LMI and SDP technique for stability analysis of nonlinear delay systems subject to constraints
The aim of the study is to present an estimation of the domain of attraction (DA) for nonlinear delay systems. The proposed approach is based on the assumption that on a subset of instant states the system is represented by a continuous-time Takagi–Sugeno (TS) system with delay. Because of the const...
Saved in:
Published in | Optimization letters Vol. 13; no. 8; pp. 1937 - 1952 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1862-4472 1862-4480 |
DOI | 10.1007/s11590-018-1352-9 |
Cover
Loading…
Abstract | The aim of the study is to present an estimation of the domain of attraction (DA) for nonlinear delay systems. The proposed approach is based on the assumption that on a subset of instant states the system is represented by a continuous-time Takagi–Sugeno (TS) system with delay. Because of the constraints defining the subset under consideration, an important issue is to estimate the set of initial points such that the trajectories starting at those points remain to satisfy the constraints. Using Lyapunov functions with the Razumikhin technique, we describe the problem of constructing an inner estimation of the DA in terms of invariant ellipsoids. As the result, the problem reduces to linear matrix inequalities and semidefinite programs which can be solved numerically. The method is also applied to constructing some outer estimate for the attractor of a nonlinear delay system subject to asymptotic stability for an approximating TS system. The resulting ellipsoidal estimate for the attractor depends on the estimate of the approximation error. |
---|---|
AbstractList | The aim of the study is to present an estimation of the domain of attraction (DA) for nonlinear delay systems. The proposed approach is based on the assumption that on a subset of instant states the system is represented by a continuous-time Takagi–Sugeno (TS) system with delay. Because of the constraints defining the subset under consideration, an important issue is to estimate the set of initial points such that the trajectories starting at those points remain to satisfy the constraints. Using Lyapunov functions with the Razumikhin technique, we describe the problem of constructing an inner estimation of the DA in terms of invariant ellipsoids. As the result, the problem reduces to linear matrix inequalities and semidefinite programs which can be solved numerically. The method is also applied to constructing some outer estimate for the attractor of a nonlinear delay system subject to asymptotic stability for an approximating TS system. The resulting ellipsoidal estimate for the attractor depends on the estimate of the approximation error. |
Author | Pertseva, I. Sedova, N. |
Author_xml | – sequence: 1 givenname: N. surname: Sedova fullname: Sedova, N. email: nata-sedova@yandex.ru organization: Department of Mathematics, Information, and Aviation Technologies, Ulyanovsk State University – sequence: 2 givenname: I. surname: Pertseva fullname: Pertseva, I. organization: Department of Mathematics, Information, and Aviation Technologies, Ulyanovsk State University |
BookMark | eNp9kM9OwzAMhyM0JMbgAbjlBQpJ06btEY1_k4ZAAq5EaepApi6BODv07Wk1xIHDTrbk32db3ymZ-eCBkAvOLjlj1RVyXjYsY7zOuCjzrDkic17LPCuKms3--io_IaeIG8Yk500zJ-_rxxXVvqMvN880gfn07nsH1IZIMenW9S4N41z3AzqkwdLxbu886Eg76PVAccAEW6S4azdgEk2BmuAxRe18wjNybHWPcP5bF-Tt7vZ1-ZCtn-5Xy-t1ZvK6TlkDOZe6LHMhgAkj27ZjXSk6I4S00Fa87Qyztio6aKq2FLVkUhRSs8oAt7oRC1Lt95oYECNYZVzSyQU_PdIrztSkSe01qVGTmjSpieT_yK_otjoOB5l8z-CY9R8Q1Sbs4igJD0A_D2F9yQ |
CitedBy_id | crossref_primary_10_1177_10775463231189555 |
Cites_doi | 10.1109/ACC.2009.5160175 10.1007/BF02514329 10.1109/72.159070 10.1137/1.9781611970791 10.1016/0005-1098(92)90068-Q 10.1134/S0005117912100128 10.1134/S0005117909090021 10.1016/S1474-6670(17)33337-2 10.1134/S0005117911110026 10.1002/0471224596 10.1007/978-94-011-4560-2_10 10.1137/1.9781611970777 10.1038/srep21449 10.1007/978-1-4612-9892-2 10.1016/j.fss.2015.11.010 10.1134/S0005117911090086 10.3724/SP.J.1004.2012.00716 10.1134/S1064230717010063 10.1016/j.fss.2014.05.020 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11590-018-1352-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1862-4480 |
EndPage | 1952 |
ExternalDocumentID | 10_1007_s11590_018_1352_9 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9M PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7Y Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c288t-9e216a55233e03c6bbd0d53dc336feb71bdc0ff74de97b538606346a07ce1fa93 |
IEDL.DBID | U2A |
ISSN | 1862-4472 |
IngestDate | Thu Apr 24 22:49:59 EDT 2025 Tue Jul 01 01:27:39 EDT 2025 Fri Feb 21 02:36:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | System with constraints Stability Nonlinear delay system Razumikhin technique LMI SDP Takagi–Sugeno system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-9e216a55233e03c6bbd0d53dc336feb71bdc0ff74de97b538606346a07ce1fa93 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1007_s11590_018_1352_9 crossref_primary_10_1007_s11590_018_1352_9 springer_journals_10_1007_s11590_018_1352_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191100 2019-11-00 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 20191100 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Optimization letters |
PublicationTitleAbbrev | Optim Lett |
PublicationYear | 2019 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | SontagEduardo D.Stability and stabilization: discontinuities and the effect of disturbancesNonlinear Analysis, Differential Equations and Control1999DordrechtSpringer Netherlands55159810.1007/978-94-011-4560-2_10 Razumikhin, B.S.: On stability on systems with delay. Prikl. Mat. Mekh. 20, 500–512 (1956) (in Russian) PrasolovAVOn an estimate of the domain of attraction for systems with after effectUkr. Math. J.1998505761769170962910.1007/BF02514329 DruzhininaOVSedovaNOAnalysis of stability and stabilization of cascade systems with time delay in terms of linear matrix inequalitiesJ. Comput. Syst. Sci. Int.20175611932367612510.1134/S1064230717010063 KhlebnikovMVPolyakBTKuntsevichVMOptimization of linear systems subject to bounded exogenous disturbances: the invariant ellipsoid techniqueAutom. Remote Control2011721122272275291927910.1134/S0005117911110026 FridmanEShakedUAn ellipsoid bounding of reachable systems with delay and bounded peak inputsIFAC Proc. Vol.2003361926927410.1016/S1474-6670(17)33337-2 BuckleyJUniversal fuzzy controllersAutomatica (J. IFAC)199228612451248119679010.1016/0005-1098(92)90068-Q Fantuzzi, C., Rovatti, R.: On the approximation capabilities of the homogeneous Takagi–Sugeno model, fuzzy systems, 1996. In: Proceedings of the Fifth IEEE International Conference on, vol. 2 (1996) NesterovYNemirovskiAInterior Point Polynomial Methods in Convex Programming: Theory and Applications1994PhiladelphiaSIAM10.1137/1.9781611970791 BoydSEl GhaouiLFeronEBalakrishnanVLinear Matrix Inequalities in System and Control Theory1994PhiladelphiaSIAM10.1137/1.9781611970777 TingC-SA robust fuzzy control approach to stabilization of nonlinear time-delay systems with saturating inputsInt. J. Fuzzy Syst.200810150602456821 WangL-XMendelJMFuzzy basis functions, universal approximation, and orthogonal least-squares learningIEEE Trans. Neural Netw.19923580781410.1109/72.159070 Leng, S., Lin W., Kurths, J.: Basin stability in delayed dynamics. Nature Scientific Reports, vol. 6 (2016). https://doi.org/10.1038/srep21449 Polyak, B., Shcherbakov, P.: Ellipsoidal approximations to attraction domains of linear systems with bounded control. In: American Control Conference, pp. 5363–5367 (2009) GonzálezTBernalMProgressively better estimates of the domain of attraction for nonlinear systems via piecewise Takagi–Sugeno models: stability and stabilization issuesFuzzy Sets Syst.20162977395350079110.1016/j.fss.2015.11.010 TanakaKWangHOFuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach2001New YorkWiley10.1002/0471224596 EgrashkinaJESedovaNOOn approximate Takagi–Sugeno linear representations of nonlinear functionsMatem. Mod.201729120321374.93208[in Russian] KamenetskiiVAParametric stabilization of nonlinear control systems under state constraintsAutom. Remote Control19965710142714352177970 AndreevASThe Lyapunov functionals method in stability problems for functional differential equationsAutom. Remote Control200970914381486259003310.1134/S0005117909090021 XieX-PLiuZ-WZhuX-LAn efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time TS fuzzy systemsFuzzy Sets Syst.20152637181330077410.1016/j.fss.2014.05.020 YangR-MWangY-ZStability analysis and estimate of domain of attraction for a class of nonlinear systems with time-varying delayActa Autom. Sin.201238571672310.3724/SP.J.1004.2012.00716 SedovaNOOn the principle of reduction for the nonlinear delay systemsAutom. Remote Control201172918641875289615410.1134/S0005117911090086 SedovaNOThe design of digital stabilizing regulators for continuous systems based on the Lyapunov function approachAutom. Remote Control2012731017341743320891610.1134/S0005117912100128 HaleJTheory of Functional Differential Equations1977BerlinSpringer10.1007/978-1-4612-9892-2 La SalleJLefschetzSStability by Liapunov’s Direct Method with Applications1961New YorkAcademic Press0098.06102 1352_CR10 J Salle La (1352_CR1) 1961 Y Nesterov (1352_CR12) 1994 R-M Yang (1352_CR7) 2012; 38 OV Druzhinina (1352_CR23) 2017; 56 AS Andreev (1352_CR8) 2009; 70 K Tanaka (1352_CR13) 2001 1352_CR18 L-X Wang (1352_CR20) 1992; 3 MV Khlebnikov (1352_CR14) 2011; 72 1352_CR22 AV Prasolov (1352_CR4) 1998; 50 Eduardo D. Sontag (1352_CR16) 1999 NO Sedova (1352_CR17) 2011; 72 JE Egrashkina (1352_CR21) 2017; 29 J Buckley (1352_CR19) 1992; 28 VA Kamenetskii (1352_CR2) 1996; 57 S Boyd (1352_CR11) 1994 X-P Xie (1352_CR25) 2015; 263 1352_CR3 T González (1352_CR5) 2016; 297 J Hale (1352_CR9) 1977 E Fridman (1352_CR15) 2003; 36 NO Sedova (1352_CR24) 2012; 73 C-S Ting (1352_CR6) 2008; 10 |
References_xml | – reference: BoydSEl GhaouiLFeronEBalakrishnanVLinear Matrix Inequalities in System and Control Theory1994PhiladelphiaSIAM10.1137/1.9781611970777 – reference: PrasolovAVOn an estimate of the domain of attraction for systems with after effectUkr. Math. J.1998505761769170962910.1007/BF02514329 – reference: TanakaKWangHOFuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach2001New YorkWiley10.1002/0471224596 – reference: YangR-MWangY-ZStability analysis and estimate of domain of attraction for a class of nonlinear systems with time-varying delayActa Autom. Sin.201238571672310.3724/SP.J.1004.2012.00716 – reference: GonzálezTBernalMProgressively better estimates of the domain of attraction for nonlinear systems via piecewise Takagi–Sugeno models: stability and stabilization issuesFuzzy Sets Syst.20162977395350079110.1016/j.fss.2015.11.010 – reference: Leng, S., Lin W., Kurths, J.: Basin stability in delayed dynamics. Nature Scientific Reports, vol. 6 (2016). https://doi.org/10.1038/srep21449 – reference: Fantuzzi, C., Rovatti, R.: On the approximation capabilities of the homogeneous Takagi–Sugeno model, fuzzy systems, 1996. In: Proceedings of the Fifth IEEE International Conference on, vol. 2 (1996) – reference: SedovaNOThe design of digital stabilizing regulators for continuous systems based on the Lyapunov function approachAutom. Remote Control2012731017341743320891610.1134/S0005117912100128 – reference: AndreevASThe Lyapunov functionals method in stability problems for functional differential equationsAutom. Remote Control200970914381486259003310.1134/S0005117909090021 – reference: FridmanEShakedUAn ellipsoid bounding of reachable systems with delay and bounded peak inputsIFAC Proc. Vol.2003361926927410.1016/S1474-6670(17)33337-2 – reference: Razumikhin, B.S.: On stability on systems with delay. Prikl. Mat. Mekh. 20, 500–512 (1956) (in Russian) – reference: KamenetskiiVAParametric stabilization of nonlinear control systems under state constraintsAutom. Remote Control19965710142714352177970 – reference: DruzhininaOVSedovaNOAnalysis of stability and stabilization of cascade systems with time delay in terms of linear matrix inequalitiesJ. Comput. Syst. Sci. Int.20175611932367612510.1134/S1064230717010063 – reference: SedovaNOOn the principle of reduction for the nonlinear delay systemsAutom. Remote Control201172918641875289615410.1134/S0005117911090086 – reference: HaleJTheory of Functional Differential Equations1977BerlinSpringer10.1007/978-1-4612-9892-2 – reference: XieX-PLiuZ-WZhuX-LAn efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time TS fuzzy systemsFuzzy Sets Syst.20152637181330077410.1016/j.fss.2014.05.020 – reference: BuckleyJUniversal fuzzy controllersAutomatica (J. IFAC)199228612451248119679010.1016/0005-1098(92)90068-Q – reference: WangL-XMendelJMFuzzy basis functions, universal approximation, and orthogonal least-squares learningIEEE Trans. Neural Netw.19923580781410.1109/72.159070 – reference: EgrashkinaJESedovaNOOn approximate Takagi–Sugeno linear representations of nonlinear functionsMatem. Mod.201729120321374.93208[in Russian] – reference: Polyak, B., Shcherbakov, P.: Ellipsoidal approximations to attraction domains of linear systems with bounded control. In: American Control Conference, pp. 5363–5367 (2009) – reference: KhlebnikovMVPolyakBTKuntsevichVMOptimization of linear systems subject to bounded exogenous disturbances: the invariant ellipsoid techniqueAutom. Remote Control2011721122272275291927910.1134/S0005117911110026 – reference: TingC-SA robust fuzzy control approach to stabilization of nonlinear time-delay systems with saturating inputsInt. J. Fuzzy Syst.200810150602456821 – reference: La SalleJLefschetzSStability by Liapunov’s Direct Method with Applications1961New YorkAcademic Press0098.06102 – reference: NesterovYNemirovskiAInterior Point Polynomial Methods in Convex Programming: Theory and Applications1994PhiladelphiaSIAM10.1137/1.9781611970791 – reference: SontagEduardo D.Stability and stabilization: discontinuities and the effect of disturbancesNonlinear Analysis, Differential Equations and Control1999DordrechtSpringer Netherlands55159810.1007/978-94-011-4560-2_10 – ident: 1352_CR3 doi: 10.1109/ACC.2009.5160175 – volume: 50 start-page: 761 issue: 5 year: 1998 ident: 1352_CR4 publication-title: Ukr. Math. J. doi: 10.1007/BF02514329 – volume: 3 start-page: 807 issue: 5 year: 1992 ident: 1352_CR20 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.159070 – volume-title: Interior Point Polynomial Methods in Convex Programming: Theory and Applications year: 1994 ident: 1352_CR12 doi: 10.1137/1.9781611970791 – volume: 28 start-page: 1245 issue: 6 year: 1992 ident: 1352_CR19 publication-title: Automatica (J. IFAC) doi: 10.1016/0005-1098(92)90068-Q – volume: 10 start-page: 50 issue: 1 year: 2008 ident: 1352_CR6 publication-title: Int. J. Fuzzy Syst. – volume: 57 start-page: 1427 issue: 10 year: 1996 ident: 1352_CR2 publication-title: Autom. Remote Control – volume: 73 start-page: 1734 issue: 10 year: 2012 ident: 1352_CR24 publication-title: Autom. Remote Control doi: 10.1134/S0005117912100128 – volume: 70 start-page: 1438 issue: 9 year: 2009 ident: 1352_CR8 publication-title: Autom. Remote Control doi: 10.1134/S0005117909090021 – volume: 29 start-page: 20 issue: 1 year: 2017 ident: 1352_CR21 publication-title: Matem. Mod. – volume: 36 start-page: 269 issue: 19 year: 2003 ident: 1352_CR15 publication-title: IFAC Proc. Vol. doi: 10.1016/S1474-6670(17)33337-2 – volume: 72 start-page: 2227 issue: 11 year: 2011 ident: 1352_CR14 publication-title: Autom. Remote Control doi: 10.1134/S0005117911110026 – ident: 1352_CR22 – volume-title: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach year: 2001 ident: 1352_CR13 doi: 10.1002/0471224596 – start-page: 551 volume-title: Nonlinear Analysis, Differential Equations and Control year: 1999 ident: 1352_CR16 doi: 10.1007/978-94-011-4560-2_10 – volume-title: Linear Matrix Inequalities in System and Control Theory year: 1994 ident: 1352_CR11 doi: 10.1137/1.9781611970777 – ident: 1352_CR10 doi: 10.1038/srep21449 – volume-title: Theory of Functional Differential Equations year: 1977 ident: 1352_CR9 doi: 10.1007/978-1-4612-9892-2 – volume-title: Stability by Liapunov’s Direct Method with Applications year: 1961 ident: 1352_CR1 – ident: 1352_CR18 – volume: 297 start-page: 73 year: 2016 ident: 1352_CR5 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2015.11.010 – volume: 72 start-page: 1864 issue: 9 year: 2011 ident: 1352_CR17 publication-title: Autom. Remote Control doi: 10.1134/S0005117911090086 – volume: 38 start-page: 716 issue: 5 year: 2012 ident: 1352_CR7 publication-title: Acta Autom. Sin. doi: 10.3724/SP.J.1004.2012.00716 – volume: 56 start-page: 19 issue: 1 year: 2017 ident: 1352_CR23 publication-title: J. Comput. Syst. Sci. Int. doi: 10.1134/S1064230717010063 – volume: 263 start-page: 71 year: 2015 ident: 1352_CR25 publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2014.05.020 |
SSID | ssj0061199 |
Score | 2.159905 |
Snippet | The aim of the study is to present an estimation of the domain of attraction (DA) for nonlinear delay systems. The proposed approach is based on the assumption... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1937 |
SubjectTerms | Computational Intelligence Mathematics Mathematics and Statistics Numerical and Computational Physics Operations Research/Decision Theory Optimization Original Paper Simulation |
Title | LMI and SDP technique for stability analysis of nonlinear delay systems subject to constraints |
URI | https://link.springer.com/article/10.1007/s11590-018-1352-9 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEV5yQMTKFISO3E8ttBSHq2QoFJZiPycUIuadOi_55xHSyVAYoqinCPrzj5_Z999RujSGB4xYiMvMlZ4VIMtOJfKE1aF1sQmSrQrFB4M4_6IPoyjcVXHndXZ7vWRZOGpV8VusPK6JCqIegA1eHwTNSMI3d2wHoXt2v3GQXlpZJC4ciDKwvoo86dfrC9G6yehxQLT20U7FTLE7dKUe2jDTPbR9je-QHgbLElWswP0_jS4x2Ki8cvtM15ysWJAoRggX5H0uoDvJekInlo8KWkxxAw7asgFLlmcM5zNpduNwfkUKwcX3a0ReXaIRr3u603fq65L8FSYJLnHTRjEIoLIkhifqFhK7euIaEVIbI1kgdTKt5ZRbTiT4OggdiE0Fj5TJrCCkyPUgI6YY4QTSrlQRlolLIVJDwZjTIHeQkks9WUL-bXeUlVxibvOfaQrFmSn6hSapE7VKW-hq2WTz5JI4y_h69oYaTWnst-lT_4lfYq2APTwsp7wDDXy2dycA7DI5QVqtnudztA9794euxfFwPoCe83JNg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3ojxzIETqKht0keOEzAGbAiJTRoXqiRNLqCBaHcYvx5nbcdDgLRj1aSynMT-XNtfAI605kFETeAE2giHpbgWnEvlCKN8o0MdxKltFO7ehu0-ux4Eg7KPO6uq3auU5MRSfza7oee1RVQY9SBqcPg81BmG4EEN6s3Lh5uLygCHXnFtpBfbhiAW-VUy87ePfHdH33OhExfTWoFeJVxRWfJ0OsrlqXr_wds4o_SrsFxCTtIs9sgazOnhOix9ISLEp-6UvTXbgMdO94qIYUruz-_IlOSVILwliCUn1bRjfF-wmZAXQ4YF34Z4I5ZzckwKeuiMZCNpf_OQ_IUoi0PtdRR5tgn91kXvrO2U9zA4yo_j3OHa90IRYMhKtUtVKGXqpgFNFaWh0TLyZKpcYyKWah5JtKAYFFEWCjdS2jOC0y2ooSB6G0jMGBdKS6OEYWhNcCdEkUKt-JIa5soGuNVyJKokKbfCPSef9MpWkQlOSawiE96A4-mU14Kh47_BJ9XyJOVhzf4evTPT6ENYaPe6naRzdXuzC4uIrHjRtLgHtfxtpPcRveTyoNytH2_U5d0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60guhBfGJ97sGTEkyym2z2WKyl1bYUtNCTYZ8naUuTHvrvnW2S1oIKHkN2wzKTzHyTmfkGoTtjeMSIjbzIWOFRDbrgXCpPWBVaE5so0a5RuNeP20P6MopG5ZzTrKp2r1KSRU-DY2ka549TbR_XjW_ghV1BFURAgCA8vo12wBoHrqZrGDYqUxwHxQDJIHGtQZSFVVrzp0dsOqbNrOjS2bQO0UGJEnGjUOsR2jLjY7T_jTsQrnorwtXsBH10ex0sxhq_NQd4xcuKAZFigH_LAtgF3C8ISPDE4nFBkSFm2NFELnDB6JzhbC7dnxmcT7By0NFNkMizUzRsPb8_tb1ydIKnwiTJPW7CIBYRRJnE-ETFUmpfR0QrQmJrJAukVr61jGrDmQSjB3EMobHwmTKBFZycoRocxJwjnFDKhTLSKmEpGABQHmMK5BZKYqkv68iv5JaqklfcHe4zXTMiO1GnsCV1ok55Hd2vtkwLUo2_Fj9UykjL7yv7ffXFv1bfot1Bs5V2O_3XS7QHWIgXbYZXqJbP5uYa8EYub5bv1BdSXM1V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LMI+and+SDP+technique+for+stability+analysis+of+nonlinear+delay+systems+subject+to+constraints&rft.jtitle=Optimization+letters&rft.au=Sedova%2C+N.&rft.au=Pertseva%2C+I.&rft.date=2019-11-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=13&rft.issue=8&rft.spage=1937&rft.epage=1952&rft_id=info:doi/10.1007%2Fs11590-018-1352-9&rft.externalDocID=10_1007_s11590_018_1352_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon |