LMI and SDP technique for stability analysis of nonlinear delay systems subject to constraints

The aim of the study is to present an estimation of the domain of attraction (DA) for nonlinear delay systems. The proposed approach is based on the assumption that on a subset of instant states the system is represented by a continuous-time Takagi–Sugeno (TS) system with delay. Because of the const...

Full description

Saved in:
Bibliographic Details
Published inOptimization letters Vol. 13; no. 8; pp. 1937 - 1952
Main Authors Sedova, N., Pertseva, I.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2019
Subjects
Online AccessGet full text
ISSN1862-4472
1862-4480
DOI10.1007/s11590-018-1352-9

Cover

Loading…
Abstract The aim of the study is to present an estimation of the domain of attraction (DA) for nonlinear delay systems. The proposed approach is based on the assumption that on a subset of instant states the system is represented by a continuous-time Takagi–Sugeno (TS) system with delay. Because of the constraints defining the subset under consideration, an important issue is to estimate the set of initial points such that the trajectories starting at those points remain to satisfy the constraints. Using Lyapunov functions with the Razumikhin technique, we describe the problem of constructing an inner estimation of the DA in terms of invariant ellipsoids. As the result, the problem reduces to linear matrix inequalities and semidefinite programs which can be solved numerically. The method is also applied to constructing some outer estimate for the attractor of a nonlinear delay system subject to asymptotic stability for an approximating TS system. The resulting ellipsoidal estimate for the attractor depends on the estimate of the approximation error.
AbstractList The aim of the study is to present an estimation of the domain of attraction (DA) for nonlinear delay systems. The proposed approach is based on the assumption that on a subset of instant states the system is represented by a continuous-time Takagi–Sugeno (TS) system with delay. Because of the constraints defining the subset under consideration, an important issue is to estimate the set of initial points such that the trajectories starting at those points remain to satisfy the constraints. Using Lyapunov functions with the Razumikhin technique, we describe the problem of constructing an inner estimation of the DA in terms of invariant ellipsoids. As the result, the problem reduces to linear matrix inequalities and semidefinite programs which can be solved numerically. The method is also applied to constructing some outer estimate for the attractor of a nonlinear delay system subject to asymptotic stability for an approximating TS system. The resulting ellipsoidal estimate for the attractor depends on the estimate of the approximation error.
Author Pertseva, I.
Sedova, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Sedova
  fullname: Sedova, N.
  email: nata-sedova@yandex.ru
  organization: Department of Mathematics, Information, and Aviation Technologies, Ulyanovsk State University
– sequence: 2
  givenname: I.
  surname: Pertseva
  fullname: Pertseva, I.
  organization: Department of Mathematics, Information, and Aviation Technologies, Ulyanovsk State University
BookMark eNp9kM9OwzAMhyM0JMbgAbjlBQpJ06btEY1_k4ZAAq5EaepApi6BODv07Wk1xIHDTrbk32db3ymZ-eCBkAvOLjlj1RVyXjYsY7zOuCjzrDkic17LPCuKms3--io_IaeIG8Yk500zJ-_rxxXVvqMvN880gfn07nsH1IZIMenW9S4N41z3AzqkwdLxbu886Eg76PVAccAEW6S4azdgEk2BmuAxRe18wjNybHWPcP5bF-Tt7vZ1-ZCtn-5Xy-t1ZvK6TlkDOZe6LHMhgAkj27ZjXSk6I4S00Fa87Qyztio6aKq2FLVkUhRSs8oAt7oRC1Lt95oYECNYZVzSyQU_PdIrztSkSe01qVGTmjSpieT_yK_otjoOB5l8z-CY9R8Q1Sbs4igJD0A_D2F9yQ
CitedBy_id crossref_primary_10_1177_10775463231189555
Cites_doi 10.1109/ACC.2009.5160175
10.1007/BF02514329
10.1109/72.159070
10.1137/1.9781611970791
10.1016/0005-1098(92)90068-Q
10.1134/S0005117912100128
10.1134/S0005117909090021
10.1016/S1474-6670(17)33337-2
10.1134/S0005117911110026
10.1002/0471224596
10.1007/978-94-011-4560-2_10
10.1137/1.9781611970777
10.1038/srep21449
10.1007/978-1-4612-9892-2
10.1016/j.fss.2015.11.010
10.1134/S0005117911090086
10.3724/SP.J.1004.2012.00716
10.1134/S1064230717010063
10.1016/j.fss.2014.05.020
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
DBID AAYXX
CITATION
DOI 10.1007/s11590-018-1352-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 1952
ExternalDocumentID 10_1007_s11590_018_1352_9
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c288t-9e216a55233e03c6bbd0d53dc336feb71bdc0ff74de97b538606346a07ce1fa93
IEDL.DBID U2A
ISSN 1862-4472
IngestDate Thu Apr 24 22:49:59 EDT 2025
Tue Jul 01 01:27:39 EDT 2025
Fri Feb 21 02:36:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords System with constraints
Stability
Nonlinear delay system
Razumikhin technique
LMI
SDP
Takagi–Sugeno system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-9e216a55233e03c6bbd0d53dc336feb71bdc0ff74de97b538606346a07ce1fa93
PageCount 16
ParticipantIDs crossref_citationtrail_10_1007_s11590_018_1352_9
crossref_primary_10_1007_s11590_018_1352_9
springer_journals_10_1007_s11590_018_1352_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191100
2019-11-00
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191100
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References SontagEduardo D.Stability and stabilization: discontinuities and the effect of disturbancesNonlinear Analysis, Differential Equations and Control1999DordrechtSpringer Netherlands55159810.1007/978-94-011-4560-2_10
Razumikhin, B.S.: On stability on systems with delay. Prikl. Mat. Mekh. 20, 500–512 (1956) (in Russian)
PrasolovAVOn an estimate of the domain of attraction for systems with after effectUkr. Math. J.1998505761769170962910.1007/BF02514329
DruzhininaOVSedovaNOAnalysis of stability and stabilization of cascade systems with time delay in terms of linear matrix inequalitiesJ. Comput. Syst. Sci. Int.20175611932367612510.1134/S1064230717010063
KhlebnikovMVPolyakBTKuntsevichVMOptimization of linear systems subject to bounded exogenous disturbances: the invariant ellipsoid techniqueAutom. Remote Control2011721122272275291927910.1134/S0005117911110026
FridmanEShakedUAn ellipsoid bounding of reachable systems with delay and bounded peak inputsIFAC Proc. Vol.2003361926927410.1016/S1474-6670(17)33337-2
BuckleyJUniversal fuzzy controllersAutomatica (J. IFAC)199228612451248119679010.1016/0005-1098(92)90068-Q
Fantuzzi, C., Rovatti, R.: On the approximation capabilities of the homogeneous Takagi–Sugeno model, fuzzy systems, 1996. In: Proceedings of the Fifth IEEE International Conference on, vol. 2 (1996)
NesterovYNemirovskiAInterior Point Polynomial Methods in Convex Programming: Theory and Applications1994PhiladelphiaSIAM10.1137/1.9781611970791
BoydSEl GhaouiLFeronEBalakrishnanVLinear Matrix Inequalities in System and Control Theory1994PhiladelphiaSIAM10.1137/1.9781611970777
TingC-SA robust fuzzy control approach to stabilization of nonlinear time-delay systems with saturating inputsInt. J. Fuzzy Syst.200810150602456821
WangL-XMendelJMFuzzy basis functions, universal approximation, and orthogonal least-squares learningIEEE Trans. Neural Netw.19923580781410.1109/72.159070
Leng, S., Lin W., Kurths, J.: Basin stability in delayed dynamics. Nature Scientific Reports, vol. 6 (2016). https://doi.org/10.1038/srep21449
Polyak, B., Shcherbakov, P.: Ellipsoidal approximations to attraction domains of linear systems with bounded control. In: American Control Conference, pp. 5363–5367 (2009)
GonzálezTBernalMProgressively better estimates of the domain of attraction for nonlinear systems via piecewise Takagi–Sugeno models: stability and stabilization issuesFuzzy Sets Syst.20162977395350079110.1016/j.fss.2015.11.010
TanakaKWangHOFuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach2001New YorkWiley10.1002/0471224596
EgrashkinaJESedovaNOOn approximate Takagi–Sugeno linear representations of nonlinear functionsMatem. Mod.201729120321374.93208[in Russian]
KamenetskiiVAParametric stabilization of nonlinear control systems under state constraintsAutom. Remote Control19965710142714352177970
AndreevASThe Lyapunov functionals method in stability problems for functional differential equationsAutom. Remote Control200970914381486259003310.1134/S0005117909090021
XieX-PLiuZ-WZhuX-LAn efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time TS fuzzy systemsFuzzy Sets Syst.20152637181330077410.1016/j.fss.2014.05.020
YangR-MWangY-ZStability analysis and estimate of domain of attraction for a class of nonlinear systems with time-varying delayActa Autom. Sin.201238571672310.3724/SP.J.1004.2012.00716
SedovaNOOn the principle of reduction for the nonlinear delay systemsAutom. Remote Control201172918641875289615410.1134/S0005117911090086
SedovaNOThe design of digital stabilizing regulators for continuous systems based on the Lyapunov function approachAutom. Remote Control2012731017341743320891610.1134/S0005117912100128
HaleJTheory of Functional Differential Equations1977BerlinSpringer10.1007/978-1-4612-9892-2
La SalleJLefschetzSStability by Liapunov’s Direct Method with Applications1961New YorkAcademic Press0098.06102
1352_CR10
J Salle La (1352_CR1) 1961
Y Nesterov (1352_CR12) 1994
R-M Yang (1352_CR7) 2012; 38
OV Druzhinina (1352_CR23) 2017; 56
AS Andreev (1352_CR8) 2009; 70
K Tanaka (1352_CR13) 2001
1352_CR18
L-X Wang (1352_CR20) 1992; 3
MV Khlebnikov (1352_CR14) 2011; 72
1352_CR22
AV Prasolov (1352_CR4) 1998; 50
Eduardo D. Sontag (1352_CR16) 1999
NO Sedova (1352_CR17) 2011; 72
JE Egrashkina (1352_CR21) 2017; 29
J Buckley (1352_CR19) 1992; 28
VA Kamenetskii (1352_CR2) 1996; 57
S Boyd (1352_CR11) 1994
X-P Xie (1352_CR25) 2015; 263
1352_CR3
T González (1352_CR5) 2016; 297
J Hale (1352_CR9) 1977
E Fridman (1352_CR15) 2003; 36
NO Sedova (1352_CR24) 2012; 73
C-S Ting (1352_CR6) 2008; 10
References_xml – reference: BoydSEl GhaouiLFeronEBalakrishnanVLinear Matrix Inequalities in System and Control Theory1994PhiladelphiaSIAM10.1137/1.9781611970777
– reference: PrasolovAVOn an estimate of the domain of attraction for systems with after effectUkr. Math. J.1998505761769170962910.1007/BF02514329
– reference: TanakaKWangHOFuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach2001New YorkWiley10.1002/0471224596
– reference: YangR-MWangY-ZStability analysis and estimate of domain of attraction for a class of nonlinear systems with time-varying delayActa Autom. Sin.201238571672310.3724/SP.J.1004.2012.00716
– reference: GonzálezTBernalMProgressively better estimates of the domain of attraction for nonlinear systems via piecewise Takagi–Sugeno models: stability and stabilization issuesFuzzy Sets Syst.20162977395350079110.1016/j.fss.2015.11.010
– reference: Leng, S., Lin W., Kurths, J.: Basin stability in delayed dynamics. Nature Scientific Reports, vol. 6 (2016). https://doi.org/10.1038/srep21449
– reference: Fantuzzi, C., Rovatti, R.: On the approximation capabilities of the homogeneous Takagi–Sugeno model, fuzzy systems, 1996. In: Proceedings of the Fifth IEEE International Conference on, vol. 2 (1996)
– reference: SedovaNOThe design of digital stabilizing regulators for continuous systems based on the Lyapunov function approachAutom. Remote Control2012731017341743320891610.1134/S0005117912100128
– reference: AndreevASThe Lyapunov functionals method in stability problems for functional differential equationsAutom. Remote Control200970914381486259003310.1134/S0005117909090021
– reference: FridmanEShakedUAn ellipsoid bounding of reachable systems with delay and bounded peak inputsIFAC Proc. Vol.2003361926927410.1016/S1474-6670(17)33337-2
– reference: Razumikhin, B.S.: On stability on systems with delay. Prikl. Mat. Mekh. 20, 500–512 (1956) (in Russian)
– reference: KamenetskiiVAParametric stabilization of nonlinear control systems under state constraintsAutom. Remote Control19965710142714352177970
– reference: DruzhininaOVSedovaNOAnalysis of stability and stabilization of cascade systems with time delay in terms of linear matrix inequalitiesJ. Comput. Syst. Sci. Int.20175611932367612510.1134/S1064230717010063
– reference: SedovaNOOn the principle of reduction for the nonlinear delay systemsAutom. Remote Control201172918641875289615410.1134/S0005117911090086
– reference: HaleJTheory of Functional Differential Equations1977BerlinSpringer10.1007/978-1-4612-9892-2
– reference: XieX-PLiuZ-WZhuX-LAn efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time TS fuzzy systemsFuzzy Sets Syst.20152637181330077410.1016/j.fss.2014.05.020
– reference: BuckleyJUniversal fuzzy controllersAutomatica (J. IFAC)199228612451248119679010.1016/0005-1098(92)90068-Q
– reference: WangL-XMendelJMFuzzy basis functions, universal approximation, and orthogonal least-squares learningIEEE Trans. Neural Netw.19923580781410.1109/72.159070
– reference: EgrashkinaJESedovaNOOn approximate Takagi–Sugeno linear representations of nonlinear functionsMatem. Mod.201729120321374.93208[in Russian]
– reference: Polyak, B., Shcherbakov, P.: Ellipsoidal approximations to attraction domains of linear systems with bounded control. In: American Control Conference, pp. 5363–5367 (2009)
– reference: KhlebnikovMVPolyakBTKuntsevichVMOptimization of linear systems subject to bounded exogenous disturbances: the invariant ellipsoid techniqueAutom. Remote Control2011721122272275291927910.1134/S0005117911110026
– reference: TingC-SA robust fuzzy control approach to stabilization of nonlinear time-delay systems with saturating inputsInt. J. Fuzzy Syst.200810150602456821
– reference: La SalleJLefschetzSStability by Liapunov’s Direct Method with Applications1961New YorkAcademic Press0098.06102
– reference: NesterovYNemirovskiAInterior Point Polynomial Methods in Convex Programming: Theory and Applications1994PhiladelphiaSIAM10.1137/1.9781611970791
– reference: SontagEduardo D.Stability and stabilization: discontinuities and the effect of disturbancesNonlinear Analysis, Differential Equations and Control1999DordrechtSpringer Netherlands55159810.1007/978-94-011-4560-2_10
– ident: 1352_CR3
  doi: 10.1109/ACC.2009.5160175
– volume: 50
  start-page: 761
  issue: 5
  year: 1998
  ident: 1352_CR4
  publication-title: Ukr. Math. J.
  doi: 10.1007/BF02514329
– volume: 3
  start-page: 807
  issue: 5
  year: 1992
  ident: 1352_CR20
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.159070
– volume-title: Interior Point Polynomial Methods in Convex Programming: Theory and Applications
  year: 1994
  ident: 1352_CR12
  doi: 10.1137/1.9781611970791
– volume: 28
  start-page: 1245
  issue: 6
  year: 1992
  ident: 1352_CR19
  publication-title: Automatica (J. IFAC)
  doi: 10.1016/0005-1098(92)90068-Q
– volume: 10
  start-page: 50
  issue: 1
  year: 2008
  ident: 1352_CR6
  publication-title: Int. J. Fuzzy Syst.
– volume: 57
  start-page: 1427
  issue: 10
  year: 1996
  ident: 1352_CR2
  publication-title: Autom. Remote Control
– volume: 73
  start-page: 1734
  issue: 10
  year: 2012
  ident: 1352_CR24
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117912100128
– volume: 70
  start-page: 1438
  issue: 9
  year: 2009
  ident: 1352_CR8
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117909090021
– volume: 29
  start-page: 20
  issue: 1
  year: 2017
  ident: 1352_CR21
  publication-title: Matem. Mod.
– volume: 36
  start-page: 269
  issue: 19
  year: 2003
  ident: 1352_CR15
  publication-title: IFAC Proc. Vol.
  doi: 10.1016/S1474-6670(17)33337-2
– volume: 72
  start-page: 2227
  issue: 11
  year: 2011
  ident: 1352_CR14
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117911110026
– ident: 1352_CR22
– volume-title: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach
  year: 2001
  ident: 1352_CR13
  doi: 10.1002/0471224596
– start-page: 551
  volume-title: Nonlinear Analysis, Differential Equations and Control
  year: 1999
  ident: 1352_CR16
  doi: 10.1007/978-94-011-4560-2_10
– volume-title: Linear Matrix Inequalities in System and Control Theory
  year: 1994
  ident: 1352_CR11
  doi: 10.1137/1.9781611970777
– ident: 1352_CR10
  doi: 10.1038/srep21449
– volume-title: Theory of Functional Differential Equations
  year: 1977
  ident: 1352_CR9
  doi: 10.1007/978-1-4612-9892-2
– volume-title: Stability by Liapunov’s Direct Method with Applications
  year: 1961
  ident: 1352_CR1
– ident: 1352_CR18
– volume: 297
  start-page: 73
  year: 2016
  ident: 1352_CR5
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2015.11.010
– volume: 72
  start-page: 1864
  issue: 9
  year: 2011
  ident: 1352_CR17
  publication-title: Autom. Remote Control
  doi: 10.1134/S0005117911090086
– volume: 38
  start-page: 716
  issue: 5
  year: 2012
  ident: 1352_CR7
  publication-title: Acta Autom. Sin.
  doi: 10.3724/SP.J.1004.2012.00716
– volume: 56
  start-page: 19
  issue: 1
  year: 2017
  ident: 1352_CR23
  publication-title: J. Comput. Syst. Sci. Int.
  doi: 10.1134/S1064230717010063
– volume: 263
  start-page: 71
  year: 2015
  ident: 1352_CR25
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2014.05.020
SSID ssj0061199
Score 2.159905
Snippet The aim of the study is to present an estimation of the domain of attraction (DA) for nonlinear delay systems. The proposed approach is based on the assumption...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1937
SubjectTerms Computational Intelligence
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title LMI and SDP technique for stability analysis of nonlinear delay systems subject to constraints
URI https://link.springer.com/article/10.1007/s11590-018-1352-9
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEV5yQMTKFISO3E8ttBSHq2QoFJZiPycUIuadOi_55xHSyVAYoqinCPrzj5_Z999RujSGB4xYiMvMlZ4VIMtOJfKE1aF1sQmSrQrFB4M4_6IPoyjcVXHndXZ7vWRZOGpV8VusPK6JCqIegA1eHwTNSMI3d2wHoXt2v3GQXlpZJC4ciDKwvoo86dfrC9G6yehxQLT20U7FTLE7dKUe2jDTPbR9je-QHgbLElWswP0_jS4x2Ki8cvtM15ysWJAoRggX5H0uoDvJekInlo8KWkxxAw7asgFLlmcM5zNpduNwfkUKwcX3a0ReXaIRr3u603fq65L8FSYJLnHTRjEIoLIkhifqFhK7euIaEVIbI1kgdTKt5ZRbTiT4OggdiE0Fj5TJrCCkyPUgI6YY4QTSrlQRlolLIVJDwZjTIHeQkks9WUL-bXeUlVxibvOfaQrFmSn6hSapE7VKW-hq2WTz5JI4y_h69oYaTWnst-lT_4lfYq2APTwsp7wDDXy2dycA7DI5QVqtnudztA9794euxfFwPoCe83JNg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3ojxzIETqKht0keOEzAGbAiJTRoXqiRNLqCBaHcYvx5nbcdDgLRj1aSynMT-XNtfAI605kFETeAE2giHpbgWnEvlCKN8o0MdxKltFO7ehu0-ux4Eg7KPO6uq3auU5MRSfza7oee1RVQY9SBqcPg81BmG4EEN6s3Lh5uLygCHXnFtpBfbhiAW-VUy87ePfHdH33OhExfTWoFeJVxRWfJ0OsrlqXr_wds4o_SrsFxCTtIs9sgazOnhOix9ISLEp-6UvTXbgMdO94qIYUruz-_IlOSVILwliCUn1bRjfF-wmZAXQ4YF34Z4I5ZzckwKeuiMZCNpf_OQ_IUoi0PtdRR5tgn91kXvrO2U9zA4yo_j3OHa90IRYMhKtUtVKGXqpgFNFaWh0TLyZKpcYyKWah5JtKAYFFEWCjdS2jOC0y2ooSB6G0jMGBdKS6OEYWhNcCdEkUKt-JIa5soGuNVyJKokKbfCPSef9MpWkQlOSawiE96A4-mU14Kh47_BJ9XyJOVhzf4evTPT6ENYaPe6naRzdXuzC4uIrHjRtLgHtfxtpPcRveTyoNytH2_U5d0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGJ97sGTEkyym2z2WKyl1bYUtNCTYZ8naUuTHvrvnW2S1oIKHkN2wzKTzHyTmfkGoTtjeMSIjbzIWOFRDbrgXCpPWBVaE5so0a5RuNeP20P6MopG5ZzTrKp2r1KSRU-DY2ka549TbR_XjW_ghV1BFURAgCA8vo12wBoHrqZrGDYqUxwHxQDJIHGtQZSFVVrzp0dsOqbNrOjS2bQO0UGJEnGjUOsR2jLjY7T_jTsQrnorwtXsBH10ex0sxhq_NQd4xcuKAZFigH_LAtgF3C8ISPDE4nFBkSFm2NFELnDB6JzhbC7dnxmcT7By0NFNkMizUzRsPb8_tb1ydIKnwiTJPW7CIBYRRJnE-ETFUmpfR0QrQmJrJAukVr61jGrDmQSjB3EMobHwmTKBFZycoRocxJwjnFDKhTLSKmEpGABQHmMK5BZKYqkv68iv5JaqklfcHe4zXTMiO1GnsCV1ok55Hd2vtkwLUo2_Fj9UykjL7yv7ffXFv1bfot1Bs5V2O_3XS7QHWIgXbYZXqJbP5uYa8EYub5bv1BdSXM1V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LMI+and+SDP+technique+for+stability+analysis+of+nonlinear+delay+systems+subject+to+constraints&rft.jtitle=Optimization+letters&rft.au=Sedova%2C+N.&rft.au=Pertseva%2C+I.&rft.date=2019-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=13&rft.issue=8&rft.spage=1937&rft.epage=1952&rft_id=info:doi/10.1007%2Fs11590-018-1352-9&rft.externalDocID=10_1007_s11590_018_1352_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon