Nearest neighbour classification of Indian sign language gestures using kinect camera
People with speech disabilities communicate in sign language and therefore have trouble in mingling with the able-bodied. There is a need for an interpretation system which could act as a bridge between them and those who do not know their sign language. A functional unobtrusive Indian sign language...
Saved in:
Published in | Sadhana (Bangalore) Vol. 41; no. 2; pp. 161 - 182 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-2499 0973-7677 |
DOI | 10.1007/s12046-015-0405-3 |
Cover
Loading…
Abstract | People with speech disabilities communicate in sign language and therefore have trouble in mingling with the able-bodied. There is a need for an interpretation system which could act as a bridge between them and those who do not know their sign language. A functional unobtrusive Indian sign language recognition system was implemented and tested on real world data. A vocabulary of 140 symbols was collected using 18 subjects, totalling 5041 images. The vocabulary consisted mostly of two-handed signs which were drawn from a wide repertoire of words of technical and daily-use origins. The system was implemented using Microsoft Kinect which enables surrounding light conditions and object colour to have negligible effect on the efficiency of the system. The system proposes a method for a novel, low-cost and easy-to-use application, for Indian Sign Language recognition, using the Microsoft Kinect camera. In the fingerspelling category of our dataset, we achieved above 90% recognition rates for 13 signs and 100% recognition for 3 signs with overall 16 distinct alphabets (A, B, D, E, F, G, H, K, P, R, T, U, W, X, Y, Z) recognised with an average accuracy rate of 90.68%. |
---|---|
AbstractList | People with speech disabilities communicate in sign language and therefore have trouble in mingling with the able-bodied. There is a need for an interpretation system which could act as a bridge between them and those who do not know their sign language. A functional unobtrusive Indian sign language recognition system was implemented and tested on real world data. A vocabulary of 140 symbols was collected using 18 subjects, totalling 5041 images. The vocabulary consisted mostly of two-handed signs which were drawn from a wide repertoire of words of technical and daily-use origins. The system was implemented using Microsoft Kinect which enables surrounding light conditions and object colour to have negligible effect on the efficiency of the system. The system proposes a method for a novel, low-cost and easy-to-use application, for Indian Sign Language recognition, using the Microsoft Kinect camera. In the fingerspelling category of our dataset, we achieved above 90% recognition rates for 13 signs and 100% recognition for 3 signs with overall 16 distinct alphabets (A, B, D, E, F, G, H, K, P, R, T, U, W, X, Y, Z) recognised with an average accuracy rate of 90.68%. |
Author | ANSARI, ZAFAR AHMED HARIT, GAURAV |
Author_xml | – sequence: 1 givenname: ZAFAR AHMED surname: ANSARI fullname: ANSARI, ZAFAR AHMED organization: Department of Computer Science and Engineering, Indian Institute of Technology Jodhpur – sequence: 2 givenname: GAURAV surname: HARIT fullname: HARIT, GAURAV email: gharit@iitj.ac.in organization: Department of Computer Science and Engineering, Indian Institute of Technology Jodhpur |
BookMark | eNp90L1OwzAQwHELFYm28ABsfoHA2XFiZ0QVH5UqWOhsnR07uLQOspOBtyelTAyd7pafrfsvyCz20RFyy-COAcj7zDiIugBWFSCgKsoLModGloWspZxNO6_qgoumuSKLnHcAXIIq52T76jC5PNDoQvdh-jFRu8ecgw8Wh9BH2nu6jm3ASHPoIt1j7EbsHO0mNU6UjjnEjn6G6OxALR5cwmty6XGf3c3fXJLt0-P76qXYvD2vVw-bwnKlhqI1UEkwYHhrBVO1L00reYsKQBhjVGNY4w1DI6DERnphrao5CtUK9EqW5ZKw07s29Tkn5_VXCgdM35qBPnbRpy566qKPXfTRyH_GhuH31CFh2J-V_CTz9EvsXNK7qVecDjyDfgCASnrE |
CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3161440 crossref_primary_10_36548_jaicn_2022_1_004 crossref_primary_10_1016_j_engappai_2022_105198 crossref_primary_10_1016_j_jvcir_2023_103891 crossref_primary_10_1016_j_procs_2023_01_117 crossref_primary_10_1007_s00521_020_05448_8 crossref_primary_10_3390_electronics10141739 crossref_primary_10_1016_j_gvc_2021_200032 crossref_primary_10_1049_iet_cvi_2017_0598 crossref_primary_10_1016_j_eswa_2021_115657 crossref_primary_10_1016_j_mlwa_2023_100504 crossref_primary_10_1080_03772063_2020_1739569 crossref_primary_10_1080_03772063_2023_2171911 crossref_primary_10_1016_j_patrec_2019_01_003 crossref_primary_10_1007_s12046_019_1250_6 crossref_primary_10_1007_s11277_021_09152_1 crossref_primary_10_1155_2022_8777355 crossref_primary_10_1007_s11042_018_6199_7 crossref_primary_10_1016_j_jksuci_2018_06_008 crossref_primary_10_1080_03772063_2020_1838342 crossref_primary_10_2139_ssrn_4161335 crossref_primary_10_1007_s12369_021_00819_0 crossref_primary_10_3233_JIFS_235132 crossref_primary_10_1007_s11042_024_18583_4 |
Cites_doi | 10.1109/ICMI.2002.1166990 10.1109/DICTAP.2012.6215407 10.1109/TPAMI.1986.4767749 10.1080/757582976 10.1007/11744023_32 10.1109/TPAMI.1986.4767748 10.1023/A:1008344623873 10.1007/978-1-4302-3868-3 10.1145/2398356.2398381 10.1007/978-1-4471-4640-7_7 10.4249/scholarpedia.10491 10.1007/978-3-642-25330-0_37 10.1016/S0146-664X(81)80009-3 10.4108/ICST.INTETAIN2008.2476 10.1023/B:VISI.0000029664.99615.94 10.1109/ICCVW.2011.6130290 10.1109/ROBOT.2009.5152473 10.1109/ICSIPA.2011.6144163 10.1109/AFGR.1996.557247 10.1109/ICRA.2011.5980567 10.1109/ICPR.2006.327 10.1007/978-3-642-96868-6_57 10.1109/WACV.2011.5711485 10.1109/CVPR.2005.38 10.1007/978-1-4757-6465-9 10.1109/34.735811 10.1109/TISC.2011.6169079 10.1016/B978-0-12-407701-0.00001-7 10.1109/AFGR.1998.671007 10.1109/CVPR.2001.990517 10.1023/A:1008045108935 10.1109/ICOM.2011.5937178 10.1109/CVPR.2007.383124 10.1145/2072298.2071946 10.1109/IROS.2010.5651280 10.14569/IJACSA.2013.040228 10.1109/CVPRW.2008.4563023 10.1109/34.868688 10.1109/TSMCC.2007.893280 10.1145/1315575.1315577 |
ContentType | Journal Article |
Copyright | Indian Academy of Sciences 2016 |
Copyright_xml | – notice: Indian Academy of Sciences 2016 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12046-015-0405-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 0973-7677 |
EndPage | 182 |
ExternalDocumentID | 10_1007_s12046_015_0405_3 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 203 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E3Z EAD EAP EBLON EBS EIOEI EJD EOJEC ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_DOAJ H13 HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KQ8 LLZTM M4Y MA- MK~ N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OBODZ OK1 P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RAB RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~8M ~A9 ~EX AAPKM AAYXX ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR CITATION OVT |
ID | FETCH-LOGICAL-c288t-db0570b0b2dc4186f3bd72da8004bbb89b19fb1ab403a97f4cc862a48d4af8733 |
IEDL.DBID | U2A |
ISSN | 0256-2499 |
IngestDate | Thu Apr 24 23:11:54 EDT 2025 Thu Jul 03 08:14:22 EDT 2025 Fri Feb 21 02:42:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Indian sign language recognition multi-class classification gesture recognition |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-db0570b0b2dc4186f3bd72da8004bbb89b19fb1ab403a97f4cc862a48d4af8733 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1007_s12046_015_0405_3 crossref_citationtrail_10_1007_s12046_015_0405_3 springer_journals_10_1007_s12046_015_0405_3 |
PublicationCentury | 2000 |
PublicationDate | 20160200 2016-2-00 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 2 year: 2016 text: 20160200 |
PublicationDecade | 2010 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi |
PublicationSubtitle | Published by the Indian Academy of Sciences |
PublicationTitle | Sadhana (Bangalore) |
PublicationTitleAbbrev | Sadhana |
PublicationYear | 2016 |
Publisher | Springer India |
Publisher_xml | – name: Springer India |
