Nearest neighbour classification of Indian sign language gestures using kinect camera

People with speech disabilities communicate in sign language and therefore have trouble in mingling with the able-bodied. There is a need for an interpretation system which could act as a bridge between them and those who do not know their sign language. A functional unobtrusive Indian sign language...

Full description

Saved in:
Bibliographic Details
Published inSadhana (Bangalore) Vol. 41; no. 2; pp. 161 - 182
Main Authors ANSARI, ZAFAR AHMED, HARIT, GAURAV
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.02.2016
Subjects
Online AccessGet full text
ISSN0256-2499
0973-7677
DOI10.1007/s12046-015-0405-3

Cover

Loading…
Abstract People with speech disabilities communicate in sign language and therefore have trouble in mingling with the able-bodied. There is a need for an interpretation system which could act as a bridge between them and those who do not know their sign language. A functional unobtrusive Indian sign language recognition system was implemented and tested on real world data. A vocabulary of 140 symbols was collected using 18 subjects, totalling 5041 images. The vocabulary consisted mostly of two-handed signs which were drawn from a wide repertoire of words of technical and daily-use origins. The system was implemented using Microsoft Kinect which enables surrounding light conditions and object colour to have negligible effect on the efficiency of the system. The system proposes a method for a novel, low-cost and easy-to-use application, for Indian Sign Language recognition, using the Microsoft Kinect camera. In the fingerspelling category of our dataset, we achieved above 90% recognition rates for 13 signs and 100% recognition for 3 signs with overall 16 distinct alphabets (A, B, D, E, F, G, H, K, P, R, T, U, W, X, Y, Z) recognised with an average accuracy rate of 90.68%.
AbstractList People with speech disabilities communicate in sign language and therefore have trouble in mingling with the able-bodied. There is a need for an interpretation system which could act as a bridge between them and those who do not know their sign language. A functional unobtrusive Indian sign language recognition system was implemented and tested on real world data. A vocabulary of 140 symbols was collected using 18 subjects, totalling 5041 images. The vocabulary consisted mostly of two-handed signs which were drawn from a wide repertoire of words of technical and daily-use origins. The system was implemented using Microsoft Kinect which enables surrounding light conditions and object colour to have negligible effect on the efficiency of the system. The system proposes a method for a novel, low-cost and easy-to-use application, for Indian Sign Language recognition, using the Microsoft Kinect camera. In the fingerspelling category of our dataset, we achieved above 90% recognition rates for 13 signs and 100% recognition for 3 signs with overall 16 distinct alphabets (A, B, D, E, F, G, H, K, P, R, T, U, W, X, Y, Z) recognised with an average accuracy rate of 90.68%.
Author ANSARI, ZAFAR AHMED
HARIT, GAURAV
Author_xml – sequence: 1
  givenname: ZAFAR AHMED
  surname: ANSARI
  fullname: ANSARI, ZAFAR AHMED
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Jodhpur
– sequence: 2
  givenname: GAURAV
  surname: HARIT
  fullname: HARIT, GAURAV
  email: gharit@iitj.ac.in
  organization: Department of Computer Science and Engineering, Indian Institute of Technology Jodhpur
BookMark eNp90L1OwzAQwHELFYm28ABsfoHA2XFiZ0QVH5UqWOhsnR07uLQOspOBtyelTAyd7pafrfsvyCz20RFyy-COAcj7zDiIugBWFSCgKsoLModGloWspZxNO6_qgoumuSKLnHcAXIIq52T76jC5PNDoQvdh-jFRu8ecgw8Wh9BH2nu6jm3ASHPoIt1j7EbsHO0mNU6UjjnEjn6G6OxALR5cwmty6XGf3c3fXJLt0-P76qXYvD2vVw-bwnKlhqI1UEkwYHhrBVO1L00reYsKQBhjVGNY4w1DI6DERnphrao5CtUK9EqW5ZKw07s29Tkn5_VXCgdM35qBPnbRpy566qKPXfTRyH_GhuH31CFh2J-V_CTz9EvsXNK7qVecDjyDfgCASnrE
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3161440
crossref_primary_10_36548_jaicn_2022_1_004
crossref_primary_10_1016_j_engappai_2022_105198
crossref_primary_10_1016_j_jvcir_2023_103891
crossref_primary_10_1016_j_procs_2023_01_117
crossref_primary_10_1007_s00521_020_05448_8
crossref_primary_10_3390_electronics10141739
crossref_primary_10_1016_j_gvc_2021_200032
crossref_primary_10_1049_iet_cvi_2017_0598
crossref_primary_10_1016_j_eswa_2021_115657
crossref_primary_10_1016_j_mlwa_2023_100504
crossref_primary_10_1080_03772063_2020_1739569
crossref_primary_10_1080_03772063_2023_2171911
crossref_primary_10_1016_j_patrec_2019_01_003
crossref_primary_10_1007_s12046_019_1250_6
crossref_primary_10_1007_s11277_021_09152_1
crossref_primary_10_1155_2022_8777355
crossref_primary_10_1007_s11042_018_6199_7
crossref_primary_10_1016_j_jksuci_2018_06_008
crossref_primary_10_1080_03772063_2020_1838342
crossref_primary_10_2139_ssrn_4161335
crossref_primary_10_1007_s12369_021_00819_0
crossref_primary_10_3233_JIFS_235132
crossref_primary_10_1007_s11042_024_18583_4
Cites_doi 10.1109/ICMI.2002.1166990
10.1109/DICTAP.2012.6215407
10.1109/TPAMI.1986.4767749
10.1080/757582976
10.1007/11744023_32
10.1109/TPAMI.1986.4767748
10.1023/A:1008344623873
10.1007/978-1-4302-3868-3
10.1145/2398356.2398381
10.1007/978-1-4471-4640-7_7
10.4249/scholarpedia.10491
10.1007/978-3-642-25330-0_37
10.1016/S0146-664X(81)80009-3
10.4108/ICST.INTETAIN2008.2476
10.1023/B:VISI.0000029664.99615.94
10.1109/ICCVW.2011.6130290
10.1109/ROBOT.2009.5152473
10.1109/ICSIPA.2011.6144163
10.1109/AFGR.1996.557247
10.1109/ICRA.2011.5980567
10.1109/ICPR.2006.327
10.1007/978-3-642-96868-6_57
10.1109/WACV.2011.5711485
10.1109/CVPR.2005.38
10.1007/978-1-4757-6465-9
10.1109/34.735811
10.1109/TISC.2011.6169079
10.1016/B978-0-12-407701-0.00001-7
10.1109/AFGR.1998.671007
10.1109/CVPR.2001.990517
10.1023/A:1008045108935
10.1109/ICOM.2011.5937178
10.1109/CVPR.2007.383124
10.1145/2072298.2071946
10.1109/IROS.2010.5651280
10.14569/IJACSA.2013.040228
10.1109/CVPRW.2008.4563023
10.1109/34.868688
10.1109/TSMCC.2007.893280
10.1145/1315575.1315577
ContentType Journal Article
Copyright Indian Academy of Sciences 2016
Copyright_xml – notice: Indian Academy of Sciences 2016
DBID AAYXX
CITATION
DOI 10.1007/s12046-015-0405-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 0973-7677
EndPage 182
ExternalDocumentID 10_1007_s12046_015_0405_3
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
203
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EAD
EAP
EBLON
EBS
EIOEI
EJD
EOJEC
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
H13
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KQ8
LLZTM
M4Y
MA-
MK~
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OBODZ
OK1
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RAB
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
CITATION
OVT
ID FETCH-LOGICAL-c288t-db0570b0b2dc4186f3bd72da8004bbb89b19fb1ab403a97f4cc862a48d4af8733
IEDL.DBID U2A
ISSN 0256-2499
IngestDate Thu Apr 24 23:11:54 EDT 2025
Thu Jul 03 08:14:22 EDT 2025
Fri Feb 21 02:42:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Indian sign language recognition
multi-class classification
gesture recognition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-db0570b0b2dc4186f3bd72da8004bbb89b19fb1ab403a97f4cc862a48d4af8733
PageCount 22
ParticipantIDs crossref_primary_10_1007_s12046_015_0405_3
crossref_citationtrail_10_1007_s12046_015_0405_3
springer_journals_10_1007_s12046_015_0405_3
PublicationCentury 2000
PublicationDate 20160200
2016-2-00
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 2
  year: 2016
  text: 20160200
PublicationDecade 2010
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
PublicationSubtitle Published by the Indian Academy of Sciences
PublicationTitle Sadhana (Bangalore)
PublicationTitleAbbrev Sadhana
PublicationYear 2016
Publisher Springer India
Publisher_xml – name: Springer India
References LindebergTScale-space theory: A basic tool for analyzing structures at different scalesJ. Appl. Stat.1994211–222527010.1080/757582976
LindebergTScale invariant feature transformScholarpedia2012751049110.4249/scholarpedia.10491
Cornett R O 1967 Cued speech. University of Nebraska Media Center. Captioned Films for the Deaf
McDonnellMBox-filtering techniquesComp. Graph. Image Process.1981171657010.1016/S0146-664X(81)80009-3
ISL 2011 Sign dictionaries for indian deaf and dumb population. Sign Language Unit, The Faculty of Disability Management & Special Education (FDMSE) of Ramakrishna Mission Vidyalaya, Perianaickenpalayam, Coimbatore, India. indiansignlanguage.org
