: 2014 end-page: 44 ident: bb0145 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma – volume: 113 start-page: S38 year: 2009 end-page: S55 ident: bb0020 article-title: Using imaging spectroscopy to study soil properties publication-title: Remote Sens. Environ. – year: 2014 ident: bb0015 article-title: The GlobalSoilMap project specifications publication-title: GlobalSoilMap: Basis of the Global Spatial Soil Information System – start-page: 387 year: 2014 end-page: 392 ident: bb0125 article-title: What can GlobalSoilMap expect from vis–NIR HyperSpectral imagery in the near future? publication-title: GlobalSoilMap – volume: 232–234 start-page: 479 year: 2014 end-page: 486 ident: bb0070 article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment publication-title: Geoderma – start-page: 439 year: 2012 end-page: 450 ident: bb0060 article-title: Documenting GlobalSoilMap.net grid cells from legacy measured soil profile and global available covariates in Northern Tunisia publication-title: Digital Soil Assessments and Beyond – year: 2005 ident: bb0100 article-title: Référentiel Régional Pédologique: Cahier des Clauses Techniques Générales – volume: 115 start-page: 130 year: 2006 ident: bb0035 article-title: SAGA — analysis and modelling applications publication-title: Göttinger Geogr. Abh. – volume: 154 start-page: 138 year: 2009 end-page: 152 ident: bb0140 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma – start-page: 203 year: 2012 end-page: 207 ident: bb0160 article-title: Fuzzy disaggregation of conventional soil maps using database knowledge extraction to produce soil property maps publication-title: Digital Soil Assessments and Beyond – start-page: 275 year: 1995 end-page: 295 ident: bb0030 article-title: Preparing and soil carbon inventory for the United States using geographical information systems publication-title: Soil and Global Change – volume: 20 start-page: 296 year: 2004 end-page: 301 ident: bb0180 article-title: Digital soil resource inventories: status and prospects publication-title: Soil Use Manag. – volume: 14 start-page: 95 year: 2005 end-page: 115 ident: bb0075 article-title: Bayesian inference and prediction of gaussian random fields based on censored data publication-title: J. Comput. Graph. Stat. – volume: 65 start-page: 283 year: 1995 end-page: 301 ident: bb0120 article-title: A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area publication-title: Geoderma – volume: 1 start-page: 67 year: 1994 end-page: 82 ident: bb0045 article-title: Les Banques régionales de données-sols. L'exemple du Languedoc-Roussillon publication-title: Etude et Gestion des Sols – volume: 1 start-page: e71 year: 2013 ident: bb0095 article-title: Predicting and mapping soil available water capacity in Korea publication-title: PeerJ – volume: 77 start-page: 860 year: 2013 end-page: 876 ident: bb0005 article-title: High-resolution 3-D mapping of soil texture in Denmark publication-title: Soil Sci. Soc. Am. J. – volume: 88 start-page: 93 year: 2002 end-page: 105 ident: bb0010 article-title: A new initiative in France: a multi-institutional soil quality monitoring network publication-title: C. R. Acad. Agric. Fr. – year: 1978 ident: bb0110 article-title: Mining Geostatistics – year: 2008 ident: bb0150 article-title: Notice explicative de la carte géologique de la France (1/50000) – volume: 325 start-page: 680 year: 2009 ident: 10.1016/j.geodrs.2014.11.003_bb0185 article-title: Digital soil map of the world publication-title: Science doi: 10.1126/science.1175084 – volume: 232–234 start-page: 479 year: 2014 ident: 10.1016/j.geodrs.2014.11.003_bb0070 article-title: A regional-scale assessment of digital mapping of soil attributes in a tropical hillslope environment publication-title: Geoderma doi: 10.1016/j.geoderma.2014.06.007 – volume: 1 start-page: 67 year: 1994 ident: 10.1016/j.geodrs.2014.11.003_bb0045 article-title: Les Banques régionales de données-sols. L'exemple du Languedoc-Roussillon publication-title: Etude et Gestion des Sols – volume: 154 start-page: 138 year: 2009 ident: 10.1016/j.geodrs.2014.11.003_bb0140 article-title: Mapping continuous depth functions of soil carbon storage and available water capacity publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.007 – start-page: 275 year: 1995 ident: 10.1016/j.geodrs.2014.11.003_bb0030 article-title: Preparing and soil carbon inventory for the United States using geographical information systems – volume: 61 start-page: 760 year: 2011 ident: 10.1016/j.geodrs.2014.11.003_bb0210 article-title: Kriging metamodel with modified nugget-effect: the heteroscedastic variance case publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2011.05.008 – volume: 20 start-page: 296 year: 2004 ident: 10.1016/j.geodrs.2014.11.003_bb0180 article-title: Digital soil resource inventories: status and prospects publication-title: Soil Use Manag. doi: 10.1079/SUM2004258 – year: 1970 ident: 10.1016/j.geodrs.2014.11.003_bb0190 – volume: 9 start-page: 33 year: 2008 ident: 10.1016/j.geodrs.2014.11.003_bb0115 article-title: Determining nugget:sill ratios of standardized variograms from aerial photographs to krige sparse soil data publication-title: Precis. Agric. doi: 10.1007/s11119-008-9058-0 – volume: 91 start-page: 27 year: 1999 ident: 10.1016/j.geodrs.2014.11.003_bb0025 article-title: Modelling soil attribute depth functions with equal-area quadratic smoothing splines publication-title: Geoderma doi: 10.1016/S0016-7061(99)00003-8 – start-page: 439 year: 2012 ident: 10.1016/j.geodrs.2014.11.003_bb0060 article-title: Documenting GlobalSoilMap.net grid cells from legacy measured soil profile and global available covariates in Northern Tunisia – start-page: 133 year: 2014 ident: 10.1016/j.geodrs.2014.11.003_bb0195 article-title: Estimation of GlobalSoilMap.net grids cells from legacy soil data at the regional scale in Southern France – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.geodrs.2014.11.003_bb0050 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 28 start-page: 157 year: 1997 ident: 10.1016/j.geodrs.2014.11.003_bb0205 article-title: Soils in the Mediterranean region: what makes them different? publication-title: Catena doi: 10.1016/S0341-8162(96)00035-5 – volume: 45 start-page: 293 year: 1994 ident: 10.1016/j.geodrs.2014.11.003_bb0130 article-title: Evaluating soil maps for prediction of soil water properties publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.1994.tb00512.x – volume: 30 start-page: 683 year: 2004 ident: 10.1016/j.geodrs.2014.11.003_bb0175 article-title: Multivariable geostatistics in S: the gstat package publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2004.03.012 – year: 2014 ident: 10.1016/j.geodrs.2014.11.003_bb0015 article-title: The GlobalSoilMap project specifications – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.geodrs.2014.11.003_bb0135 article-title: Classification and regression by random forest publication-title: R News – volume: 115 start-page: 130 year: 2006 ident: 10.1016/j.geodrs.2014.11.003_bb0035 article-title: SAGA — analysis and modelling applications publication-title: Göttinger Geogr. Abh. – year: 2005 ident: 10.1016/j.geodrs.2014.11.003_bb0100 – start-page: 387 year: 2014 ident: 10.1016/j.geodrs.2014.11.003_bb0125 article-title: What can GlobalSoilMap expect from vis–NIR HyperSpectral imagery in the near future? – year: 2008 ident: 10.1016/j.geodrs.2014.11.003_bb0150 – volume: 25 start-page: 1965 year: 2005 ident: 10.1016/j.geodrs.2014.11.003_bb0090 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.1276 – volume: 189–190 start-page: 153 year: 2012 ident: 10.1016/j.geodrs.2014.11.003_bb0165 article-title: Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale publication-title: Geoderma doi: 10.1016/j.geoderma.2012.05.026 – volume: 214–215 start-page: 91 year: 2014 ident: 10.1016/j.geodrs.2014.11.003_bb0170 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.024 – volume: 4 start-page: 335 year: 1990 ident: 10.1016/j.geodrs.2014.11.003_bb0215 article-title: Soil survey: epistemology of a vital discipline publication-title: ITC J. – volume: 124 start-page: 383 year: 2005 ident: 10.1016/j.geodrs.2014.11.003_bb0085 article-title: Australia-wide predictions of soil properties using decision trees publication-title: Geoderma doi: 10.1016/j.geoderma.2004.06.007 – start-page: 433 year: 2014 ident: 10.1016/j.geodrs.2014.11.003_bb0080 article-title: Lithology as a powerful covariate in digital soil mapping – volume: 77 start-page: 860 year: 2013 ident: 10.1016/j.geodrs.2014.11.003_bb0005 article-title: High-resolution 3-D mapping of soil texture in Denmark publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0275 – volume: 65 start-page: 283 year: 1995 ident: 10.1016/j.geodrs.2014.11.003_bb0120 article-title: A soil survey procedure using the knowledge of soil pattern established on a previously mapped reference area publication-title: Geoderma doi: 10.1016/0016-7061(94)00040-H – volume: 131 start-page: 59 year: 2006 ident: 10.1016/j.geodrs.2014.11.003_bb0200 article-title: Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties publication-title: Geoderma doi: 10.1016/j.geoderma.2005.03.007 – start-page: 121 year: 2014 ident: 10.1016/j.geodrs.2014.11.003_bb0065 article-title: Soil texture GlobalSoilMap products for the French region ‘Centre’ – year: 1978 ident: 10.1016/j.geodrs.2014.11.003_bb0110 – volume: 232–234 start-page: 34 year: 2014 ident: 10.1016/j.geodrs.2014.11.003_bb0145 article-title: Using model averaging to combine soil property rasters from legacy soil maps and from point data publication-title: Geoderma doi: 10.1016/j.geoderma.2014.04.033 – volume: 27 start-page: 929 year: 2007 ident: 10.1016/j.geodrs.2014.11.003_bb0105 article-title: Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the “Birch effect” publication-title: Tree Physiol. doi: 10.1093/treephys/27.7.929 – volume: 103 start-page: 79 year: 2001 ident: 10.1016/j.geodrs.2014.11.003_bb0055 article-title: Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data publication-title: Geoderma doi: 10.1016/S0016-7061(01)00070-2 – volume: 88 start-page: 93 year: 2002 ident: 10.1016/j.geodrs.2014.11.003_bb0010 article-title: A new initiative in France: a multi-institutional soil quality monitoring network publication-title: C. R. Acad. Agric. Fr. – volume: 14 start-page: 95 year: 2005 ident: 10.1016/j.geodrs.2014.11.003_bb0075 article-title: Bayesian inference and prediction of gaussian random fields based on censored data publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186005X27518 – volume: 166 start-page: 15 year: 1993 ident: 10.1016/j.geodrs.2014.11.003_bb0040 article-title: La banque de données des sols régionaux du Languedoc-Roussillon. Présentation, conception et possibilités d'exploitation publication-title: Revue Ecole Sup Agric Purpan – volume: 113 start-page: S38 issue: Supplement 1 year: 2009 ident: 10.1016/j.geodrs.2014.11.003_bb0020 