Investigating soil properties influencing the depth and degree of lessivage in Florida soils using a random forest modeling approach
The translocation of clay sized particles is an extensive soil process that occurs in over half of the total surface area covered by soil globally. However, investigations into lessivage are usually limited in extent and scale, and results from experimental data do not reflect natural conditions sin...
Saved in:
Published in | Geoderma Regional Vol. 40; p. e00916 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The translocation of clay sized particles is an extensive soil process that occurs in over half of the total surface area covered by soil globally. However, investigations into lessivage are usually limited in extent and scale, and results from experimental data do not reflect natural conditions since control is exerted on various soil properties, such as particle size distributions, and clay mineralogy. Using the NCSS Soil Characterization Database and the USDA Soil Taxonomy definition for an argillic horizon, a random forest machine learning approach was used to investigate lessivage in Florida soils. Within the database, 395 soil profiles observed and described in Florida were identified to have an argillic horizon and lack the presence of a lithologic discontinuity. The coefficient of determination (R2), and the root mean square error (RMSE) were used to estimate the performance of the random forest model. The validation results showed that the model for the depth of lessivage achieved an R2 of 0.59 ± 0.07 and an RMSE of 27.86 ± 2.62 cm and the model for the degree of lessivage achieved an R2 of 0.68 ± 0.14 and an RMSE of 5.91 ± 3.25. A variable importance analysis indicated that the concentration of OC, the CEC, and the total extractable bases in the eluvial zone were the dominant soil properties in predicting the depth of the argillic horizon. The response in the predicted depth to the argillic horizon was similar with each of the aforementioned correlated variables and indicative of the flocculating mechanism, whereby polyvalent cations anchor OM to particle surfaces which then enables particle bridging. Whereas, extractable acidity in the eluvial zone and sand concentration in the illuvial zone were the dominant soil properties in predicting the degree of lessivage. As extractable acidity in the eluvial zone increased, the degree of lessivage decreased which could be indicative of coagulation due to an increase in the activity of Al3+ and H+ ions. Another mechanism identified in clay immobilization in this study is the cessation of the wetting front as a result of the loss of energy. As the depth to gleying increased, the predicted depth to the argillic horizon increased and the degree of lessivage increased. However, based on the variable importance analysis, this mechanism was not determined to be dominant in Florida soils. |
---|---|
AbstractList | The translocation of clay sized particles is an extensive soil process that occurs in over half of the total surface area covered by soil globally. However, investigations into lessivage are usually limited in extent and scale, and results from experimental data do not reflect natural conditions since control is exerted on various soil properties, such as particle size distributions, and clay mineralogy. Using the NCSS Soil Characterization Database and the USDA Soil Taxonomy definition for an argillic horizon, a random forest machine learning approach was used to investigate lessivage in Florida soils. Within the database, 395 soil profiles observed and described in Florida were identified to have an argillic horizon and lack the presence of a lithologic discontinuity. The coefficient of determination (R²), and the root mean square error (RMSE) were used to estimate the performance of the random forest model. The validation results showed that the model for the depth of lessivage achieved an R² of 0.59 ± 0.07 and an RMSE of 27.86 ± 2.62 cm and the model for the degree of lessivage achieved an R² of 0.68 ± 0.14 and an RMSE of 5.91 ± 3.25. A variable importance analysis indicated that the concentration of OC, the CEC, and the total extractable bases in the eluvial zone were the dominant soil properties in predicting the depth of the argillic horizon. The response in the predicted depth to the argillic horizon was similar with each of the aforementioned correlated variables and indicative of the flocculating mechanism, whereby polyvalent cations anchor OM to particle surfaces which then enables particle bridging. Whereas, extractable acidity in the eluvial zone and sand concentration in the illuvial zone were the dominant soil properties in predicting the degree of lessivage. As extractable acidity in the eluvial zone increased, the degree of lessivage decreased which could be indicative of coagulation due to an increase in the activity of Al³⁺ and H⁺ ions. Another mechanism identified in clay immobilization in this study is the cessation of the wetting front as a result of the loss of energy. As the depth to gleying increased, the predicted depth to the argillic horizon increased and the degree of lessivage increased. However, based on the variable importance analysis, this mechanism was not determined to be dominant in Florida soils. The translocation of clay sized particles is an extensive soil process that occurs in over half of the total surface area covered by soil globally. However, investigations into lessivage are usually limited in extent and scale, and results from experimental data do not reflect natural conditions since control is exerted on various soil properties, such as particle size distributions, and clay mineralogy. Using the NCSS Soil Characterization Database and the USDA Soil Taxonomy definition for an argillic horizon, a random forest machine learning approach was used to investigate lessivage in Florida soils. Within the database, 395 soil profiles observed and described in Florida were identified to have an argillic horizon and lack the presence of a lithologic discontinuity. The coefficient of determination (R2), and the root mean square error (RMSE) were used to estimate the performance of the random forest model. The validation results showed that the model for the depth of lessivage achieved an R2 of 0.59 ± 0.07 and an RMSE of 27.86 ± 2.62 cm and the model for the degree of lessivage achieved an R2 of 0.68 ± 0.14 and an RMSE of 5.91 ± 3.25. A variable importance analysis indicated that the concentration of OC, the CEC, and the total extractable bases in the eluvial zone were the dominant soil properties in predicting the depth of the argillic horizon. The response in the predicted depth to the argillic horizon was similar with each of the aforementioned correlated variables and indicative of the flocculating mechanism, whereby polyvalent cations anchor OM to particle surfaces which then enables particle bridging. Whereas, extractable acidity in the eluvial zone and sand concentration in the illuvial zone were the dominant soil properties in predicting the degree of lessivage. As extractable acidity in the eluvial zone increased, the degree of lessivage decreased which could be indicative of coagulation due to an increase in the activity of Al3+ and H+ ions. Another mechanism identified in clay immobilization in this study is the cessation of the wetting front as a result of the loss of energy. As the depth to gleying increased, the predicted depth to the argillic horizon increased and the degree of lessivage increased. However, based on the variable importance analysis, this mechanism was not determined to be dominant in Florida soils. |
ArticleNumber | e00916 |
Author | Colopietro, Daniel J. Pachon, Julio Bacon, Allan |
Author_xml | – sequence: 1 givenname: Daniel J. surname: Colopietro fullname: Colopietro, Daniel J. email: Daniel.Colopietro@sfasu.edu organization: Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, USA – sequence: 2 givenname: Julio surname: Pachon fullname: Pachon, Julio organization: Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, USA – sequence: 3 givenname: Allan surname: Bacon fullname: Bacon, Allan organization: Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, USA |
BookMark | eNp9kLtOwzAUhi0EEqX0DRg8sjT4EqfJgoQqCpUqscBsOfZJ6iqJg51WYufBcRoGJiYf6_wX-7tBl53rAKE7ShJKaPZwSGpwxoeEESYSIKSg2QWaMS7YMl7Syz_zNVqEcCCEsELwVcZm6HvbnSAMtlaD7WocnG1w710PfrAQsO2q5gidHnfDHrCBfthj1Zk41R4Auwo3EII9qRqiGm8a561R56CAj2E0Kuyjw7W4cj524dYZaM6LPlYpvb9FV5VqAix-zzn62Dy_r1-Xu7eX7fppt9Qsz4elKlRVFqKglKRVWnKghDGhQIsyM0AgV0SUBagKVgCpzriBlSEi5xlPVUk5n6P7KTfWfh7jU2Rrg4amUR24Y5CcRTJCcJJGaTpJtXcheKhk722r_JekRI7c5UFO3OXIXU7co-1xskH8xsmCl0HbyA-M9aAHaZz9P-AHCdyS-g |
Cites_doi | 10.2136/sssaj2003.6120 10.1016/j.catena.2004.04.002 10.1016/j.catena.2006.08.002 10.1134/S1064229307020019 10.2136/sssaj1997.03615995006100020033x 10.2136/sssaj1961.03615995002500050021x 10.1016/S0016-7061(96)00066-3 10.1177/11786221211042381 10.2136/sssaj1986.03615995005000040034x 10.1016/j.geoderma.2011.07.031 10.1006/bioe.2002.0136 10.1016/0016-7061(88)90070-5 10.1038/s41598-022-26619-8 10.2136/sssaj1986.03615995005000020028x 10.2136/vzj2018.10.0192 10.1016/j.catena.2022.106404 10.1006/bioe.2002.0125 10.2136/sssaj1984.03615995004800040035x 10.2136/sh1996.1.0020 10.1016/j.geoderma.2013.06.009 10.2136/sssaj1991.03615995005500030026x 10.1016/0016-7061(76)90081-1 10.1029/2018GL078778 10.2136/sssaj1993.03615995005700030014x 10.2136/sssaj1989.03615995005300040021x 10.1016/0016-7061(74)90056-1 10.1016/j.petrol.2018.07.029 10.1016/S0016-7061(02)00139-8 10.1016/j.geoderma.2021.115221 10.1016/j.geoderma.2004.11.011 10.2136/sssaj1996.03615995006000060051x 10.2136/sssaj1964.03615995002800060031x 10.1016/j.apsoil.2021.104024 10.1097/00010694-198102000-00008 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2025.e00916 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2025_e00916 S235200942500001X |
GeographicLocations | Florida |
GeographicLocations_xml | – name: Florida |
GroupedDBID | --M 0R~ 4.4 457 4G. 6I. 7-5 AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABGRD ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AFJKZ AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c288t-a9afb9591104f4b3e10225aec5b6de0e8a05b9eafe7ee4c63de7d0583634ab133 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Wed Jul 02 04:49:19 EDT 2025 Tue Jul 01 05:19:22 EDT 2025 Sat Mar 29 16:11:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Argillic horizon MPE WRB Lessivage RMSPE NRCS BS SD OC UI ANOVA Random forest modeling EA PDP Db OM CEC OOB RSF Illuvial zone RSG ICE RMSE TEB NCSS VI Clay translocation Machine learning Eluvial zone LD USDA |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-a9afb9591104f4b3e10225aec5b6de0e8a05b9eafe7ee4c63de7d0583634ab133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S235200942500001X |
PQID | 3200255304 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3200255304 crossref_primary_10_1016_j_geodrs_2025_e00916 elsevier_sciencedirect_doi_10_1016_j_geodrs_2025_e00916 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | McGechan (bb0115) 2002; 83 Zaidel’man (bb0240) 2007; 40 Beaudette, Skovlin, Roecker, Brown (bb0015) 2024 Mishra, Sulieman, Kaya, Francaviglia, Keshavarzi, Bakhshandeh, Loum, Jangir, Ahmed, Elmobarak, Basher, Rawat (bb0130) 2022; 216 Quénard, Samouëlian, Laroche, Cornu (bb0155) 2011; 167–168 Soil Survey Staff (bb0205) 1999 Meixner, Singer (bb0125) 1981; 131 Phillips (bb0150) 2007; 70 Cabrera-Martinez, Harris, Carlisle, Collins (bb0035) 1989; 53 Bockheim (bb0020) 2003; 67 R Core Team (bb0160) 2021 Buol, Hole (bb0030) 1961; 25 Atapour, Mortazavi (bb0010) 2018; 171 Veneman, Vepraskas, Bouma (bb0220) 1976; 15 Wei, Simko, Levy, Xie, Jin, Zemla, Freidank, Cai, Protivinsky (bb0230) 2021 . Seta, Karathanasis (bb0195) 1997; 61 Schaetzl, Thompson (bb0180) 2015 Dontsova, Norton (bb0055) 2001 Greenwell (bb0070) 2022 Evans, Franzmeier (bb0060) 1988; 41 Thompson, Bell (bb0215) 1996; 60 Hillel (bb0085) 1980 Moore (bb0135) 1974; 11 Calabrese, Richter, Porporato (bb0040) 2018; 45 McBratney, Minasny, Cattle, Vervoort (bb0110) 2002; 109 Walker, Chittleborough (bb0225) 1986; 50 Grossman, Odell, Beavers (bib241) 1964; 28 Adam, Ibrahim, Sulieman, Zeraatpisheh, Mishra, Brevik (bb0005) 2021; 14 Razzaghi, Arthur, Moosavi (bb0165) 2021; 400 National Cooperative Soil Survey, n.d. NCSS Soil Characterization Database. Available online Accessed [November/10/2024] Rehman, Knadel, de Jonge, Moldrup, Greve, Arthur (bb0170) 2019; 18 Phillips (bb0145) 2004; 58 Harris, Crownover, Hinchee (bb0080) 2005; 126 Manrique, Jones, Dyke (bb0100) 1991; 55 Cremeens, Mokma (bb0050) 1986; 50 Seta, Karathanasis (bb0190) 1996; 74 Gal, Arcan, Shainberg, Keren (bb0065) 1984; 48 Marinari, Marabottini, Falsone, Vianello, Vittori Antisari, Agnelli, Massaccesi, Cocco, Cardelli, Serrani, Corti (bb0105) 2021; 167 Schoeneberger, Wysocki, Benham, Soil Survey Staff (bb0185) 2012 Weil, Brady (bb0235) 2017 Liaw, Wiener (bb0095) 2022 Bockheim, Hartemink (bb0025) 2013; 209–210 Ciolkosz, Waltman, Thurman, Cremeens, Svoboda (bb0045) 1996; 37 McGechan, Lewis (bb0120) 2002; 83 Gu, Doner (bb0075) 1993; 57 Soil Survey Staff (bb0200) 1992 Sainju, Liptzin, Jabro (bb0175) 2022; 12 Soil Survey Staff (bb0210) 2022 R Core Team (10.1016/j.geodrs.2025.e00916_bb0160) 2021 Grossman (10.1016/j.geodrs.2025.e00916_bib241) 1964; 28 Hillel (10.1016/j.geodrs.2025.e00916_bb0085) 1980 Calabrese (10.1016/j.geodrs.2025.e00916_bb0040) 2018; 45 McGechan (10.1016/j.geodrs.2025.e00916_bb0120) 2002; 83 Meixner (10.1016/j.geodrs.2025.e00916_bb0125) 1981; 131 Schoeneberger (10.1016/j.geodrs.2025.e00916_bb0185) 2012 Manrique (10.1016/j.geodrs.2025.e00916_bb0100) 1991; 55 Gal (10.1016/j.geodrs.2025.e00916_bb0065) 1984; 48 Buol (10.1016/j.geodrs.2025.e00916_bb0030) 1961; 25 Phillips (10.1016/j.geodrs.2025.e00916_bb0150) 2007; 70 Seta (10.1016/j.geodrs.2025.e00916_bb0195) 1997; 61 Rehman (10.1016/j.geodrs.2025.e00916_bb0170) 2019; 18 Gu (10.1016/j.geodrs.2025.e00916_bb0075) 1993; 57 Bockheim (10.1016/j.geodrs.2025.e00916_bb0025) 2013; 209–210 Phillips (10.1016/j.geodrs.2025.e00916_bb0145) 2004; 58 Schaetzl (10.1016/j.geodrs.2025.e00916_bb0180) 2015 Soil Survey Staff (10.1016/j.geodrs.2025.e00916_bb0210) 2022 Harris (10.1016/j.geodrs.2025.e00916_bb0080) 2005; 126 Soil Survey Staff (10.1016/j.geodrs.2025.e00916_bb0205) 1999 Soil Survey Staff (10.1016/j.geodrs.2025.e00916_bb0200) 1992 Liaw (10.1016/j.geodrs.2025.e00916_bb0095) 10.1016/j.geodrs.2025.e00916_bb0140 Veneman (10.1016/j.geodrs.2025.e00916_bb0220) 1976; 15 Adam (10.1016/j.geodrs.2025.e00916_bb0005) 2021; 14 Cremeens (10.1016/j.geodrs.2025.e00916_bb0050) 1986; 50 Razzaghi (10.1016/j.geodrs.2025.e00916_bb0165) 2021; 400 McGechan (10.1016/j.geodrs.2025.e00916_bb0115) 2002; 83 Zaidel’man (10.1016/j.geodrs.2025.e00916_bb0240) 2007; 40 Thompson (10.1016/j.geodrs.2025.e00916_bb0215) 1996; 60 Seta (10.1016/j.geodrs.2025.e00916_bb0190) 1996; 74 Greenwell (10.1016/j.geodrs.2025.e00916_bb0070) Beaudette (10.1016/j.geodrs.2025.e00916_bb0015) McBratney (10.1016/j.geodrs.2025.e00916_bb0110) 2002; 109 Cabrera-Martinez (10.1016/j.geodrs.2025.e00916_bb0035) 1989; 53 Evans (10.1016/j.geodrs.2025.e00916_bb0060) 1988; 41 Mishra (10.1016/j.geodrs.2025.e00916_bb0130) 2022; 216 Moore (10.1016/j.geodrs.2025.e00916_bb0135) 1974; 11 Atapour (10.1016/j.geodrs.2025.e00916_bb0010) 2018; 171 Dontsova (10.1016/j.geodrs.2025.e00916_bb0055) 2001 Sainju (10.1016/j.geodrs.2025.e00916_bb0175) 2022; 12 Quénard (10.1016/j.geodrs.2025.e00916_bb0155) 2011; 167–168 Ciolkosz (10.1016/j.geodrs.2025.e00916_bb0045) 1996; 37 Weil (10.1016/j.geodrs.2025.e00916_bb0235) 2017 Marinari (10.1016/j.geodrs.2025.e00916_bb0105) 2021; 167 Bockheim (10.1016/j.geodrs.2025.e00916_bb0020) 2003; 67 Walker (10.1016/j.geodrs.2025.e00916_bb0225) 1986; 50 Wei (10.1016/j.geodrs.2025.e00916_bb0230) |
References_xml | – volume: 70 start-page: 92 year: 2007 end-page: 104 ident: bb0150 article-title: Development of texture contrast soils by a combination of bioturbation and translocation publication-title: CATENA – start-page: 580 year: 2001 end-page: 585 ident: bb0055 article-title: Effects of exchangeable Ca:Mg ratio on soil clay flocculation, infiltration and erosion publication-title: Sustain. Global Farm – volume: 12 year: 2022 ident: bb0175 article-title: Relating soil physical properties to other soil properties and crop yields publication-title: Sci. Rep. – year: 1980 ident: bb0085 article-title: Fundamentals of Soil Physics – volume: 209–210 start-page: 153 year: 2013 end-page: 160 ident: bb0025 article-title: Distribution and classification of soils with clay-enriched horizons in the Usa publication-title: Geoderma – volume: 400 year: 2021 ident: bb0165 article-title: Evaluating models to estimate cation exchange capacity of calcareous soils publication-title: Geoderma – volume: 40 start-page: 115 year: 2007 end-page: 125 ident: bb0240 article-title: Lessivage and its relation to the hydrological regime of soils publication-title: Eurasian Soil Sci. – year: 2012 ident: bb0185 article-title: Field Book for Describing and Sampling Soils, Version 3.0 – year: 1992 ident: bb0200 article-title: Soil Survey Laboratory Methods Manual – volume: 57 start-page: 8 year: 1993 ident: bb0075 article-title: Dispersion and aggregation of soils as influenced by organic and inorganic polymers publication-title: Soil Sci. Soc. Am. J. – volume: 48 start-page: 872 year: 1984 end-page: 878 ident: bb0065 article-title: Effect of exchangeable sodium and Phosphogypsum on crust structure—scanning Electron microscope observations publication-title: Soil Sci. Soc. Am. J. – year: 2021 ident: bb0230 article-title: (Version 0.92) [software] – volume: 25 start-page: 377 year: 1961 end-page: 379 ident: bb0030 article-title: Clay skin genesis in Wisconsin soils publication-title: Soil Sci. Soc. Am. J. – volume: 