Saengsri S, Niennattrakul V and Ratanamahatana C 2012 Tfrs: Thai finger-spelling sign language recognition system. In: Second International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP), 2012, pages 457–462
Luis-Pérez F E, Trujillo-Romero F and Martínez-Velazco W 2011 Control of a service robot using the mexican sign language. In: Adv. Soft Comput., pages 419–430. Springer
Bay H, Tuytelaars T and Van Gool L 2006 Surf: Speeded up robust features. In: Computer Vision–ECCV 2006, pages 404–417. Springer
Van den Bergh M and Van Gool L 2011 Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: IEEE Workshop on Applications of Computer Vision (WACV), 2011, pages 66–72
Bauman D 2008 Open your eyes: Deaf studies talking. University of Minnesota Press
Rusu R B, Blodow N and Beetz M 2009 Fast point feature histograms (FPFH) for 3d registration. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pages 3212–3217
YuilleALPoggioTAScaling theorems for zero crossingsIEEE Trans. Pattern Anal. Mach. Intell.198681152510.1109/TPAMI.1986.47677480575.94001
Singha J and Das K 2013 Indian sign language recognition using eigen value weighted euclidean distance based classification technique. arXiv preprint arXiv:1303.0634
ShiJMalikJNormalized cuts and image segmentationIEEE Trans. Pattern Anal. Mach. Intell.200022888890510.1109/34.868688
Bilal S, Akmeliawati R, El Salami M J and Shafie A A 2011 Vision-based hand posture detection and recognition for sign language–a study. In: 4th International Conference on Mechatronics (ICOM), 2011, pages 1–6
LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comp. Vis.20046029111010.1023/B:VISI.0000029664.99615.94
WeickertJIshikawaSImiyaALinear scale-space has first been proposed in japanJ. Math. Imaging Vis.1999103237252169594610.1023/A:10083446238731002.68177
Quek F K and Zhao M 1996 Inductive learning in hand pose recognition. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, 1996, pages 78–83
Muni B 1951 Natya Shastra. Calcutta: Asiatic Society of Bengal
MitraSAcharyaTGesture recognition: A surveyIEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.200737331132410.1109/TSMCC.2007.893280
ShottonJSharpTKipmanAFitzgibbonAFinocchioMBlakeACookMMooreRReal-time human pose recognition in parts from single depth imagesCommun. ACM201356111612410.1145/2398356.2398381
BabaudJWitkinAPBaudinMDudaROUniqueness of the gaussian kernel for scale-space filteringIEEE Trans. Pattern Anal. Mach. Intell.198681263310.1109/TPAMI.1986.47677490574.93054
Pugeault N and Bowden R 2011 Spelling it out: Real-time ASL fingerspelling recognition. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages 1114–1119
Liang R -H and Ouhyoung M 1998 A real-time continuous gesture recognition system for sign language. In: Proceedings of the Third IEEE international conference on automatic face and gesture recognition, 1998, pages 558–567
Argyros A and Lourakis M I A 2006 Binocular hand tracking and reconstruction based on 2D shape matching. In: 18th International Conference on pattern recognition, 2006. ICPR 2006. volume 1, pages 207–210
LindebergTFeature detection with automatic scale selectionInt. J. Comp. Vis.19983027911610.1023/A:1008045108935
Keskin C, Kıraç F, Kara Y E and Akarun L 2013 Real time hand pose estimation using depth sensors. In: Consumer depth cameras for computer vision, pages 119–137. Springer
Rusu R B and Cousins S 2011 3D is here: Point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), 2011, pages 1–4
Ansari Z 2013a Gesture recognition for Indian Sign Language with Kinect Xbox 360. https://www.youtube.com/watch?v=2oqD-_UCHxQ. Accessed: 2013-06-18
Ren Z, Yuan J and Zhang Z 2011 Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera. In: Proceedings of the 19th ACM international conference on Multimedia, MM ’11, pages 1093–1096, New York, NY, USA
Schmitz M, Endres C and Butz A 2008 A survey of human-computer interaction design in science fiction movies. In: Proceedings of the 2nd international conference on INtelligent TEchnologies for interactive enterTAINment, page 7. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)
Bhuyan M, Kar M K and Neog D R 2011 Hand pose identification from monocular image for sign language recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pages 378–383
Ansari Z A 2013b Gesture recognition for Indian sign language. Master’s thesis, Indian Institute of Technology Jodhpur, India
Viola P and Jones M 2001 Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001. vol. 1, pages I-511–I-518
BulwerJPhilocopus, or the deaf and dumb man’s friend1648LondonHumphrey and Moseley
Rekha J, Bhattacharya J and Majumder S 2011 Shape, texture and local movement hand gesture features for Indian Sign Language recognition. In: 3rd International Conference on Trendz in Information Sciences and Computing (TISC), 2011, pages 30–35
Lindeberg T 1993 Scale-space theory in computer vision. Springer
StarnerTWeaverJPentlandAReal-time american sign language recognition using desk and wearable computer based video.IEEE Trans. Pattern Anal. Mach. Intell.199820121371137510.1109/34.735811
Kenn H, Megen F V and Sugar R 2007 A glove-based gesture interface for wearable computing applications. In: 4th International Forum on Applied Wearable Computing (IFAWC), 2007, pages 1–10
Allaire S, Kim J J, Breen S L, Jaffray D A and Pekar V 2008 Full orientation invariance and improved feature selectivity of 3d SIFT with application to medical image analysis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08, pages 1–8
Wang F and Zhang C 2007 Feature extraction by maximizing the average neighbourhood margin. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pages 1–8
Tukey J W 1977 Exploratory data analysis. Reading, MA, 231
Rusu R B, Bradski G, Thibaux R and Hsu J 2010 Fast 3D recognition and pose using the viewpoint feature histogram. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2010, pages 2155–2162
PrimeSense 2011 OpenNI platform 1.0
BhatnagarSAdaptive newton-based multivariate smoothed functional algorithms for simulation optimizationACM Trans. Model. Comput. Simul.20071812:12:3510.1145/1315575.1315577
ElKoura G and Singh K 2003 Handrix: Animating the human hand. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pages 110–119. Eurographics Association
Geetha M and Manjusha U 2012 A vision based recognition of indian sign language alphabets and numerals using B-spline approximation. Int. J. Comp. Sci. Eng. (IJCSE)
Hernandez-Rebollar J L, Lindeman R W and Kyriakopoulos N 2002 A multi-class pattern recognition system for practical finger spelling translation. In: Proceedings of the 4th IEEE International Conference on Multimodal Interfaces, ICMI ’02, pages 185–, Washington, DC, USA. IEEE Computer Society
Kramer J, Parker M, Herrera D, Burrus N and Echtler F 2012 Hacking the kinect. Apress
Buades A, Coll B and Morel J M 2005 A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pages 60–65
LindebergTGeneralized axiomatic scale-space theoryAdv. Imaging Electron Phys.2013178110.1016/B978-0-12-407701-0.00001-7
Bundy A and Wallen L 1984 Difference of gaussians. In: Bundy A and Wallen L (eds) Catalogue of artificial intelligence tools, symbolic computation, page 30. Springer, Berlin Heidelberg
405_CR20
405_CR24
405_CR23
405_CR22
405_CR21
405_CR28
405_CR27
405_CR25
405_CR29
405_CR52
405_CR51
405_CR50
405_CR13
405_CR11
405_CR10
405_CR17
405_CR16
405_CR15
405_CR14
J Shi (405_CR33) 2000; 22
405_CR19
405_CR18
J Babaud (405_CR44) 1986; 8
405_CR40
405_CR46
405_CR45
J Shotton (405_CR26) 2013; 56
M McDonnell (405_CR49) 1981; 17
S Bhatnagar (405_CR39) 2007; 18
405_CR48
405_CR47
T Lindeberg (405_CR35) 2012; 7
T Starner (405_CR12) 1998; 20
405_CR3
405_CR2
405_CR1
DG Lowe (405_CR34) 2004; 60
405_CR8
405_CR31
J Bulwer (405_CR4) 1648
405_CR7
405_CR30
405_CR6
J Weickert (405_CR41) 1999; 10
405_CR5
S Mitra (405_CR9) 2007; 37
T Lindeberg (405_CR36) 1994; 21
405_CR32
T Lindeberg (405_CR37) 1998; 30
405_CR38
AL Yuille (405_CR43) 1986; 8
T Lindeberg (405_CR42) 2013; 178
References_xml – reference: Saengsri S, Niennattrakul V and Ratanamahatana C 2012 Tfrs: Thai finger-spelling sign language recognition system. In: Second International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP), 2012, pages 457–462
– reference: Rekha J, Bhattacharya J and Majumder S 2011 Shape, texture and local movement hand gesture features for Indian Sign Language recognition. In: 3rd International Conference on Trendz in Information Sciences and Computing (TISC), 2011, pages 30–35
– reference: LindebergTScale invariant feature transformScholarpedia2012751049110.4249/scholarpedia.10491
– reference: Bundy A and Wallen L 1984 Difference of gaussians. In: Bundy A and Wallen L (eds) Catalogue of artificial intelligence tools, symbolic computation, page 30. Springer, Berlin Heidelberg
– reference: BabaudJWitkinAPBaudinMDudaROUniqueness of the gaussian kernel for scale-space filteringIEEE Trans. Pattern Anal. Mach. Intell.198681263310.1109/TPAMI.1986.47677490574.93054
– reference: Van den Bergh M and Van Gool L 2011 Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: IEEE Workshop on Applications of Computer Vision (WACV), 2011, pages 66–72
– reference: Singha J and Das K 2013 Indian sign language recognition using eigen value weighted euclidean distance based classification technique. arXiv preprint arXiv:1303.0634
– reference: Bilal S, Akmeliawati R, El Salami M J and Shafie A A 2011 Vision-based hand posture detection and recognition for sign language–a study. In: 4th International Conference on Mechatronics (ICOM), 2011, pages 1–6
– reference: Kenn H, Megen F V and Sugar R 2007 A glove-based gesture interface for wearable computing applications. In: 4th International Forum on Applied Wearable Computing (IFAWC), 2007, pages 1–10
– reference: Viola P and Jones M 2001 Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001. vol. 1, pages I-511–I-518
– reference: Ren Z, Yuan J and Zhang Z 2011 Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera. In: Proceedings of the 19th ACM international conference on Multimedia, MM ’11, pages 1093–1096, New York, NY, USA
– reference: StarnerTWeaverJPentlandAReal-time american sign language recognition using desk and wearable computer based video.IEEE Trans. Pattern Anal. Mach. Intell.199820121371137510.1109/34.735811
– reference: MitraSAcharyaTGesture recognition: A surveyIEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.200737331132410.1109/TSMCC.2007.893280
– reference: Rusu R B and Cousins S 2011 3D is here: Point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), 2011, pages 1–4
– reference: Buades A, Coll B and Morel J M 2005 A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pages 60–65
– reference: Kramer J, Parker M, Herrera D, Burrus N and Echtler F 2012 Hacking the kinect. Apress
– reference: Lindeberg T 1993 Scale-space theory in computer vision. Springer
– reference: LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comp. Vis.20046029111010.1023/B:VISI.0000029664.99615.94
– reference: BulwerJPhilocopus, or the deaf and dumb man’s friend1648LondonHumphrey and Moseley
– reference: BhatnagarSAdaptive newton-based multivariate smoothed functional algorithms for simulation optimizationACM Trans. Model. Comput. Simul.20071812:12:3510.1145/1315575.1315577
– reference: ShiJMalikJNormalized cuts and image segmentationIEEE Trans. Pattern Anal. Mach. Intell.200022888890510.1109/34.868688
– reference: LindebergTGeneralized axiomatic scale-space theoryAdv. Imaging Electron Phys.2013178110.1016/B978-0-12-407701-0.00001-7
– reference: Ansari Z A 2013b Gesture recognition for Indian sign language. Master’s thesis, Indian Institute of Technology Jodhpur, India
– reference: ShottonJSharpTKipmanAFitzgibbonAFinocchioMBlakeACookMMooreRReal-time human pose recognition in parts from single depth imagesCommun. ACM201356111612410.1145/2398356.2398381
– reference: Tukey J W 1977 Exploratory data analysis. Reading, MA, 231
– reference: PrimeSense 2011 OpenNI platform 1.0
– reference: Muni B 1951 Natya Shastra. Calcutta: Asiatic Society of Bengal
– reference: Geetha M and Manjusha U 2012 A vision based recognition of indian sign language alphabets and numerals using B-spline approximation. Int. J. Comp. Sci. Eng. (IJCSE)
– reference: Bay H, Tuytelaars T and Van Gool L 2006 Surf: Speeded up robust features. In: Computer Vision–ECCV 2006, pages 404–417. Springer
– reference: Allaire S, Kim J J, Breen S L, Jaffray D A and Pekar V 2008 Full orientation invariance and improved feature selectivity of 3d SIFT with application to medical image analysis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08, pages 1–8
– reference: Cornett R O 1967 Cued speech. University of Nebraska Media Center. Captioned Films for the Deaf
– reference: YuilleALPoggioTAScaling theorems for zero crossingsIEEE Trans. Pattern Anal. Mach. Intell.198681152510.1109/TPAMI.1986.47677480575.94001
– reference: LindebergTFeature detection with automatic scale selectionInt. J. Comp. Vis.19983027911610.1023/A:1008045108935
– reference: LindebergTScale-space theory: A basic tool for analyzing structures at different scalesJ. Appl. Stat.1994211–222527010.1080/757582976
– reference: McDonnellMBox-filtering techniquesComp. Graph. Image Process.1981171657010.1016/S0146-664X(81)80009-3
– reference: Keskin C, Kıraç F, Kara Y E and Akarun L 2013 Real time hand pose estimation using depth sensors. In: Consumer depth cameras for computer vision, pages 119–137. Springer
– reference: Bauman D 2008 Open your eyes: Deaf studies talking. University of Minnesota Press
– reference: Ansari Z 2013a Gesture recognition for Indian Sign Language with Kinect Xbox 360. https://www.youtube.com/watch?v=2oqD-_UCHxQ. Accessed: 2013-06-18
– reference: ElKoura G and Singh K 2003 Handrix: Animating the human hand. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pages 110–119. Eurographics Association
– reference: Argyros A and Lourakis M I A 2006 Binocular hand tracking and reconstruction based on 2D shape matching. In: 18th International Conference on pattern recognition, 2006. ICPR 2006. volume 1, pages 207–210
– reference: Liang R -H and Ouhyoung M 1998 A real-time continuous gesture recognition system for sign language. In: Proceedings of the Third IEEE international conference on automatic face and gesture recognition, 1998, pages 558–567
– reference: Hernandez-Rebollar J L, Lindeman R W and Kyriakopoulos N 2002 A multi-class pattern recognition system for practical finger spelling translation. In: Proceedings of the 4th IEEE International Conference on Multimodal Interfaces, ICMI ’02, pages 185–, Washington, DC, USA. IEEE Computer Society
– reference: WeickertJIshikawaSImiyaALinear scale-space has first been proposed in japanJ. Math. Imaging Vis.1999103237252169594610.1023/A:10083446238731002.68177
– reference: Quek F K and Zhao M 1996 Inductive learning in hand pose recognition. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, 1996, pages 78–83
– reference: Wang F and Zhang C 2007 Feature extraction by maximizing the average neighbourhood margin. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pages 1–8
– reference: Bhuyan M, Kar M K and Neog D R 2011 Hand pose identification from monocular image for sign language recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pages 378–383
– reference: Luis-Pérez F E, Trujillo-Romero F and Martínez-Velazco W 2011 Control of a service robot using the mexican sign language. In: Adv. Soft Comput., pages 419–430. Springer
– reference: Rusu R B, Blodow N and Beetz M 2009 Fast point feature histograms (FPFH) for 3d registration. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pages 3212–3217
– reference: Schmitz M, Endres C and Butz A 2008 A survey of human-computer interaction design in science fiction movies. In: Proceedings of the 2nd international conference on INtelligent TEchnologies for interactive enterTAINment, page 7. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)
– reference: Pugeault N and Bowden R 2011 Spelling it out: Real-time ASL fingerspelling recognition. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages 1114–1119
– reference: ISL 2011 Sign dictionaries for indian deaf and dumb population. Sign Language Unit, The Faculty of Disability Management & Special Education (FDMSE) of Ramakrishna Mission Vidyalaya, Perianaickenpalayam, Coimbatore, India. indiansignlanguage.org
– reference: Rusu R B, Bradski G, Thibaux R and Hsu J 2010 Fast 3D recognition and pose using the viewpoint feature histogram. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2010, pages 2155–2162
– ident: 405_CR18
  doi: 10.1109/ICMI.2002.1166990
– ident: 405_CR20
  doi: 10.1109/DICTAP.2012.6215407
– ident: 405_CR32
– ident: 405_CR17
– ident: 405_CR6
– ident: 405_CR51
– volume: 8
  start-page: 26
  issue: 1
  year: 1986
  ident: 405_CR44
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767749
– volume: 21
  start-page: 225
  issue: 1–2
  year: 1994
  ident: 405_CR36
  publication-title: J. Appl. Stat.
  doi: 10.1080/757582976
– ident: 405_CR48
  doi: 10.1007/11744023_32
– ident: 405_CR2
– volume: 8
  start-page: 15
  issue: 1
  year: 1986
  ident: 405_CR43
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1986.4767748
– volume: 10
  start-page: 237
  issue: 3
  year: 1999
  ident: 405_CR41
  publication-title: J. Math. Imaging Vis.
  doi: 10.1023/A:1008344623873
– ident: 405_CR27
  doi: 10.1007/978-1-4302-3868-3
– volume: 56
  start-page: 116
  issue: 1
  year: 2013
  ident: 405_CR26
  publication-title: Commun. ACM
  doi: 10.1145/2398356.2398381
– ident: 405_CR24
  doi: 10.1007/978-1-4471-4640-7_7
– volume: 7
  start-page: 10491
  issue: 5
  year: 2012
  ident: 405_CR35
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.10491
– ident: 405_CR13
  doi: 10.1007/978-3-642-25330-0_37
– volume: 17
  start-page: 65
  issue: 1
  year: 1981
  ident: 405_CR49
  publication-title: Comp. Graph. Image Process.
  doi: 10.1016/S0146-664X(81)80009-3
– ident: 405_CR3
– ident: 405_CR52
– ident: 405_CR1
  doi: 10.4108/ICST.INTETAIN2008.2476
– ident: 405_CR29
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 405_CR34
  publication-title: Int. J. Comp. Vis.
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: 405_CR7
  doi: 10.1109/ICCVW.2011.6130290
– ident: 405_CR47
  doi: 10.1109/ROBOT.2009.5152473
– ident: 405_CR16
  doi: 10.1109/ICSIPA.2011.6144163
– ident: 405_CR11
  doi: 10.1109/AFGR.1996.557247
– ident: 405_CR30
  doi: 10.1109/ICRA.2011.5980567
– volume-title: Philocopus, or the deaf and dumb man’s friend
  year: 1648
  ident: 405_CR4
– ident: 405_CR23
  doi: 10.1109/ICPR.2006.327
– ident: 405_CR38
  doi: 10.1007/978-3-642-96868-6_57
– ident: 405_CR21
  doi: 10.1109/WACV.2011.5711485
– ident: 405_CR31
  doi: 10.1109/CVPR.2005.38
– ident: 405_CR40
  doi: 10.1007/978-1-4757-6465-9
– volume: 20
  start-page: 1371
  issue: 12
  year: 1998
  ident: 405_CR12
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.735811
– ident: 405_CR14
  doi: 10.1109/TISC.2011.6169079
– volume: 178
  start-page: 1
  year: 2013
  ident: 405_CR42
  publication-title: Adv. Imaging Electron Phys.
  doi: 10.1016/B978-0-12-407701-0.00001-7
– ident: 405_CR19
  doi: 10.1109/AFGR.1998.671007
– ident: 405_CR8
– ident: 405_CR50
  doi: 10.1109/CVPR.2001.990517
– ident: 405_CR28
– volume: 30
  start-page: 79
  issue: 2
  year: 1998
  ident: 405_CR37
  publication-title: Int. J. Comp. Vis.
  doi: 10.1023/A:1008045108935
– ident: 405_CR10
  doi: 10.1109/ICOM.2011.5937178
– ident: 405_CR22
  doi: 10.1109/CVPR.2007.383124
– ident: 405_CR25
  doi: 10.1145/2072298.2071946
– ident: 405_CR5
– ident: 405_CR46
  doi: 10.1109/IROS.2010.5651280
– ident: 405_CR15
  doi: 10.14569/IJACSA.2013.040228
– ident: 405_CR45
  doi: 10.1109/CVPRW.2008.4563023
– volume: 22
  start-page: 888
  issue: 8
  year: 2000
  ident: 405_CR33
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– volume: 37
  start-page: 311
  issue: 3
  year: 2007
  ident: 405_CR9
  publication-title: IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
  doi: 10.1109/TSMCC.2007.893280
– volume: 18
  start-page: 2:1
  issue: 1
  year: 2007
  ident: 405_CR39
  publication-title: ACM Trans. Model. Comput. Simul.
  doi: 10.1145/1315575.1315577
SSID ssj0027083
Score 2.2009962
Snippet People with speech disabilities communicate in sign language and therefore have trouble in mingling with the able-bodied. There is a need for an interpretation...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 161
SubjectTerms Engineering
Title Nearest neighbour classification of Indian sign language gestures using kinect camera
URI https://link.springer.com/article/10.1007/s12046-015-0405-3
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAtIAoj8oDAw9FSh27ccYWWgqITkQqU-RzYgZQikj6_zmnDqUSIDElg51Id2fffXfnz4Sc-WEkpAHhScUQoBgB-AbM4xChAzLMV5WmH6f9SczvZ2LmznEXdbd7XZKsdurVYTeGWA6hr_DQ8IQXbJKmsNAdjThmgxXK8pfcm-jLPcQWUV3K_OkT685ovRJaOZjxLtlxkSEdLFXZIhtZ3ibb3_gC26TlVmJBzx1d9MUeiaeWhrYoaW6znDZJSbUNiW0PUCV2Ojf0Lrd2QG23Bq1TlNSWlhY4ldrm9xf6ij_SJdXK5qn2STwePV1PPHdZgqeZlKWXAkZePvjAUs17sm8CSEOWKgwIOQDICHqRgZ4C7gcqCg3XGsGM4jLlysgwCA5II5_n2SGh0FcC3XxqNCD8y3CupcxRnLEUoiDgHeLXUku0YxK3F1q8JSsOZCvoBAWdWEEnQYdcfk15X9Jo_DX4qlZF4lZU8fvoo3-NPiZbGPK4vusT0ig_FtkphhUldElzMLwZju3z9vlh1K3M6hOIwsXe
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCAaAFRPj0w8CFLqe00zlghqhbaTo3ULfI5NQMoRST9_5xTh4IESGwZ7EQ6n3Pv3Z2fCbkKojhUFkKmNEeCYkPAJ-BMQowByPJAVys9nnQHiXychTN_jruou93rkmT1p14fduPI5ZD6hgwdL2Rik2whFlCujyvhvTXLClbamxjLGXKLuC5l_vSK78HoeyW0CjD9fbLnkSHtrZaySTbmeYvsftELbJGm34kFvfZy0TcHJJk4GdqipLnLcrokJTUOErseoMrsdGHpMHd-QF23Bq1TlNSVlpY4lbrm92f6gh8yJTXa5akOSdJ_mN4PmL8sgRmuVMkyQOQVQAA8M7KjulZAFvFMIyCUAKBi6MQWOhpkIHQcWWkMkhktVSa1VZEQR6SRL_L5MaHQ1SGG-cwaQPo3x7lOMkdLzjOIhZBtEtRWS41XEncXWrymaw1kZ-gUDZ06Q6eiTW4_p7ytZDT-GnxXL0Xqd1Tx--iTf42-JNuD6XiUjoaTp1Oyg_DH92CfkUb5vpyfI8Qo4aJyqQ-a78XL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiA0Q45kDBx6KaNN0TY8TMG08Jg5U2q2K04YDqJto9_9x-mBMAiRuPTitZDu1P9v5QsiZE4S-NOAzqTgCFOMDPgFnAkIMQIY7qrT007g3jMT9xJ_U95zmzbR705KszjRYlqasuJ4l5npx8I0jrkMY7DN0Qp95q2QN_8audeuI9xeIy6l4ODGuM8QZYdPW_OkVy4FpuStaBpvBNtmqs0Tar8zaJitp1iGb37gDO6Rd78qcntfU0Rc7JBpbStq8oJmteNqCJdU2PbbzQKUJ6NTQUWZ9gtrJDdqUK6ltM81xKbWD8K_0DT-kC6qVrVntkmhw93IzZPXFCUxzKQuWAGZhDjjAEy1c2TMeJAFPFCaHAgBkCG5owFUgHE-FgRFaI7BRQiZCGRl43h5pZdMs3ScUesrHkJ8YDQgFU1xr6XOU4DyB0PNElziN1mJds4rbyy3e4wUfslV0jIqOraJjr0suv5bMKkqNv4SvGlPE9e7Kf5c--Jf0KVl_vh3Ej6PxwyHZwEyoHsc-Iq3iY54eY7ZRwEnpUZ9VnMoH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nearest+neighbour+classification+of+Indian+sign+language+gestures+using+kinect+camera&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=ANSARI%2C+ZAFAR+AHMED&rft.au=HARIT%2C+GAURAV&rft.date=2016-02-01&rft.pub=Springer+India&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=41&rft.issue=2&rft.spage=161&rft.epage=182&rft_id=info:doi/10.1007%2Fs12046-015-0405-3&rft.externalDocID=10_1007_s12046_015_0405_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-2499&client=summon