article-title: Using imaging spectroscopy to study soil properties publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.09.019 – volume: 1 start-page: e71 year: 2013 ident: 10.1016/j.geodrs.2014.11.003_bb0095 article-title: Predicting and mapping soil available water capacity in Korea publication-title: PeerJ doi: 10.7717/peerj.71 – volume: 32 start-page: 1378 year: 2006 ident: 10.1016/j.geodrs.2014.11.003_bb0155 article-title: A conditioned Latin Hypercube method for sampling in the presence of ancillary information publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.12.009 – start-page: 203 year: 2012 ident: 10.1016/j.geodrs.2014.11.003_bb0160 article-title: Fuzzy disaggregation of conventional soil maps using database knowledge extraction to produce soil property maps |
SSID | ssj0002953762 |
Score | 2.3797731 |
Snippet | Digital Soil Mapping is becoming increasingly operational because of shared approaches, clear specifications (e.g., GlobalSoilMap) and more “practical”... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 20 |
SubjectTerms | carbon clay climate Digital Soil Mapping Environmental Sciences France GlobalSoilMap.net infrastructure Kriging Legacy soil survey Life Sciences Mediterranean region Random forest sand silt soil depth soil profiles soil properties soil surveys spatial data texture variance |
Title | Evaluating Digital Soil Mapping approaches for mapping GlobalSoilMap soil properties from legacy data in Languedoc-Roussillon (France) |
URI | https://dx.doi.org/10.1016/j.geodrs.2014.11.003 https://www.proquest.com/docview/2000236504 https://hal.inrae.fr/hal-02629696 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZguXBBoBaxtCCDemgPZpPYZpPjioeWLnCAonKLHHsSUm2T1bJU6h_gdzOTOCtRDkg9RbE8SjRjz8Oe-YaxL9YZDGWtFTLOnVC4SkQSu1w4HYBE98IkimqHr66Px3fq-72-X2EnXS0MpVV63d_q9EZb-5GB5-ZgVpaD20g2kEEKQwRCjYpX2VqE1jXosbXRxWR8vTxqiRLCLImaNnM6EkTTFdE1mV4F1G5O0N2hOiJEz66B1lsjtfpA2ZL_KO3GEp1vsg3vQvJR-5dbbAWqD-z5zMN2VwU_LQtqBcJv63LKrwwhMBS8Aw-HR45-Kv_th1vMf5qJE_kjUczofH5OQKucik_4FApj_3LKJeVlxS_phBNcbcVN_YQ7ii7u-demQQd8-8juzs9-nIyF77EgbBTHCwEaNWUehQYUCm1oYghyq6xzx7HLNGht0YFCJ0o7SEIjnZFDrSFwoVM5qCyR26xX1RXsMC4zSZwOyIVTJtEJuiJGxQaCLFdZKPtMdkxNrQcgpz4Y07TLNPuVtqJISRQYmxBwaZ-JJdWsBeB4Z_6wk1f6aiGlaCPeoTxE8S4_Qrjb49FlSmMYqEYEI_Qn7LODTvopbkS6XTEVILupnyeh8etA7f73L3xi6_im28ygz6y3mD_BHjo9i2zfL2p6Tm5-Tl4AtgcCZg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9QwEICt0h7gUhUBYikPg0CCg9k87G5y4LCirbLs40Bbqbfg2JOQapusdrdF_QP8If4gM4mzEnCohNSrYyvWjD2eScbfMPbWWI2hrDEijHIrJK4SEUc2F1Z5EKJ7oWNJd4ens4PkTH45V-db7Fd3F4bSKp3tb216Y61dS99Js78oy_5JEDbIIIkhAlGjIpdZOYabHxi3rT6NDlHJ74Lg-Oj0cyJcaQFhgihaC1BoIPLA1yBxrgMdgZcbaaw9iGymQCmDfgP6DspC7OvQ6nCgFHjWtzIHmRGBCe3-DtGwcFvtDEfjZLb5tBPExEgJmrJ2KhA0x-7SXpNZVkBtl4QK9-VHIoh2Bbv-PRTvfafszL8OiebkO95ju85l5cNWKg_ZFlSP2M8jhwmvCn5YFlR6hJ_U5ZxPNREfCt7BymHF0S_ml665rTFAPbEjX9GIBf0PWBLYldNlFz6HQpsbTrmrvKz4hL6ogq2N-Fpf4Q6mRAH-vikIAh8es7M7EfwTtl3VFTxlPMxCkrRHLqPUsYrR9dEy0uBlucz8sMfCTqipccBzqrsxT7vMtou0VUVKqsBYiECpPSY2oxYt8OOW_oNOX-kfCzfFM-mWkW9QvZuXEOc7GU5SasPAOCBs0bXfY6877ae48elvjq4AxU31Q4n-rzz57L-n8IrdT06nk3Qymo332QN8otqspOdse728ghfocK2zl26Bc_btrvfUb09BPtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Digital+Soil+Mapping+approaches+for+mapping+GlobalSoilMap+soil+properties+from+legacy+data+in+Languedoc-Roussillon+%28France%29&rft.jtitle=Geoderma+Regional&rft.au=Vaysse%2C+K.&rft.au=Lagacherie%2C+P.&rft.date=2015-04-01&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=4&rft.spage=20&rft.epage=30&rft_id=info:doi/10.1016%2Fj.geodrs.2014.11.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geodrs_2014_11_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |