Means for Divided Differences and Exponential Convexity
In this paper we obtain two means for divide differences using two majorization type results where one is related with Schur convexity. We examine their monotonicity property using exponentially convex functions.
Saved in:
Published in | Mediterranean journal of mathematics Vol. 9; no. 1; pp. 187 - 198 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
SP Birkhäuser Verlag Basel
01.02.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper we obtain two means for divide differences using two majorization type results where one is related with Schur convexity. We examine their monotonicity property using exponentially convex functions. |
---|---|
AbstractList | In this paper we obtain two means for divide differences using two majorization type results where one is related with Schur convexity. We examine their monotonicity property using exponentially convex functions. |
Author | Pavić, Zlatko Pečarić, Josip Vukelić, Ana |
Author_xml | – sequence: 1 givenname: Zlatko surname: Pavić fullname: Pavić, Zlatko organization: Mechanical Engineering Faculty, University of Osijek – sequence: 2 givenname: Josip surname: Pečarić fullname: Pečarić, Josip organization: Faculty of Textile Technology, University of Zagreb – sequence: 3 givenname: Ana surname: Vukelić fullname: Vukelić, Ana email: avukelic@pbf.hr organization: Faculty of Food Technology and Biotechnology, Mathematics Department, University of Zagreb |
BookMark | eNp9j8FOwzAMhiM0JLbBA3DrCxSctE3SIyqDIQ1xgXPkpgnKVNIpKdO2pyfTEAcOs2T9Pviz9c3IxA_eEHJL4Y4CiPsIqeocKE3NWH64IFPKOeRVWZWTv7nkV2QW4xqA1bRgUyJeDfqY2SFkj27rOtOltNYE47WJGfouW-w26ZcfHfZZM_it2blxf00uLfbR3PzmnHw8Ld6bZb56e35pHla5ZlKOeWu4tMgFVMKyFmpdl4XFyrICtQBLWV2Jsq0NWJSdRm4pRc7a0shCCglYzIk43dVhiDEYq7QbcXSDHwO6XlFQR3918lfJXx391SGR9B-5Ce4Lw_4sw05MTLv-0wS1Hr6DT4JnoB-iK2-O |
CitedBy_id | crossref_primary_10_61186_ijmsi_19_2_1 |
Cites_doi | 10.1142/S1793557108000126 10.1007/BF02592679 10.1216/RMJ-1989-19-1-303 10.1007/978-94-017-1043-5 |
ContentType | Journal Article |
Copyright | Springer Basel AG 2011 |
Copyright_xml | – notice: Springer Basel AG 2011 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00009-011-0122-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1660-5454 |
EndPage | 198 |
ExternalDocumentID | 10_1007_s00009_011_0122_z |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MBV N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c288t-be68fa67057f2b09c943fa5f23ac70f129574b9e0fa8dca6f11a62b4e838780a3 |
IEDL.DBID | U2A |
ISSN | 1660-5446 |
IngestDate | Thu Apr 24 22:57:49 EDT 2025 Tue Jul 01 03:50:27 EDT 2025 Fri Feb 21 02:37:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | exponentially convex function Divided differences 26D20 Schur means Stolarsky means convex function 26D99 log-convexity majorization Schur convex function 26D15 continuous extensions |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-be68fa67057f2b09c943fa5f23ac70f129574b9e0fa8dca6f11a62b4e838780a3 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1007_s00009_011_0122_z crossref_primary_10_1007_s00009_011_0122_z springer_journals_10_1007_s00009_011_0122_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20120200 2012-2-00 |
PublicationDateYYYYMMDD | 2012-02-01 |
PublicationDate_xml | – month: 2 year: 2012 text: 20120200 |
PublicationDecade | 2010 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mediterranean journal of mathematics |
PublicationTitleAbbrev | Mediterr. J. Math |
PublicationYear | 2012 |
Publisher | SP Birkhäuser Verlag Basel |
Publisher_xml | – name: SP Birkhäuser Verlag Basel |
References | J. Jakšetić, J. Pečarić, 4-points Stolarsky Means, to appear in Mediterranean Journal of Mathematics BernsteinS.N.Sur les fonctions absolument monotonesActa Math.19295216610.1007/BF02592679 MarshallA.W.I. Olkin, Inequalities: Theory of Majorization and Its Applications1979New YorkAcademic Press D. S. Mitrinović, J. E. Pečarić, On Some Inequalities for Monotone Functions, Boll. Unione. Mat. Ital. (7) 5-13, 407-416, 1991. X. Aimin, C. Zhongdi, An inequality for divided differences in high dimensions, J. Inequal. Pure Appl. Math. 10(4) (2009), Article 103, 6p. D. S. Mitrinović, J. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, The Netherlands, 1993. AkhiezerN.I.The Classical Moment Problem and Some Related Questions in Analysis1965EdinburghOliver and Boyd0135.33803 A. I. Kechriniotis, N. D. Assimakis, On the inequlity of the difference of two integral means and applications for pdfs, JIPAM 8(1) (2007), Art. 10, 6p. J. E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in science and engineering, vol. 187 Academic Press, 1992. AndrewsG.The Theory of Partitions, Encyclopedia Math. Appl. 121976ReadingAddison-Wesley MacmahonP.A.Combinatory Analysis, I, II1960New YorkChelsea J. Pečarić, M. Rodić Lipanović, On an inequality for divided differences, Asian-European Journal of MAthematics 1(1) (2008), 113-120. AtkinsonK.E.An Introduction to Numerical Analysis19892New YorkWiley0718.65001 PečarićJ.EZwickD.n-Convexity and MajorizationRocky Mountain J. Math19891930331110161830692.2600510.1216/RMJ-1989-19-1-303 A. de Morgan, The Differential and Integral Calculus (Chapter XVIII, On Interpolation and Summation, page 550), Baldwin and Cradock, London, 1842. 122_CR11 122_CR10 122_CR13 122_CR12 122_CR1 S.N. Bernstein (122_CR5) 1929; 52 N.I. Akhiezer (122_CR2) 1965 122_CR6 122_CR7 P.A. Macmahon (122_CR8) 1960 J.E Pečarić (122_CR15) 1989; 19 G. Andrews (122_CR3) 1976 A.W. Marshall (122_CR9) 1979 122_CR14 K.E. Atkinson (122_CR4) 1989 |
References_xml | – reference: D. S. Mitrinović, J. E. Pečarić, On Some Inequalities for Monotone Functions, Boll. Unione. Mat. Ital. (7) 5-13, 407-416, 1991. – reference: J. E. Pečarić, F. Proschan and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Mathematics in science and engineering, vol. 187 Academic Press, 1992. – reference: J. Pečarić, M. Rodić Lipanović, On an inequality for divided differences, Asian-European Journal of MAthematics 1(1) (2008), 113-120. – reference: A. I. Kechriniotis, N. D. Assimakis, On the inequlity of the difference of two integral means and applications for pdfs, JIPAM 8(1) (2007), Art. 10, 6p. – reference: BernsteinS.N.Sur les fonctions absolument monotonesActa Math.19295216610.1007/BF02592679 – reference: AndrewsG.The Theory of Partitions, Encyclopedia Math. Appl. 121976ReadingAddison-Wesley – reference: X. Aimin, C. Zhongdi, An inequality for divided differences in high dimensions, J. Inequal. Pure Appl. Math. 10(4) (2009), Article 103, 6p. – reference: J. Jakšetić, J. Pečarić, 4-points Stolarsky Means, to appear in Mediterranean Journal of Mathematics – reference: AkhiezerN.I.The Classical Moment Problem and Some Related Questions in Analysis1965EdinburghOliver and Boyd0135.33803 – reference: MacmahonP.A.Combinatory Analysis, I, II1960New YorkChelsea – reference: AtkinsonK.E.An Introduction to Numerical Analysis19892New YorkWiley0718.65001 – reference: PečarićJ.EZwickD.n-Convexity and MajorizationRocky Mountain J. Math19891930331110161830692.2600510.1216/RMJ-1989-19-1-303 – reference: D. S. Mitrinović, J. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, The Netherlands, 1993. – reference: MarshallA.W.I. Olkin, Inequalities: Theory of Majorization and Its Applications1979New YorkAcademic Press – reference: A. de Morgan, The Differential and Integral Calculus (Chapter XVIII, On Interpolation and Summation, page 550), Baldwin and Cradock, London, 1842. – ident: 122_CR12 – ident: 122_CR13 – volume-title: The Classical Moment Problem and Some Related Questions in Analysis year: 1965 ident: 122_CR2 – ident: 122_CR14 doi: 10.1142/S1793557108000126 – volume-title: I. Olkin, Inequalities: Theory of Majorization and Its Applications year: 1979 ident: 122_CR9 – ident: 122_CR1 – volume: 52 start-page: 1 year: 1929 ident: 122_CR5 publication-title: Acta Math. doi: 10.1007/BF02592679 – volume: 19 start-page: 303 year: 1989 ident: 122_CR15 publication-title: Rocky Mountain J. Math doi: 10.1216/RMJ-1989-19-1-303 – ident: 122_CR6 – volume-title: The Theory of Partitions, Encyclopedia Math. Appl. 12 year: 1976 ident: 122_CR3 – volume-title: An Introduction to Numerical Analysis year: 1989 ident: 122_CR4 – ident: 122_CR7 – ident: 122_CR11 doi: 10.1007/978-94-017-1043-5 – volume-title: Combinatory Analysis, I, II year: 1960 ident: 122_CR8 – ident: 122_CR10 |
SSID | ssj0029132 |
Score | 1.8528775 |
Snippet | In this paper we obtain two means for divide differences using two majorization type results where one is related with Schur convexity. We examine their... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 187 |
SubjectTerms | Mathematics Mathematics and Statistics |
Title | Means for Divided Differences and Exponential Convexity |
URI | https://link.springer.com/article/10.1007/s00009-011-0122-z |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vehBfGJ9lBw8KQvJvrI5ltpalHqyUE9hs9k9SSymhdJf72SbBAoqeMplMoHZx3yT-WYG4C6XlJuccYLo2xD0-HikbEKJznBJrIuF0Z7l-yonM_48F_O6jrts2O5NStLf1G2xm4czxP_SizCC2uxDV1ShO27iGR20UVYS-alkkZQhERjsNKnMn1TsOqPdTKh3MONjOKqRYTDYLuUJ7NniFA6nbVvV8gziqUXPEiDODB6rMiqb49PVFXtloIs8GK0Xn0XFAEJVw4pRvkaYfQ6z8ehtOCH15ANiqFJLklmpnJYxgilHszAxCWdOC0eZNnHo0EeLmGeJDZ1WudHSRZGWNONWMRWrULML6BT4tUsITC6YsTTTXDCuVaKj0GJQpxSzqFbpHoSNCVJTtwWvplN8pG1DY2-1FK2WVlZLNz24b19ZbHti_CX80Ng1rY9H-bv01b-kr-EA8QvdkqhvoLP8WtlbxAjLrA_dwdP7y6jv98Y3M5OzrA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHIAD4inGswdOoEhtkqbpcRqbBmw7bdJuVZomJ1QmWqRpvx43aytNAiROvbiO5DT15_izDfCQCcp1xjhB9K0Jenw8UiamRKW4JcZGoVaO5TsVozl_XYSLuo67aNjuTUrS_anbYjcHZ4i70gswglrvwh5iAVnxuOa010ZZceCmkgVC-CTEYKdJZf6kYtsZbWdCnYMZHsNRjQy93mYrT2DH5KdwOGnbqhZnEE0MehYPcab3XJVRmQyftq7YKzyVZ95gtfzIKwYQqupXjPIVwuxzmA8Hs_6I1JMPiKZSliQ1QlolIgRTlqZ-rGPOrAotZUpHvkUfHUY8jY1vlcy0EjYIlKApN5LJSPqKXUAnx9UuwdNZyLShqeIh40rGKvANBnVSMoNqpeqC35gg0XVb8Go6xXvSNjR2VkvQaklltWTdhcf2leWmJ8Zfwk-NXZP6eBS_S1_9S_oe9kezyTgZv0zfruEAsQzdEKpvoFN-fplbxAtleue-j28qJLUL |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGJ95uBJWZrsbjabY-mD-mjxYKG3sNnsniQWE6H01zt5QkEFT7lMJjD7mG8y38wA3CWCcp0wThB9a4IeH4-UCSlRMS6JsYGvVcnynYnJnD8t_EU95zRr2O5NSrKqaSi6NKV5b5nYXlv4VkIbUv7e8zCaWm_DDt7GXrGt57TfRlyhV04o84RwiY-BT5PW_EnFpmPazIqWzmZ8CAc1SnT61bIewZZJj2F_2rZYzU4gmBr0Mg5iTmdYlFSZBJ-2rt7LHJUmzmi1_EgLNhCqGhTs8hVC7lOYj0dvgwmppyAQTaXMSWyEtEoECKwsjd1Qh5xZ5VvKlA5ci_7aD3gcGtcqmWglrOcpQWNuJJOBdBU7g06KXzsHRyc-04bGivuMKxkqzzUY4EnJDKqVqgtuY4JI1y3Ci0kV71Hb3Li0WoRWiwqrResu3LevLKv-GH8JPzR2jeqjkv0uffEv6VvYfR2Oo5fH2fMl7CGsoRW3-go6-eeXuUbokMc35fb4Bg2yuUc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Means+for+Divided+Differences+and+Exponential+Convexity&rft.jtitle=Mediterranean+journal+of+mathematics&rft.au=Pavi%C4%87%2C+Zlatko&rft.au=Pe%C4%8Dari%C4%87%2C+Josip&rft.au=Vukeli%C4%87%2C+Ana&rft.date=2012-02-01&rft.pub=SP+Birkh%C3%A4user+Verlag+Basel&rft.issn=1660-5446&rft.eissn=1660-5454&rft.volume=9&rft.issue=1&rft.spage=187&rft.epage=198&rft_id=info:doi/10.1007%2Fs00009-011-0122-z&rft.externalDocID=10_1007_s00009_011_0122_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1660-5446&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1660-5446&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1660-5446&client=summon |