131 start-page: 114 year: 1981 ident: bb0125 article-title: Use of a field morphology rating system to evaluate soil formation and discontinuities publication-title: Soil Sci. – volume: 28 start-page: 792 year: 1964 end-page: 798 ident: bib241 article-title: Surfaces of Peds from B Horizons of Illinois Soils publication-title: Soil Sci. Soc. Am. J. – volume: 53 start-page: 1108 year: 1989 end-page: 1114 ident: bb0035 article-title: Evidence for clay translocation in coastal plain soils with Sandy/loamy boundaries publication-title: Soil Sci. Soc. Am. J. – year: 2017 ident: bb0235 article-title: The Nature and Properties of Soils – year: 2022 ident: bb0095 article-title: (Version 4.7-1.1) [software] – year: 2021 ident: bb0160 article-title: (Version 4.1.2) [software] – volume: 83 start-page: 255 year: 2002 end-page: 273 ident: bb0120 article-title: Transport of particulate and colloid-sorbed contaminants through soil, part 1: general principles publication-title: Biosyst. Eng. – volume: 74 start-page: 255 year: 1996 end-page: 266 ident: bb0190 article-title: Water dispersible colloids and factors influencing their Dispersibility from soil aggregates publication-title: Geoderma – volume: 60 start-page: 1979 year: 1996 end-page: 1988 ident: bb0215 article-title: Color index for identifying hydric conditions for seasonally saturated Mollisols in Minnesota publication-title: Soil Sci. Soc. Am. J. – volume: 83 start-page: 387 year: 2002 end-page: 395 ident: bb0115 article-title: Transport of particulate and colloid-sorbed contaminants through soil, part 2: trapping processes and soil pore geometry publication-title: Biosyst. Eng. – volume: 50 start-page: 1002 year: 1986 end-page: 1007 ident: bb0050 article-title: Argillic horizon expression and classification in the soils of two Michigan Hydrosequences publication-title: Soil Sci. Soc. Am. J. – year: 2024 ident: bb0015 article-title: (Version 2.8.5) [software] – volume: 18 start-page: 180 year: 2019 end-page: 192 ident: bb0170 article-title: Comparison of cation exchange capacity estimated from Vis–NIR spectral reflectance data and a Pedotransfer function publication-title: Vadose Zone J. – volume: 37 start-page: 20 year: 1996 ident: bb0045 article-title: Argillic horizons in Pennsylvania soils publication-title: Soil Horizons – year: 1999 ident: bb0205 article-title: Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys – volume: 167–168 start-page: 135 year: 2011 end-page: 147 ident: bb0155 article-title: Lessivage as a major process of soil formation: a revisitation of existing data publication-title: Geoderma – volume: 67 start-page: 612 year: 2003 end-page: 619 ident: bb0020 article-title: Genesis of Bisequal soils on acidic drift in the upper Great Lakes region, USA publication-title: Soil Sci. Soc. Am. J. – volume: 61 start-page: 604 year: 1997 end-page: 611 ident: bb0195 article-title: Stability and transportability of water-dispersible soil colloids publication-title: Soil Sci. Soc. Am. J. – volume: 171 start-page: 63 year: 2018 end-page: 70 ident: bb0010 article-title: The influence of mean grain size on unconfined compressive strength of weakly consolidated reservoir sandstones publication-title: J. Pet. Sci. Eng. – volume: 50 start-page: 394 year: 1986 end-page: 400 ident: bb0225 article-title: Development of particle-size distributions in some alfisols of Southeastern Australia publication-title: Soil Sci. Soc. Am. J. – year: 2022 ident: bb0210 article-title: Keys to Soil Taxonomy – year: 2015 ident: bb0180 article-title: Soils: Genesis and Geomorphology – volume: 58 start-page: 275 year: 2004 end-page: 295 ident: bb0145 article-title: Geogenesis, pedogenesis, and multiple causality in the formation of texture-contrast soils publication-title: CATENA – volume: 55 start-page: 787 year: 1991 end-page: 794 ident: bb0100 article-title: Predicting cation-exchange capacity from soil physical and chemical properties publication-title: Soil Sci. Soc. Am. J. – volume: 41 start-page: 353 year: 1988 end-page: 368 ident: bb0060 article-title: Color index values to represent wetness and aeration in some Indiana soils publication-title: Geoderma – volume: 14 year: 2021 ident: bb0005 article-title: Predicting soil cation exchange capacity in entisols with divergent textural classes: the case of northern Sudan soils publication-title: Air, Soil Water Res. – volume: 109 start-page: 41 year: 2002 end-page: 73 ident: bb0110 article-title: From Pedotransfer functions to soil inference systems publication-title: Geoderma – reference: National Cooperative Soil Survey, n.d. NCSS Soil Characterization Database. Available online Accessed [November/10/2024] – volume: 126 start-page: 161 year: 2005 end-page: 165 ident: bb0080 article-title: Problems arising from fixed-depth assessment of deeply weathered sandy soils publication-title: Geoderma – reference: . – year: 2022 ident: bb0070 article-title: (Version 0.8.1) [software] – volume: 167 year: 2021 ident: bb0105 article-title: Mineral weathering and Lessivage affect microbial community and enzyme activity in mountain soils publication-title: Appl. Soil Ecol. – volume: 11 start-page: 297 year: 1974 end-page: 304 ident: bb0135 article-title: Gley morphology and soil water regimes in some soils in South-Central England publication-title: Geoderma – volume: 45 start-page: 7588 year: 2018 end-page: 7595 ident: bb0040 article-title: The formation of clay-enriched horizons by Lessivage publication-title: Geophys. Res. Lett. – volume: 216 year: 2022 ident: bb0130 article-title: Machine learning for cation exchange capacity prediction in different land uses publication-title: CATENA – volume: 15 start-page: 103 year: 1976 end-page: 118 ident: bb0220 article-title: The physical significance of soil mottling in a wisconsin toposequence publication-title: Geoderma – volume: 67 start-page: 612 issue: 2 year: 2003 ident: 10.1016/j.geodrs.2025.e00916_bb0020 article-title: Genesis of Bisequal soils on acidic drift in the upper Great Lakes region, USA publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2003.6120 – volume: 58 start-page: 275 issue: 3 year: 2004 ident: 10.1016/j.geodrs.2025.e00916_bb0145 article-title: Geogenesis, pedogenesis, and multiple causality in the formation of texture-contrast soils publication-title: CATENA doi: 10.1016/j.catena.2004.04.002 – volume: 70 start-page: 92 issue: 1 year: 2007 ident: 10.1016/j.geodrs.2025.e00916_bb0150 article-title: Development of texture contrast soils by a combination of bioturbation and translocation publication-title: CATENA doi: 10.1016/j.catena.2006.08.002 – year: 2021 ident: 10.1016/j.geodrs.2025.e00916_bb0160 – volume: 40 start-page: 115 issue: 2 year: 2007 ident: 10.1016/j.geodrs.2025.e00916_bb0240 article-title: Lessivage and its relation to the hydrological regime of soils publication-title: Eurasian Soil Sci. doi: 10.1134/S1064229307020019 – volume: 61 start-page: 604 issue: 2 year: 1997 ident: 10.1016/j.geodrs.2025.e00916_bb0195 article-title: Stability and transportability of water-dispersible soil colloids publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1997.03615995006100020033x – volume: 25 start-page: 377 issue: 5 year: 1961 ident: 10.1016/j.geodrs.2025.e00916_bb0030 article-title: Clay skin genesis in Wisconsin soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1961.03615995002500050021x – volume: 74 start-page: 255 issue: 3–4 year: 1996 ident: 10.1016/j.geodrs.2025.e00916_bb0190 article-title: Water dispersible colloids and factors influencing their Dispersibility from soil aggregates publication-title: Geoderma doi: 10.1016/S0016-7061(96)00066-3 – volume: 14 year: 2021 ident: 10.1016/j.geodrs.2025.e00916_bb0005 article-title: Predicting soil cation exchange capacity in entisols with divergent textural classes: the case of northern Sudan soils publication-title: Air, Soil Water Res. doi: 10.1177/11786221211042381 – volume: 50 start-page: 1002 issue: 4 year: 1986 ident: 10.1016/j.geodrs.2025.e00916_bb0050 article-title: Argillic horizon expression and classification in the soils of two Michigan Hydrosequences publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1986.03615995005000040034x – ident: 10.1016/j.geodrs.2025.e00916_bb0230 – volume: 167–168 start-page: 135 year: 2011 ident: 10.1016/j.geodrs.2025.e00916_bb0155 article-title: Lessivage as a major process of soil formation: a revisitation of existing data publication-title: Geoderma doi: 10.1016/j.geoderma.2011.07.031 – year: 1999 ident: 10.1016/j.geodrs.2025.e00916_bb0205 – volume: 83 start-page: 387 issue: 4 year: 2002 ident: 10.1016/j.geodrs.2025.e00916_bb0115 article-title: Transport of particulate and colloid-sorbed contaminants through soil, part 2: trapping processes and soil pore geometry publication-title: Biosyst. Eng. doi: 10.1006/bioe.2002.0136 – volume: 41 start-page: 353 issue: 3 year: 1988 ident: 10.1016/j.geodrs.2025.e00916_bb0060 article-title: Color index values to represent wetness and aeration in some Indiana soils publication-title: Geoderma doi: 10.1016/0016-7061(88)90070-5 – year: 1980 ident: 10.1016/j.geodrs.2025.e00916_bb0085 – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.geodrs.2025.e00916_bb0175 article-title: Relating soil physical properties to other soil properties and crop yields publication-title: Sci. Rep. doi: 10.1038/s41598-022-26619-8 – ident: 10.1016/j.geodrs.2025.e00916_bb0095 – volume: 50 start-page: 394 issue: 2 year: 1986 ident: 10.1016/j.geodrs.2025.e00916_bb0225 article-title: Development of particle-size distributions in some alfisols of Southeastern Australia publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1986.03615995005000020028x – volume: 18 start-page: 180 issue: 1 year: 2019 ident: 10.1016/j.geodrs.2025.e00916_bb0170 article-title: Comparison of cation exchange capacity estimated from Vis–NIR spectral reflectance data and a Pedotransfer function publication-title: Vadose Zone J. doi: 10.2136/vzj2018.10.0192 – ident: 10.1016/j.geodrs.2025.e00916_bb0015 – volume: 216 year: 2022 ident: 10.1016/j.geodrs.2025.e00916_bb0130 article-title: Machine learning for cation exchange capacity prediction in different land uses publication-title: CATENA doi: 10.1016/j.catena.2022.106404 – year: 2012 ident: 10.1016/j.geodrs.2025.e00916_bb0185 – volume: 83 start-page: 255 issue: 3 year: 2002 ident: 10.1016/j.geodrs.2025.e00916_bb0120 article-title: Transport of particulate and colloid-sorbed contaminants through soil, part 1: general principles publication-title: Biosyst. Eng. doi: 10.1006/bioe.2002.0125 – volume: 48 start-page: 872 issue: 4 year: 1984 ident: 10.1016/j.geodrs.2025.e00916_bb0065 article-title: Effect of exchangeable sodium and Phosphogypsum on crust structure—scanning Electron microscope observations publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1984.03615995004800040035x – ident: 10.1016/j.geodrs.2025.e00916_bb0070 – volume: 37 start-page: 20 issue: 1 year: 1996 ident: 10.1016/j.geodrs.2025.e00916_bb0045 article-title: Argillic horizons in Pennsylvania soils publication-title: Soil Horizons doi: 10.2136/sh1996.1.0020 – year: 2017 ident: 10.1016/j.geodrs.2025.e00916_bb0235 – volume: 209–210 start-page: 153 year: 2013 ident: 10.1016/j.geodrs.2025.e00916_bb0025 article-title: Distribution and classification of soils with clay-enriched horizons in the Usa publication-title: Geoderma doi: 10.1016/j.geoderma.2013.06.009 – volume: 55 start-page: 787 issue: 3 year: 1991 ident: 10.1016/j.geodrs.2025.e00916_bb0100 article-title: Predicting cation-exchange capacity from soil physical and chemical properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1991.03615995005500030026x – volume: 15 start-page: 103 issue: 2 year: 1976 ident: 10.1016/j.geodrs.2025.e00916_bb0220 article-title: The physical significance of soil mottling in a wisconsin toposequence publication-title: Geoderma doi: 10.1016/0016-7061(76)90081-1 – volume: 45 start-page: 7588 issue: 15 year: 2018 ident: 10.1016/j.geodrs.2025.e00916_bb0040 article-title: The formation of clay-enriched horizons by Lessivage publication-title: Geophys. Res. Lett. doi: 10.1029/2018GL078778 – volume: 57 start-page: 8 year: 1993 ident: 10.1016/j.geodrs.2025.e00916_bb0075 article-title: Dispersion and aggregation of soils as influenced by organic and inorganic polymers publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1993.03615995005700030014x – ident: 10.1016/j.geodrs.2025.e00916_bb0140 – volume: 53 start-page: 1108 issue: 4 year: 1989 ident: 10.1016/j.geodrs.2025.e00916_bb0035 article-title: Evidence for clay translocation in coastal plain soils with Sandy/loamy boundaries publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300040021x – start-page: 580 year: 2001 ident: 10.1016/j.geodrs.2025.e00916_bb0055 article-title: Effects of exchangeable Ca:Mg ratio on soil clay flocculation, infiltration and erosion publication-title: Sustain. Global Farm – volume: 11 start-page: 297 issue: 4 year: 1974 ident: 10.1016/j.geodrs.2025.e00916_bb0135 article-title: Gley morphology and soil water regimes in some soils in South-Central England publication-title: Geoderma doi: 10.1016/0016-7061(74)90056-1 – volume: 171 start-page: 63 year: 2018 ident: 10.1016/j.geodrs.2025.e00916_bb0010 article-title: The influence of mean grain size on unconfined compressive strength of weakly consolidated reservoir sandstones publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2018.07.029 – volume: 109 start-page: 41 issue: 1 year: 2002 ident: 10.1016/j.geodrs.2025.e00916_bb0110 article-title: From Pedotransfer functions to soil inference systems publication-title: Geoderma doi: 10.1016/S0016-7061(02)00139-8 – volume: 400 year: 2021 ident: 10.1016/j.geodrs.2025.e00916_bb0165 article-title: Evaluating models to estimate cation exchange capacity of calcareous soils publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115221 – year: 2022 ident: 10.1016/j.geodrs.2025.e00916_bb0210 – volume: 126 start-page: 161 issue: 1 year: 2005 ident: 10.1016/j.geodrs.2025.e00916_bb0080 article-title: Problems arising from fixed-depth assessment of deeply weathered sandy soils publication-title: Geoderma doi: 10.1016/j.geoderma.2004.11.011 – volume: 60 start-page: 1979 issue: 6 year: 1996 ident: 10.1016/j.geodrs.2025.e00916_bb0215 article-title: Color index for identifying hydric conditions for seasonally saturated Mollisols in Minnesota publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1996.03615995006000060051x – volume: 28 start-page: 792 year: 1964 ident: 10.1016/j.geodrs.2025.e00916_bib241 article-title: Surfaces of Peds from B Horizons of Illinois Soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1964.03615995002800060031x – volume: 167 year: 2021 ident: 10.1016/j.geodrs.2025.e00916_bb0105 article-title: Mineral weathering and Lessivage affect microbial community and enzyme activity in mountain soils publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2021.104024 – year: 2015 ident: 10.1016/j.geodrs.2025.e00916_bb0180 – year: 1992 ident: 10.1016/j.geodrs.2025.e00916_bb0200 – volume: 131 start-page: 114 issue: 2 year: 1981 ident: 10.1016/j.geodrs.2025.e00916_bb0125 article-title: Use of a field morphology rating system to evaluate soil formation and discontinuities publication-title: Soil Sci. doi: 10.1097/00010694-198102000-00008 |
SSID | ssj0002953762 |
Score | 2.3094134 |
Snippet | The translocation of clay sized particles is an extensive soil process that occurs in over half of the total surface area covered by soil globally. However,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e00916 |
SubjectTerms | acidity algorithms Argillic horizon argillic horizons clay Clay translocation coagulation Eluvial zone energy Florida forestry equipment Illuvial zone Lessivage Machine learning mineralogy particle size Random forest modeling sand surface area U.S. Soil Taxonomy |
Title | Investigating soil properties influencing the depth and degree of lessivage in Florida soils using a random forest modeling approach |
URI | https://dx.doi.org/10.1016/j.geodrs.2025.e00916 https://www.proquest.com/docview/3200255304 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELZ4XLggECBgARmJa7bBjpP4iBBVoYIDD21vlhOPS1dsUrWFX8APZ8ZJEKCVkDjl4UeiifPNjP15hrET51UpNK0PZqpEByX1UW6djTRCoUCFAmlgVV7fpIOH5GqkRkvsvNsLQ7TKFvsbTA9o3d7ptdLsTSeT3p2QIWQQDrowRT1aZqtC6hSH9urZ5XBw8z7VIjTFLBEhzZwSEbXpNtEFptcYajej0N1C_QYspdzn_1dSX-A66KD-BltvjUd-1rzfJluCaou9fgiVUY35vJ488SlNsc8oViqftFlIqAyNPe5gunjktnJ4hr428NrzJ-LCviCyYG3eJ06es6GjOSde_JhbjirN1f84mrj4LB7y54SCNiT5NnvoX9yfD6I2t0JUijxfRFZbX2iFUBcnPikkkOenLJSqSB3EkNtYFRqshwwgKVPpIHOxymUqE1ugY7vDVqq6gl3GhZTenkqsrmVS5N7msZQqK1UMcJp7vceiTphm2oTQMB237K9phG9I-KYR_h7LOombT0PBIMp_0_K4-0AG_xJa-rAV1M9zI0VwnmSc7P-4919sja4aAtoBW1nMnuEQLZJFcdSOODoOb_8M3wAdRePL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLegHOAyMW2IwsY8adesqR3n44gQVVlLL7RSb5YTP3edIKnasL9gf_jecxLEEBLSblGe7UQvzvuwf_49xr5ZpwqR0f5gogpMUGIXpMaaIENTKNChQOxRlbezeLyIfizVco9ddWdhCFbZ2v7Gpntr3d4ZtNocbNbrwZ2QnjIIJ51fol7uswNip1I9dnB5MxnPnpZaREacJcKXmVMioD7dITqP9FpBZbdE3S3Ud0Ap1T5_3Um9MNfeB42O2bs2eOSXzfu9Z3tQfmB_nlFllCu-q9b3fENL7FviSuXrtgoJyTDY4xY29U9uSotXmGsDrxy_Jyzsb7Qs2JqPCJNnjR9oxwkXv-KGo0uz1QPHEBefxX39HC9oKck_ssXoen41DtraCkEh0rQOTGZcnik0dWHkolwCZX7KQKHy2EIIqQlVnoFxkABERSwtJDZUqYxlZHJMbE9Yr6xKOGVcSOnMUGLzTEZ56kwaSqmSQoUAw9RlfRZ0ytSbhkJDd9iyX7pRvibl60b5fZZ0Gtf_TAWNVv6Nnl-7D6TxL6GtD1NC9bjTUvjkSYbR2X-P_oUdjue3Uz29mU3O2RFJGjDaJ9art4_wGaOTOr9oZ99ftovlDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+soil+properties+influencing+the+depth+and+degree+of+lessivage+in+Florida+soils+using+a+random+forest+modeling+approach&rft.jtitle=Geoderma+Regional&rft.au=Colopietro%2C+Daniel+J.&rft.au=Pachon%2C+Julio&rft.au=Bacon%2C+Allan&rft.date=2025-03-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=40&rft_id=info:doi/10.1016%2Fj.geodrs.2025.e00916&rft.externalDocID=S235200942500001X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |