Means for Divided Differences and Exponential Convexity

In this paper we obtain two means for divide differences using two majorization type results where one is related with Schur convexity. We examine their monotonicity property using exponentially convex functions.

Saved in:
Bibliographic Details
Published inMediterranean journal of mathematics Vol. 9; no. 1; pp. 187 - 198
Main Authors Pavić, Zlatko, Pečarić, Josip, Vukelić, Ana
Format Journal Article
LanguageEnglish
Published Basel SP Birkhäuser Verlag Basel 01.02.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper we obtain two means for divide differences using two majorization type results where one is related with Schur convexity. We examine their monotonicity property using exponentially convex functions.
AbstractList In this paper we obtain two means for divide differences using two majorization type results where one is related with Schur convexity. We examine their monotonicity property using exponentially convex functions.
Author Pavić, Zlatko
Pečarić, Josip
Vukelić, Ana
Author_xml – sequence: 1
  givenname: Zlatko
  surname: Pavić
  fullname: Pavić, Zlatko
  organization: Mechanical Engineering Faculty, University of Osijek
– sequence: 2
  givenname: Josip
  surname: Pečarić
  fullname: Pečarić, Josip
  organization: Faculty of Textile Technology, University of Zagreb
– sequence: 3
  givenname: Ana
  surname: Vukelić
  fullname: Vukelić, Ana
  email: avukelic@pbf.hr
  organization: Faculty of Food Technology and Biotechnology, Mathematics Department, University of Zagreb
BookMark eNp9j8FOwzAMhiM0JLbBA3DrCxSctE3SIyqDIQ1xgXPkpgnKVNIpKdO2pyfTEAcOs2T9Pviz9c3IxA_eEHJL4Y4CiPsIqeocKE3NWH64IFPKOeRVWZWTv7nkV2QW4xqA1bRgUyJeDfqY2SFkj27rOtOltNYE47WJGfouW-w26ZcfHfZZM_it2blxf00uLfbR3PzmnHw8Ld6bZb56e35pHla5ZlKOeWu4tMgFVMKyFmpdl4XFyrICtQBLWV2Jsq0NWJSdRm4pRc7a0shCCglYzIk43dVhiDEYq7QbcXSDHwO6XlFQR3918lfJXx391SGR9B-5Ce4Lw_4sw05MTLv-0wS1Hr6DT4JnoB-iK2-O
CitedBy_id crossref_primary_10_61186_ijmsi_19_2_1
Cites_doi 10.1142/S1793557108000126
10.1007/BF02592679
10.1216/RMJ-1989-19-1-303
10.1007/978-94-017-1043-5
ContentType Journal Article
Copyright Springer Basel AG 2011
Copyright_xml – notice: Springer Basel AG 2011
DBID AAYXX
CITATION
DOI 10.1007/s00009-011-0122-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1660-5454
EndPage 198
ExternalDocumentID 10_1007_s00009_011_0122_z
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c288t-be68fa67057f2b09c943fa5f23ac70f129574b9e0fa8dca6f11a62b4e838780a3
IEDL.DBID U2A
ISSN 1660-5446
IngestDate Thu Apr 24 22:57:49 EDT 2025
Tue Jul 01 03:50:27 EDT 2025
Fri Feb 21 02:37:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords exponentially convex function
Divided differences
26D20
Schur means
Stolarsky means
convex function
26D99
log-convexity
majorization
Schur convex function
26D15
continuous extensions
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-be68fa67057f2b09c943fa5f23ac70f129574b9e0fa8dca6f11a62b4e838780a3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1007_s00009_011_0122_z
crossref_primary_10_1007_s00009_011_0122_z
springer_journals_10_1007_s00009_011_0122_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120200
2012-2-00
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 2
  year: 2012
  text: 20120200
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mediterranean journal of mathematics
PublicationTitleAbbrev Mediterr. J. Math
PublicationYear 2012
Publisher SP Birkhäuser Verlag Basel
Publisher_xml – name: SP Birkhäuser Verlag Basel
References J. Jakšetić, J. Pečarić, 4-points Stolarsky Means, to appear in Mediterranean Journal of Mathematics
BernsteinS.N.Sur les fonctions absolument monotonesActa Math.19295216610.1007/BF02592679
MarshallA.W.I. Olkin, Inequalities: Theory of Majorization and Its Applications1979New YorkAcademic Press
D. S. Mitrinović, J. E. Pečarić, On Some Inequalities for Monotone Functions, Boll. Unione. Mat. Ital. (7) 5-13, 407-416, 1991.
X. Aimin, C. Zhongdi, An inequality for divided differences in high dimensions, J. Inequal. Pure Appl. Math. 10(4) (2009), Article 103, 6p.
D. S. Mitrinović, J. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, The Netherlands, 1993.
AkhiezerN.I.The Classical Moment Problem and Some Related Questions in Analysis1965EdinburghOliver and Boyd0135.33803
A. I. Kechriniotis, N. D. Assimakis, On the inequlity of the difference of two integral means and applications for pdfs, JIPAM 8(1) (2007), Art. 10, 6p.
J. E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in science and engineering, vol. 187 Academic Press, 1992.
AndrewsG.The Theory of Partitions, Encyclopedia Math. Appl. 121976ReadingAddison-Wesley
MacmahonP.A.Combinatory Analysis, I, II1960New YorkChelsea
J. Pečarić, M. Rodić Lipanović, On an inequality for divided differences, Asian-European Journal of MAthematics 1(1) (2008), 113-120.
AtkinsonK.E.An Introduction to Numerical Analysis19892New YorkWiley0718.65001
PečarićJ.EZwickD.n-Convexity and MajorizationRocky Mountain J. Math19891930331110161830692.2600510.1216/RMJ-1989-19-1-303
A. de Morgan, The Differential and Integral Calculus (Chapter XVIII, On Interpolation and Summation, page 550), Baldwin and Cradock, London, 1842.
122_CR11
122_CR10
122_CR13
122_CR12
122_CR1
S.N. Bernstein (122_CR5) 1929; 52
N.I. Akhiezer (122_CR2) 1965
122_CR6
122_CR7
P.A. Macmahon (122_CR8) 1960
J.E Pečarić (122_CR15) 1989; 19
G. Andrews (122_CR3) 1976
A.W. Marshall (122_CR9) 1979
122_CR14
K.E. Atkinson (122_CR4) 1989
References_xml – reference: D. S. Mitrinović, J. E. Pečarić, On Some Inequalities for Monotone Functions, Boll. Unione. Mat. Ital. (7) 5-13, 407-416, 1991.
– reference: J. E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in science and engineering, vol. 187 Academic Press, 1992.
– reference: J. Pečarić, M. Rodić Lipanović, On an inequality for divided differences, Asian-European Journal of MAthematics 1(1) (2008), 113-120.
– reference: A. I. Kechriniotis, N. D. Assimakis, On the inequlity of the difference of two integral means and applications for pdfs, JIPAM 8(1) (2007), Art. 10, 6p.
– reference: BernsteinS.N.Sur les fonctions absolument monotonesActa Math.19295216610.1007/BF02592679
– reference: AndrewsG.The Theory of Partitions, Encyclopedia Math. Appl. 121976ReadingAddison-Wesley
– reference: X. Aimin, C. Zhongdi, An inequality for divided differences in high dimensions, J. Inequal. Pure Appl. Math. 10(4) (2009), Article 103, 6p.
– reference: J. Jakšetić, J. Pečarić, 4-points Stolarsky Means, to appear in Mediterranean Journal of Mathematics
– reference: AkhiezerN.I.The Classical Moment Problem and Some Related Questions in Analysis1965EdinburghOliver and Boyd0135.33803
– reference: MacmahonP.A.Combinatory Analysis, I, II1960New YorkChelsea
– reference: AtkinsonK.E.An Introduction to Numerical Analysis19892New YorkWiley0718.65001
– reference: PečarićJ.EZwickD.n-Convexity and MajorizationRocky Mountain J. Math19891930331110161830692.2600510.1216/RMJ-1989-19-1-303
– reference: D. S. Mitrinović, J. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, The Netherlands, 1993.
– reference: MarshallA.W.I. Olkin, Inequalities: Theory of Majorization and Its Applications1979New YorkAcademic Press
– reference: A. de Morgan, The Differential and Integral Calculus (Chapter XVIII, On Interpolation and Summation, page 550), Baldwin and Cradock, London, 1842.
– ident: 122_CR12
– ident: 122_CR13
– volume-title: The Classical Moment Problem and Some Related Questions in Analysis
  year: 1965
  ident: 122_CR2
– ident: 122_CR14
  doi: 10.1142/S1793557108000126
– volume-title: I. Olkin, Inequalities: Theory of Majorization and Its Applications
  year: 1979
  ident: 122_CR9
– ident: 122_CR1
– volume: 52
  start-page: 1
  year: 1929
  ident: 122_CR5
  publication-title: Acta Math.