References | LindebergTScale-space theory: A basic tool for analyzing structures at different scalesJ. Appl. Stat.1994211–222527010.1080/757582976 LindebergTScale invariant feature transformScholarpedia2012751049110.4249/scholarpedia.10491 Cornett R O 1967 Cued speech. University of Nebraska Media Center. Captioned Films for the Deaf McDonnellMBox-filtering techniquesComp. Graph. Image Process.1981171657010.1016/S0146-664X(81)80009-3 ISL 2011 Sign dictionaries for indian deaf and dumb population. Sign Language Unit, The Faculty of Disability Management & Special Education (FDMSE) of Ramakrishna Mission Vidyalaya, Perianaickenpalayam, Coimbatore, India. indiansignlanguage.org Saengsri S, Niennattrakul V and Ratanamahatana C 2012 Tfrs: Thai finger-spelling sign language recognition system. In: Second International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP), 2012, pages 457–462 Luis-Pérez F E, Trujillo-Romero F and Martínez-Velazco W 2011 Control of a service robot using the mexican sign language. In: Adv. Soft Comput., pages 419–430. Springer Bay H, Tuytelaars T and Van Gool L 2006 Surf: Speeded up robust features. In: Computer Vision–ECCV 2006, pages 404–417. Springer Van den Bergh M and Van Gool L 2011 Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: IEEE Workshop on Applications of Computer Vision (WACV), 2011, pages 66–72 Bauman D 2008 Open your eyes: Deaf studies talking. University of Minnesota Press Rusu R B, Blodow N and Beetz M 2009 Fast point feature histograms (FPFH) for 3d registration. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pages 3212–3217 YuilleALPoggioTAScaling theorems for zero crossingsIEEE Trans. Pattern Anal. Mach. Intell.198681152510.1109/TPAMI.1986.47677480575.94001 Singha J and Das K 2013 Indian sign language recognition using eigen value weighted euclidean distance based classification technique. arXiv preprint arXiv:1303.0634 ShiJMalikJNormalized cuts and image segmentationIEEE Trans. Pattern Anal. Mach. Intell.200022888890510.1109/34.868688 Bilal S, Akmeliawati R, El Salami M J and Shafie A A 2011 Vision-based hand posture detection and recognition for sign language–a study. In: 4th International Conference on Mechatronics (ICOM), 2011, pages 1–6 LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comp. Vis.20046029111010.1023/B:VISI.0000029664.99615.94 WeickertJIshikawaSImiyaALinear scale-space has first been proposed in japanJ. Math. Imaging Vis.1999103237252169594610.1023/A:10083446238731002.68177 Quek F K and Zhao M 1996 Inductive learning in hand pose recognition. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, 1996, pages 78–83 Muni B 1951 Natya Shastra. Calcutta: Asiatic Society of Bengal MitraSAcharyaTGesture recognition: A surveyIEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.200737331132410.1109/TSMCC.2007.893280 ShottonJSharpTKipmanAFitzgibbonAFinocchioMBlakeACookMMooreRReal-time human pose recognition in parts from single depth imagesCommun. ACM201356111612410.1145/2398356.2398381 BabaudJWitkinAPBaudinMDudaROUniqueness of the gaussian kernel for scale-space filteringIEEE Trans. Pattern Anal. Mach. Intell.198681263310.1109/TPAMI.1986.47677490574.93054 Pugeault N and Bowden R 2011 Spelling it out: Real-time ASL fingerspelling recognition. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages 1114–1119 Liang R -H and Ouhyoung M 1998 A real-time continuous gesture recognition system for sign language. In: Proceedings of the Third IEEE international conference on automatic face and gesture recognition, 1998, pages 558–567 Argyros A and Lourakis M I A 2006 Binocular hand tracking and reconstruction based on 2D shape matching. In: 18th International Conference on pattern recognition, 2006. ICPR 2006. volume 1, pages 207–210 LindebergTFeature detection with automatic scale selectionInt. J. Comp. Vis.19983027911610.1023/A:1008045108935 Keskin C, Kıraç F, Kara Y E and Akarun L 2013 Real time hand pose estimation using depth sensors. In: Consumer depth cameras for computer vision, pages 119–137. Springer Rusu R B and Cousins S 2011 3D is here: Point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), 2011, pages 1–4 Ansari Z 2013a Gesture recognition for Indian Sign Language with Kinect Xbox 360. https://www.youtube.com/watch?v=2oqD-_UCHxQ. Accessed: 2013-06-18 Ren Z, Yuan J and Zhang Z 2011 Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera. In: Proceedings of the 19th ACM international conference on Multimedia, MM ’11, pages 1093–1096, New York, NY, USA Schmitz M, Endres C and Butz A 2008 A survey of human-computer interaction design in science fiction movies. In: Proceedings of the 2nd international conference on INtelligent TEchnologies for interactive enterTAINment, page 7. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) Bhuyan M, Kar M K and Neog D R 2011 Hand pose identification from monocular image for sign language recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pages 378–383 Ansari Z A 2013b Gesture recognition for Indian sign language. Master’s thesis, Indian Institute of Technology Jodhpur, India Viola P and Jones M 2001 Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001. vol. 1, pages I-511–I-518 BulwerJPhilocopus, or the deaf and dumb man’s friend1648LondonHumphrey and Moseley Rekha J, Bhattacharya J and Majumder S 2011 Shape, texture and local movement hand gesture features for Indian Sign Language recognition. In: 3rd International Conference on Trendz in Information Sciences and Computing (TISC), 2011, pages 30–35 Lindeberg T 1993 Scale-space theory in computer vision. Springer StarnerTWeaverJPentlandAReal-time american sign language recognition using desk and wearable computer based video.IEEE Trans. Pattern Anal. Mach. Intell.199820121371137510.1109/34.735811 Kenn H, Megen F V and Sugar R 2007 A glove-based gesture interface for wearable computing applications. In: 4th International Forum on Applied Wearable Computing (IFAWC), 2007, pages 1–10 Allaire S, Kim J J, Breen S L, Jaffray D A and Pekar V 2008 Full orientation invariance and improved feature selectivity of 3d SIFT with application to medical image analysis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08, pages 1–8 Wang F and Zhang C 2007 Feature extraction by maximizing the average neighbourhood margin. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pages 1–8 Tukey J W 1977 Exploratory data analysis. Reading, MA, 231 Rusu R B, Bradski G, Thibaux R and Hsu J 2010 Fast 3D recognition and pose using the viewpoint feature histogram. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2010, pages 2155–2162 PrimeSense 2011 OpenNI platform 1.0 BhatnagarSAdaptive newton-based multivariate smoothed functional algorithms for simulation optimizationACM Trans. Model. Comput. Simul.20071812:12:3510.1145/1315575.1315577 ElKoura G and Singh K 2003 Handrix: Animating the human hand. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pages 110–119. Eurographics Association Geetha M and Manjusha U 2012 A vision based recognition of indian sign language alphabets and numerals using B-spline approximation. Int. J. Comp. Sci. Eng. (IJCSE) Hernandez-Rebollar J L, Lindeman R W and Kyriakopoulos N 2002 A multi-class pattern recognition system for practical finger spelling translation. In: Proceedings of the 4th IEEE International Conference on Multimodal Interfaces, ICMI ’02, pages 185–, Washington, DC, USA. IEEE Computer Society Kramer J, Parker M, Herrera D, Burrus N and Echtler F 2012 Hacking the kinect. Apress Buades A, Coll B and Morel J M 2005 A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pages 60–65 LindebergTGeneralized axiomatic scale-space theoryAdv. Imaging Electron Phys.2013178110.1016/B978-0-12-407701-0.00001-7 Bundy A and Wallen L 1984 Difference of gaussians. In: Bundy A and Wallen L (eds) Catalogue of artificial intelligence tools, symbolic computation, page 30. Springer, Berlin Heidelberg 405_CR20 405_CR24 405_CR23 405_CR22 405_CR21 405_CR28 405_CR27 405_CR25 405_CR29 405_CR52 405_CR51 405_CR50 405_CR13 405_CR11 405_CR10 405_CR17 405_CR16 405_CR15 405_CR14 J Shi (405_CR33) 2000; 22 405_CR19 405_CR18 J Babaud (405_CR44) 1986; 8 405_CR40 405_CR46 405_CR45 J Shotton (405_CR26) 2013; 56 M McDonnell (405_CR49) 1981; 17 S Bhatnagar (405_CR39) 2007; 18 405_CR48 405_CR47 T Lindeberg (405_CR35) 2012; 7 T Starner (405_CR12) 1998; 20 405_CR3 405_CR2 405_CR1 DG Lowe (405_CR34) 2004; 60 405_CR8 405_CR31 J Bulwer (405_CR4) 1648 405_CR7 405_CR30 405_CR6 J Weickert (405_CR41) 1999; 10 405_CR5 S Mitra (405_CR9) 2007; 37 T Lindeberg (405_CR36) 1994; 21 405_CR32 T Lindeberg (405_CR37) 1998; 30 405_CR38 AL Yuille (405_CR43) 1986; 8 T Lindeberg (405_CR42) 2013; 178 |
References_xml | – reference: Saengsri S, Niennattrakul V and Ratanamahatana C 2012 Tfrs: Thai finger-spelling sign language recognition system. In: Second International Conference on Digital Information and Communication Technology and it’s Applications (DICTAP), 2012, pages 457–462 – reference: Rekha J, Bhattacharya J and Majumder S 2011 Shape, texture and local movement hand gesture features for Indian Sign Language recognition. In: 3rd International Conference on Trendz in Information Sciences and Computing (TISC), 2011, pages 30–35 – reference: LindebergTScale invariant feature transformScholarpedia2012751049110.4249/scholarpedia.10491 – reference: Bundy A and Wallen L 1984 Difference of gaussians. In: Bundy A and Wallen L (eds) Catalogue of artificial intelligence tools, symbolic computation, page 30. Springer, Berlin Heidelberg – reference: BabaudJWitkinAPBaudinMDudaROUniqueness of the gaussian kernel for scale-space filteringIEEE Trans. Pattern Anal. Mach. Intell.198681263310.1109/TPAMI.1986.47677490574.93054 – reference: Van den Bergh M and Van Gool L 2011 Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: IEEE Workshop on Applications of Computer Vision (WACV), 2011, pages 66–72 – reference: Singha J and Das K 2013 Indian sign language recognition using eigen value weighted euclidean distance based classification technique. arXiv preprint arXiv:1303.0634 – reference: Bilal S, Akmeliawati R, El Salami M J and Shafie A A 2011 Vision-based hand posture detection and recognition for sign language–a study. In: 4th International Conference on Mechatronics (ICOM), 2011, pages 1–6 – reference: Kenn H, Megen F V and Sugar R 2007 A glove-based gesture interface for wearable computing applications. In: 4th International Forum on Applied Wearable Computing (IFAWC), 2007, pages 1–10 – reference: Viola P and Jones M 2001 Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001. vol. 1, pages I-511–I-518 – reference: Ren Z, Yuan J and Zhang Z 2011 Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera. In: Proceedings of the 19th ACM international conference on Multimedia, MM ’11, pages 1093–1096, New York, NY, USA – reference: StarnerTWeaverJPentlandAReal-time american sign language recognition using desk and wearable computer based video.IEEE Trans. Pattern Anal. Mach. Intell.199820121371137510.1109/34.735811 – reference: MitraSAcharyaTGesture recognition: A surveyIEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.200737331132410.1109/TSMCC.2007.893280 – reference: Rusu R B and Cousins S 2011 3D is here: Point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (ICRA), 2011, pages 1–4 – reference: Buades A, Coll B and Morel J M 2005 A non-local algorithm for image denoising. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 2, pages 60–65 – reference: Kramer J, Parker M, Herrera D, Burrus N and Echtler F 2012 Hacking the kinect. Apress – reference: Lindeberg T 1993 Scale-space theory in computer vision. Springer – reference: LoweDGDistinctive image features from scale-invariant keypointsInt. J. Comp. Vis.20046029111010.1023/B:VISI.0000029664.99615.94 – reference: BulwerJPhilocopus, or the deaf and dumb man’s friend1648LondonHumphrey and Moseley – reference: BhatnagarSAdaptive newton-based multivariate smoothed functional algorithms for simulation optimizationACM Trans. Model. Comput. Simul.20071812:12:3510.1145/1315575.1315577 – reference: ShiJMalikJNormalized cuts and image segmentationIEEE Trans. Pattern Anal. Mach. Intell.200022888890510.1109/34.868688 – reference: LindebergTGeneralized axiomatic scale-space theoryAdv. Imaging Electron Phys.2013178110.1016/B978-0-12-407701-0.00001-7 – reference: Ansari Z A 2013b Gesture recognition for Indian sign language. Master’s thesis, Indian Institute of Technology Jodhpur, India – reference: ShottonJSharpTKipmanAFitzgibbonAFinocchioMBlakeACookMMooreRReal-time human pose recognition in parts from single depth imagesCommun. ACM201356111612410.1145/2398356.2398381 – reference: Tukey J W 1977 Exploratory data analysis. Reading, MA, 231 – reference: PrimeSense 2011 OpenNI platform 1.0 – reference: Muni B 1951 Natya Shastra. Calcutta: Asiatic Society of Bengal – reference: Geetha M and Manjusha U 2012 A vision based recognition of indian sign language alphabets and numerals using B-spline approximation. Int. J. Comp. Sci. Eng. (IJCSE) – reference: Bay H, Tuytelaars T and Van Gool L 2006 Surf: Speeded up robust features. In: Computer Vision–ECCV 2006, pages 404–417. Springer – reference: Allaire S, Kim J J, Breen S L, Jaffray D A and Pekar V 2008 Full orientation invariance and improved feature selectivity of 3d SIFT with application to medical image analysis. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08, pages 1–8 – reference: Cornett R O 1967 Cued speech. University of Nebraska Media Center. Captioned Films for the Deaf – reference: YuilleALPoggioTAScaling theorems for zero crossingsIEEE Trans. Pattern Anal. Mach. Intell.198681152510.1109/TPAMI.1986.47677480575.94001 – reference: LindebergTFeature detection with automatic scale selectionInt. J. Comp. Vis.19983027911610.1023/A:1008045108935 – reference: LindebergTScale-space theory: A basic tool for analyzing structures at different scalesJ. Appl. Stat.1994211–222527010.1080/757582976 – reference: McDonnellMBox-filtering techniquesComp. Graph. Image Process.1981171657010.1016/S0146-664X(81)80009-3 – reference: Keskin C, Kıraç F, Kara Y E and Akarun L 2013 Real time hand pose estimation using depth sensors. In: Consumer depth cameras for computer vision, pages 119–137. Springer – reference: Bauman D 2008 Open your eyes: Deaf studies talking. University of Minnesota Press – reference: Ansari Z 2013a Gesture recognition for Indian Sign Language with Kinect Xbox 360. https://www.youtube.com/watch?v=2oqD-_UCHxQ. Accessed: 2013-06-18 – reference: ElKoura G and Singh K 2003 Handrix: Animating the human hand. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pages 110–119. Eurographics Association – reference: Argyros A and Lourakis M I A 2006 Binocular hand tracking and reconstruction based on 2D shape matching. In: 18th International Conference on pattern recognition, 2006. ICPR 2006. volume 1, pages 207–210 – reference: Liang R -H and Ouhyoung M 1998 A real-time continuous gesture recognition system for sign language. In: Proceedings of the Third IEEE international conference on automatic face and gesture recognition, 1998, pages 558–567 – reference: Hernandez-Rebollar J L, Lindeman R W and Kyriakopoulos N 2002 A multi-class pattern recognition system for practical finger spelling translation. In: Proceedings of the 4th IEEE International Conference on Multimodal Interfaces, ICMI ’02, pages 185–, Washington, DC, USA. IEEE Computer Society – reference: WeickertJIshikawaSImiyaALinear scale-space has first been proposed in japanJ. Math. Imaging Vis.1999103237252169594610.1023/A:10083446238731002.68177 – reference: Quek F K and Zhao M 1996 Inductive learning in hand pose recognition. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, 1996, pages 78–83 – reference: Wang F and Zhang C 2007 Feature extraction by maximizing the average neighbourhood margin. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07, pages 1–8 – reference: Bhuyan M, Kar M K and Neog D R 2011 Hand pose identification from monocular image for sign language recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pages 378–383 – reference: Luis-Pérez F E, Trujillo-Romero F and Martínez-Velazco W 2011 Control of a service robot using the mexican sign language. In: Adv. Soft Comput., pages 419–430. Springer – reference: Rusu R B, Blodow N and Beetz M 2009 Fast point feature histograms (FPFH) for 3d registration. In: IEEE International Conference on Robotics and Automation, 2009. ICRA’09, pages 3212–3217 – reference: Schmitz M, Endres C and Butz A 2008 A survey of human-computer interaction design in science fiction movies. In: Proceedings of the 2nd international conference on INtelligent TEchnologies for interactive enterTAINment, page 7. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) – reference: Pugeault N and Bowden R 2011 Spelling it out: Real-time ASL fingerspelling recognition. In 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pages 1114–1119 – reference: ISL 2011 Sign dictionaries for indian deaf and dumb population. Sign Language Unit, The Faculty of Disability Management & Special Education (FDMSE) of Ramakrishna Mission Vidyalaya, Perianaickenpalayam, Coimbatore, India. indiansignlanguage.org – reference: Rusu R B, Bradski G, Thibaux R and Hsu J 2010 Fast 3D recognition and pose using the viewpoint feature histogram. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2010, pages 2155–2162 – ident: 405_CR18 doi: 10.1109/ICMI.2002.1166990 – ident: 405_CR20 doi: 10.1109/DICTAP.2012.6215407 – ident: 405_CR32 – ident: 405_CR17 – ident: 405_CR6 – ident: 405_CR51 – volume: 8 start-page: 26 issue: 1 year: 1986 ident: 405_CR44 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767749 – volume: 21 start-page: 225 issue: 1–2 year: 1994 ident: 405_CR36 publication-title: J. Appl. Stat. doi: 10.1080/757582976 – ident: 405_CR48 doi: 10.1007/11744023_32 – ident: 405_CR2 – volume: 8 start-page: 15 issue: 1 year: 1986 ident: 405_CR43 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1986.4767748 – volume: 10 start-page: 237 issue: 3 year: 1999 ident: 405_CR41 publication-title: J. Math. Imaging Vis. doi: 10.1023/A:1008344623873 – ident: 405_CR27 doi: 10.1007/978-1-4302-3868-3 – volume: 56 start-page: 116 issue: 1 year: 2013 ident: 405_CR26 publication-title: Commun. ACM doi: 10.1145/2398356.2398381 – ident: 405_CR24 doi: 10.1007/978-1-4471-4640-7_7 – volume: 7 start-page: 10491 issue: 5 year: 2012 ident: 405_CR35 publication-title: Scholarpedia doi: 10.4249/scholarpedia.10491 – ident: 405_CR13 doi: 10.1007/978-3-642-25330-0_37 – volume: 17 start-page: 65 issue: 1 year: 1981 ident: 405_CR49 publication-title: Comp. Graph. Image Process. doi: 10.1016/S0146-664X(81)80009-3 – ident: 405_CR3 – ident: 405_CR52 – ident: 405_CR1 doi: 10.4108/ICST.INTETAIN2008.2476 – ident: 405_CR29 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 405_CR34 publication-title: Int. J. Comp. Vis. doi: 10.1023/B:VISI.0000029664.99615.94 – ident: 405_CR7 doi: 10.1109/ICCVW.2011.6130290 – ident: 405_CR47 doi: 10.1109/ROBOT.2009.5152473 – ident: 405_CR16 doi: 10.1109/ICSIPA.2011.6144163 – ident: 405_CR11 doi: 10.1109/AFGR.1996.557247 – ident: 405_CR30 doi: 10.1109/ICRA.2011.5980567 – volume-title: Philocopus, or the deaf and dumb man’s friend year: 1648 ident: 405_CR4 – ident: 405_CR23 doi: 10.1109/ICPR.2006.327 – ident: 405_CR38 doi: 10.1007/978-3-642-96868-6_57 – ident: 405_CR21 doi: 10.1109/WACV.2011.5711485 – ident: 405_CR31 doi: 10.1109/CVPR.2005.38 – ident: 405_CR40 doi: 10.1007/978-1-4757-6465-9 – volume: 20 start-page: 1371 issue: 12 year: 1998 ident: 405_CR12 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.735811 – ident: 405_CR14 doi: 10.1109/TISC.2011.6169079 – volume: 178 start-page: 1 year: 2013 ident: 405_CR42 publication-title: Adv. Imaging Electron Phys. doi: 10.1016/B978-0-12-407701-0.00001-7 – ident: 405_CR19 doi: 10.1109/AFGR.1998.671007 – ident: 405_CR8 – ident: 405_CR50 doi: 10.1109/CVPR.2001.990517 – ident: 405_CR28 – volume: 30 start-page: 79 issue: 2 year: 1998 ident: 405_CR37 publication-title: Int. J. Comp. Vis. doi: 10.1023/A:1008045108935 – ident: 405_CR10 doi: 10.1109/ICOM.2011.5937178 – ident: 405_CR22 doi: 10.1109/CVPR.2007.383124 – ident: 405_CR25 doi: 10.1145/2072298.2071946 – ident: 405_CR5 – ident: 405_CR46 doi: 10.1109/IROS.2010.5651280 – ident: 405_CR15 doi: 10.14569/IJACSA.2013.040228 – ident: 405_CR45 doi: 10.1109/CVPRW.2008.4563023 – volume: 22 start-page: 888 issue: 8 year: 2000 ident: 405_CR33 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – volume: 37 start-page: 311 issue: 3 year: 2007 ident: 405_CR9 publication-title: IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. doi: 10.1109/TSMCC.2007.893280 – volume: 18 start-page: 2:1 issue: 1 year: 2007 ident: 405_CR39 publication-title: ACM Trans. Model. Comput. Simul. doi: 10.1145/1315575.1315577 |
SSID | ssj0027083 |
Score | 2.2009962 |
Snippet | People with speech disabilities communicate in sign language and therefore have trouble in mingling with the able-bodied. There is a need for an interpretation... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 161 |
SubjectTerms | Engineering |
Title | Nearest neighbour classification of Indian sign language gestures using kinect camera |
URI | https://link.springer.com/article/10.1007/s12046-015-0405-3 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAtIAoj8oDAw9FSh27ccYWWgqITkQqU-RzYgZQikj6_zmnDqUSIDElg51Id2fffXfnz4Sc-WEkpAHhScUQoBgB-AbM4xChAzLMV5WmH6f9SczvZ2LmznEXdbd7XZKsdurVYTeGWA6hr_DQ8IQXbJKmsNAdjThmgxXK8pfcm-jLPcQWUV3K_OkT685ovRJaOZjxLtlxkSEdLFXZIhtZ3ibb3_gC26TlVmJBzx1d9MUeiaeWhrYoaW6znDZJSbUNiW0PUCV2Ojf0Lrd2QG23Bq1TlNSWlhY4ldrm9xf6ij_SJdXK5qn2STwePV1PPHdZgqeZlKWXAkZePvjAUs17sm8CSEOWKgwIOQDICHqRgZ4C7gcqCg3XGsGM4jLlysgwCA5II5_n2SGh0FcC3XxqNCD8y3CupcxRnLEUoiDgHeLXUku0YxK3F1q8JSsOZCvoBAWdWEEnQYdcfk15X9Jo_DX4qlZF4lZU8fvoo3-NPiZbGPK4vusT0ig_FtkphhUldElzMLwZju3z9vlh1K3M6hOIwsXe |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCAaAFRPj0w8CFLqe00zlghqhbaTo3ULfI5NQMoRST9_5xTh4IESGwZ7EQ6n3Pv3Z2fCbkKojhUFkKmNEeCYkPAJ-BMQowByPJAVys9nnQHiXychTN_jruou93rkmT1p14fduPI5ZD6hgwdL2Rik2whFlCujyvhvTXLClbamxjLGXKLuC5l_vSK78HoeyW0CjD9fbLnkSHtrZaySTbmeYvsftELbJGm34kFvfZy0TcHJJk4GdqipLnLcrokJTUOErseoMrsdGHpMHd-QF23Bq1TlNSVlpY4lbrm92f6gh8yJTXa5akOSdJ_mN4PmL8sgRmuVMkyQOQVQAA8M7KjulZAFvFMIyCUAKBi6MQWOhpkIHQcWWkMkhktVSa1VZEQR6SRL_L5MaHQ1SGG-cwaQPo3x7lOMkdLzjOIhZBtEtRWS41XEncXWrymaw1kZ-gUDZ06Q6eiTW4_p7ytZDT-GnxXL0Xqd1Tx--iTf42-JNuD6XiUjoaTp1Oyg_DH92CfkUb5vpyfI8Qo4aJyqQ-a78XL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiA0Q45kDBx6KaNN0TY8TMG08Jg5U2q2K04YDqJto9_9x-mBMAiRuPTitZDu1P9v5QsiZE4S-NOAzqTgCFOMDPgFnAkIMQIY7qrT007g3jMT9xJ_U95zmzbR705KszjRYlqasuJ4l5npx8I0jrkMY7DN0Qp95q2QN_8audeuI9xeIy6l4ODGuM8QZYdPW_OkVy4FpuStaBpvBNtmqs0Tar8zaJitp1iGb37gDO6Rd78qcntfU0Rc7JBpbStq8oJmteNqCJdU2PbbzQKUJ6NTQUWZ9gtrJDdqUK6ltM81xKbWD8K_0DT-kC6qVrVntkmhw93IzZPXFCUxzKQuWAGZhDjjAEy1c2TMeJAFPFCaHAgBkCG5owFUgHE-FgRFaI7BRQiZCGRl43h5pZdMs3ScUesrHkJ8YDQgFU1xr6XOU4DyB0PNElziN1mJds4rbyy3e4wUfslV0jIqOraJjr0suv5bMKkqNv4SvGlPE9e7Kf5c--Jf0KVl_vh3Ej6PxwyHZwEyoHsc-Iq3iY54eY7ZRwEnpUZ9VnMoH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nearest+neighbour+classification+of+Indian+sign+language+gestures+using+kinect+camera&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=ANSARI%2C+ZAFAR+AHMED&rft.au=HARIT%2C+GAURAV&rft.date=2016-02-01&rft.pub=Springer+India&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=41&rft.issue=2&rft.spage=161&rft.epage=182&rft_id=info:doi/10.1007%2Fs12046-015-0405-3&rft.externalDocID=10_1007_s12046_015_0405_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-2499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-2499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-2499&client=summon |