  doi: 10.1007/BF02592679
– volume: 19
  start-page: 303
  year: 1989
  ident: 122_CR15
  publication-title: Rocky Mountain J. Math
  doi: 10.1216/RMJ-1989-19-1-303
– ident: 122_CR6
– volume-title: The Theory of Partitions, Encyclopedia Math. Appl. 12
  year: 1976
  ident: 122_CR3
– volume-title: An Introduction to Numerical Analysis
  year: 1989
  ident: 122_CR4
– ident: 122_CR7
– ident: 122_CR11
  doi: 10.1007/978-94-017-1043-5
– volume-title: Combinatory Analysis, I, II
  year: 1960
  ident: 122_CR8
– ident: 122_CR10
SSID ssj0029132
Score 1.8528775
Snippet In this paper we obtain two means for divide differences using two majorization type results where one is related with Schur convexity. We examine their...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 187
SubjectTerms Mathematics
Mathematics and Statistics
Title Means for Divided Differences and Exponential Convexity
URI https://link.springer.com/article/10.1007/s00009-011-0122-z
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vehBfGJ9lBw8KQvJvrI5ltpalHqyUE9hs9k9SSymhdJf72SbBAoqeMplMoHZx3yT-WYG4C6XlJuccYLo2xD0-HikbEKJznBJrIuF0Z7l-yonM_48F_O6jrts2O5NStLf1G2xm4czxP_SizCC2uxDV1ShO27iGR20UVYS-alkkZQhERjsNKnMn1TsOqPdTKh3MONjOKqRYTDYLuUJ7NniFA6nbVvV8gziqUXPEiDODB6rMiqb49PVFXtloIs8GK0Xn0XFAEJVw4pRvkaYfQ6z8ehtOCH15ANiqFJLklmpnJYxgilHszAxCWdOC0eZNnHo0EeLmGeJDZ1WudHSRZGWNONWMRWrULML6BT4tUsITC6YsTTTXDCuVaKj0GJQpxSzqFbpHoSNCVJTtwWvplN8pG1DY2-1FK2WVlZLNz24b19ZbHti_CX80Ng1rY9H-bv01b-kr-EA8QvdkqhvoLP8WtlbxAjLrA_dwdP7y6jv98Y3M5OzrA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD4inGswdOoEhtkqbpcRqbBmw7bdJuVZomJ1QmWqRpvx43aytNAiROvbiO5DT15_izDfCQCcp1xjhB9K0Jenw8UiamRKW4JcZGoVaO5TsVozl_XYSLuo67aNjuTUrS_anbYjcHZ4i70gswglrvwh5iAVnxuOa010ZZceCmkgVC-CTEYKdJZf6kYtsZbWdCnYMZHsNRjQy93mYrT2DH5KdwOGnbqhZnEE0MehYPcab3XJVRmQyftq7YKzyVZ95gtfzIKwYQqupXjPIVwuxzmA8Hs_6I1JMPiKZSliQ1QlolIgRTlqZ-rGPOrAotZUpHvkUfHUY8jY1vlcy0EjYIlKApN5LJSPqKXUAnx9UuwdNZyLShqeIh40rGKvANBnVSMoNqpeqC35gg0XVb8Go6xXvSNjR2VkvQaklltWTdhcf2leWmJ8Zfwk-NXZP6eBS_S1_9S_oe9kezyTgZv0zfruEAsQzdEKpvoFN-fplbxAtleue-j28qJLUL
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGJ95uBJWZrsbjabY-mD-mjxYKG3sNnsniQWE6H01zt5QkEFT7lMJjD7mG8y38wA3CWCcp0wThB9a4IeH4-UCSlRMS6JsYGvVcnynYnJnD8t_EU95zRr2O5NSrKqaSi6NKV5b5nYXlv4VkIbUv7e8zCaWm_DDt7GXrGt57TfRlyhV04o84RwiY-BT5PW_EnFpmPazIqWzmZ8CAc1SnT61bIewZZJj2F_2rZYzU4gmBr0Mg5iTmdYlFSZBJ-2rt7LHJUmzmi1_EgLNhCqGhTs8hVC7lOYj0dvgwmppyAQTaXMSWyEtEoECKwsjd1Qh5xZ5VvKlA5ci_7aD3gcGtcqmWglrOcpQWNuJJOBdBU7g06KXzsHRyc-04bGivuMKxkqzzUY4EnJDKqVqgtuY4JI1y3Ci0kV71Hb3Li0WoRWiwqrResu3LevLKv-GH8JPzR2jeqjkv0uffEv6VvYfR2Oo5fH2fMl7CGsoRW3-go6-eeXuUbokMc35fb4Bg2yuUc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Means+for+Divided+Differences+and+Exponential+Convexity&rft.jtitle=Mediterranean+journal+of+mathematics&rft.au=Pavi%C4%87%2C+Zlatko&rft.au=Pe%C4%8Dari%C4%87%2C+Josip&rft.au=Vukeli%C4%87%2C+Ana&rft.date=2012-02-01&rft.pub=SP+Birkh%C3%A4user+Verlag+Basel&rft.issn=1660-5446&rft.eissn=1660-5454&rft.volume=9&rft.issue=1&rft.spage=187&rft.epage=198&rft_id=info:doi/10.1007%2Fs00009-011-0122-z&rft.externalDocID=10_1007_s00009_011_0122_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-5446&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-5446&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-5446&client=summon