How magnetism-based fractional spinels contribute to the bioavailability of geogenic chromium in serpentine soils of Taiwan
Serpentine soils are highly rich in geogenic chromium (Cr), typically associated with spinel minerals. The high resistance of these minerals to weathering has raised concerns regarding their contribution to Cr bioavailability in serpentine soils. This study collected soil horizon samples from two pe...
Saved in:
Published in | Geoderma Regional Vol. 39; p. e00871 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2352-0094 2352-0094 |
DOI | 10.1016/j.geodrs.2024.e00871 |
Cover
Loading…
Abstract | Serpentine soils are highly rich in geogenic chromium (Cr), typically associated with spinel minerals. The high resistance of these minerals to weathering has raised concerns regarding their contribution to Cr bioavailability in serpentine soils. This study collected soil horizon samples from two pedons (Entisol and Ultisol) in eastern Taiwan and applied a two-step magnetic separation method to divide the bulk soils into strongly magnetic (SM), weakly magnetic (WM), and nonmagnetic (NM) fractions. The basic characteristics of the bulk soils were examined. To characterize the mineralogy and geochemistry of the fractions and determine their quantitative contribution of bioavailable Cr in serpentine soils, we analyzed their mineral composition, magnetic properties, and elemental composition and valence by using various spectrometric techniques, such as X-ray diffraction, electron probe microanalysis, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, as well as vibrating sample magnetometry. The results indicated the main Cr-bearing minerals were magnetite and chromite in the SM and WM fractions, with minor occurrences in layer silicates, such as serpentine and chlorite, in the NM fraction. The total Cr content decreased in the following order: SM > WM > NM. The SM fraction had the lowest weight proportion, and this proportion was lower for the Ultisol than the Entisol. This observation indicated that the weathering of Cr spinels is associated with the substantial cation substitution of Al, Ca, Mn, and Ni for Fe and Cr in broken mineral grains and increases in the Fe(III) and Cr(VI) concentrations in magnetite. The SM fraction, mainly consists of magnetite and chromite, exhibited the highest concentration of bioavailable Cr extracted by 0.1 M HCl. However, the Cr-bearing layer silicates represented the largest potential pool of bioavailable Cr in the bulk soils because the weight proportion of the NM fraction was higher than those of the other fractions and increased during pedogenesis.
[Display omitted] |
---|---|
AbstractList | Serpentine soils are highly rich in geogenic chromium (Cr), typically associated with spinel minerals. The high resistance of these minerals to weathering has raised concerns regarding their contribution to Cr bioavailability in serpentine soils. This study collected soil horizon samples from two pedons (Entisol and Ultisol) in eastern Taiwan and applied a two-step magnetic separation method to divide the bulk soils into strongly magnetic (SM), weakly magnetic (WM), and nonmagnetic (NM) fractions. The basic characteristics of the bulk soils were examined. To characterize the mineralogy and geochemistry of the fractions and determine their quantitative contribution of bioavailable Cr in serpentine soils, we analyzed their mineral composition, magnetic properties, and elemental composition and valence by using various spectrometric techniques, such as X-ray diffraction, electron probe microanalysis, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, as well as vibrating sample magnetometry. The results indicated the main Cr-bearing minerals were magnetite and chromite in the SM and WM fractions, with minor occurrences in layer silicates, such as serpentine and chlorite, in the NM fraction. The total Cr content decreased in the following order: SM > WM > NM. The SM fraction had the lowest weight proportion, and this proportion was lower for the Ultisol than the Entisol. This observation indicated that the weathering of Cr spinels is associated with the substantial cation substitution of Al, Ca, Mn, and Ni for Fe and Cr in broken mineral grains and increases in the Fe(III) and Cr(VI) concentrations in magnetite. The SM fraction, mainly consists of magnetite and chromite, exhibited the highest concentration of bioavailable Cr extracted by 0.1 M HCl. However, the Cr-bearing layer silicates represented the largest potential pool of bioavailable Cr in the bulk soils because the weight proportion of the NM fraction was higher than those of the other fractions and increased during pedogenesis. Serpentine soils are highly rich in geogenic chromium (Cr), typically associated with spinel minerals. The high resistance of these minerals to weathering has raised concerns regarding their contribution to Cr bioavailability in serpentine soils. This study collected soil horizon samples from two pedons (Entisol and Ultisol) in eastern Taiwan and applied a two-step magnetic separation method to divide the bulk soils into strongly magnetic (SM), weakly magnetic (WM), and nonmagnetic (NM) fractions. The basic characteristics of the bulk soils were examined. To characterize the mineralogy and geochemistry of the fractions and determine their quantitative contribution of bioavailable Cr in serpentine soils, we analyzed their mineral composition, magnetic properties, and elemental composition and valence by using various spectrometric techniques, such as X-ray diffraction, electron probe microanalysis, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, as well as vibrating sample magnetometry. The results indicated the main Cr-bearing minerals were magnetite and chromite in the SM and WM fractions, with minor occurrences in layer silicates, such as serpentine and chlorite, in the NM fraction. The total Cr content decreased in the following order: SM > WM > NM. The SM fraction had the lowest weight proportion, and this proportion was lower for the Ultisol than the Entisol. This observation indicated that the weathering of Cr spinels is associated with the substantial cation substitution of Al, Ca, Mn, and Ni for Fe and Cr in broken mineral grains and increases in the Fe(III) and Cr(VI) concentrations in magnetite. The SM fraction, mainly consists of magnetite and chromite, exhibited the highest concentration of bioavailable Cr extracted by 0.1 M HCl. However, the Cr-bearing layer silicates represented the largest potential pool of bioavailable Cr in the bulk soils because the weight proportion of the NM fraction was higher than those of the other fractions and increased during pedogenesis. [Display omitted] |
ArticleNumber | e00871 |
Author | Hseu, Zeng-Yei Lee, Wei-Hao Yang, Chia-Yu Wang, Shan-Li |
Author_xml | – sequence: 1 givenname: Chia-Yu surname: Yang fullname: Yang, Chia-Yu organization: Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan – sequence: 2 givenname: Wei-Hao surname: Lee fullname: Lee, Wei-Hao organization: Institute of Mineral Resources Engineering, National Taipei University of Technology, Taipei 10634, Taiwan – sequence: 3 givenname: Shan-Li surname: Wang fullname: Wang, Shan-Li organization: Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan – sequence: 4 givenname: Zeng-Yei surname: Hseu fullname: Hseu, Zeng-Yei email: zyhseu@ntu.edu.tw organization: Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan |
BookMark | eNp9kMtKNDEQhYMoeH0DF1n-mx7TSV_Smx9EvIHgRtchl8pYQ3cyJhlFfHlb2oUrV1VQ53wU3zHZDzEAIec1W9Ws7i42qzVEl_KKM96sgDHZ13vkiIuWV4wNzf6v_ZCc5bxhjPGhFX3Hj8jnXXynk14HKJinyugMjvqkbcEY9EjzFgOMmdoYSkKzK0BLpOUFqMGo3zSO2uCI5YNGT-dH1hDQUvuS4oS7iWKgGdIWQpkxNEecUXPwSeO7DqfkwOsxw9nPPCHPN9dPV3fVw-Pt_dXlQ2W5lKUaWhCN16a3RrbeigZqyXljeV_3sjHMdaID470bnHO8my_Cg9TO9hKEsb04If8W7jbF1x3koibMFsZRB4i7rETdCtm27SDnaLNEbYo5J_Bqm3DS6UPVTH3rVhu16FbfutWie679X2qzKnhDSCpbhGDBYQJblIv4N-ALv1iQSg |
Cites_doi | 10.1016/j.jsames.2009.04.005 10.1016/j.apsusc.2010.10.051 10.1016/j.gexplo.2012.11.007 10.2475/ajs.304.1.67 10.1016/j.scitotenv.2020.142620 10.1007/s40726-016-0044-2 10.1016/j.elspec.2006.12.060 10.1016/S0277-3791(02)00022-7 10.1016/j.catena.2022.106418 10.2136/sssaj2010.0007 10.1007/s12665-020-09342-3 10.1080/08827508.2016.1168418 10.1016/0016-7037(93)90066-6 10.1016/j.geoderma.2013.03.021 10.1016/j.geoderma.2012.08.031 10.1016/j.geoderma.2018.04.030 10.1016/j.geoderma.2014.06.026 10.1021/es4015025 10.1016/j.geoderma.2016.01.025 10.1016/S0375-6742(99)00083-7 10.4141/S00-045 10.1016/j.jhazmat.2018.11.090 10.1180/minmag.2008.072.1.49 10.1016/j.apgeochem.2009.04.027 10.1016/S0022-3697(03)00237-3 10.1029/2020GC009227 10.1016/S0048-9697(02)00298-X |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geodrs.2024.e00871 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2352-0094 |
ExternalDocumentID | 10_1016_j_geodrs_2024_e00871 S2352009424001184 |
GeographicLocations | Taiwan |
GeographicLocations_xml | – name: Taiwan |
GroupedDBID | --M 0R~ 4.4 457 4G. 7-5 AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXKI AAXUO ABGRD ABMAC ABQEM ABQYD ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AHEUO AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC EBS EFJIC EJD FDB FIRID FYGXN HZ~ KOM M41 O9- OAUVE RIG ROL SPC SPCBC SSA SSE SSJ SSZ T5K ~G- AATTM AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c288t-95e34fab7cb85fc34e18224c271784b0d636ebffd9ddd2624c3fe8adc78e3bc73 |
IEDL.DBID | AIKHN |
ISSN | 2352-0094 |
IngestDate | Thu Jul 10 18:30:26 EDT 2025 Tue Jul 01 02:07:22 EDT 2025 Sat Dec 21 15:59:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pedogenesis Chromium Chromite Magnetite Entisol Ultisol |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-95e34fab7cb85fc34e18224c271784b0d636ebffd9ddd2624c3fe8adc78e3bc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153855598 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153855598 crossref_primary_10_1016_j_geodrs_2024_e00871 elsevier_sciencedirect_doi_10_1016_j_geodrs_2024_e00871 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 20241201 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma Regional |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sumner, Miller (bb0170) 1996 Maher, Alekseev, Alekseeva (bb0120) 2002; 21 Pyrgaki, Argyraki, Botsou, Kelepertzis, Paraskevopoulou, Karavoltsos, Mitsis, Dassenakis (bb0140) 2021; 80 Amacher (bb0015) 1996 Hseu, Zehetner, Fujii, Watanabe, Nakao (bb0085) 2018; 327 Kierczak, Pedziwiatr, Waroszewski, Modelska (bb0100) 2016; 268 Loeppert, Inskeep (bb0115) 1996 Chrysochoou, Theologou, Bompoti, Dermatas, Panagiotakis (bb0045) 2016; 2 Garnier, Quantin, Guimarães, Becquer (bb0055) 2008; 72 Ziemniak, Castelli (bb0195) 2003; 64 Kelepertzis, Galanos, Mitsis (bb0095) 2013; 125 Nelson, Sommers (bb0130) 1996 Thomas (bb0175) 1996 Hseu, Iizuka (bb0080) 2013; 202 Biesinger, Payne, Grosvenor, Lau, Gerson, Smart (bb0025) 2011; 257 Abre, Cingolani, Zimmermann, Cairncross (bb0005) 2009; 28 Alexander, Coleman, Keeler-Wolfe, Harrison (bb0010) 2007 Yang, Nguyen, Ngo, Navarrete, Nakao, Huang, Hseu (bb0190) 2022; 216 Soil Science Division Staff (bb0160) 2017 Evans, Heller (bb0050) 2003 Burkhard (bb0030) 1993; 57 Garnier, Quantin, Guimarães, Vantelon, Montargès-Pelletier, Becquer (bb0060) 2013; 193 Morrison, Goldhaber, Lee, Holloway, Wanty, Wolf, Ranville (bb0125) 2009; 24 Gee, Bauder (bb0065) 1986; vol. 9 Chen, Kanazawa, Horiguchi (bb0035) 2001; 55 Robles-Camacho, Armienta (bb0150) 2000; 68 Kabata-Pendias (bb0090) 2000 Becquer, Quantin, Sicot, Boudot (bb0020) 2003; 301 Horen, Soubrand, Kierczak, Joussein, Néel (bb0075) 2014; 235 Rajapaksha, Vithanage, Ok, Oze (bb0145) 2013; 47 Hodel, Macouin, Trindade, Araujo, Respaud, Meunier, Cassayre, Rousse, Drigo, Schorne-Pinto (bb0070) 2020; 21 Tripathy, Murthy, Singh, Suresh (bb0180) 2016; 37 Wei, Hsu, Paul Wang, Chen (bb0185) 2007; 156-158 Cheng, Jien, Izuka, Tsai, Chang, Hseu (bb0040) 2011; 75 Kierczak, Pietranik, Pędziwiatr (bb0105) 2021; 755 Lilli, Nikolaidis, Karatzas, Kalogerakis (bb0110) 2019; 366 Shaw, West, Hajek (bb0155) 2001; 81 Oze, Fendorf, Bird, Coleman (bb0135) 2004; 304 Soil Survey Staff (bb0165) 2022 Alexander (10.1016/j.geodrs.2024.e00871_bb0010) 2007 Hseu (10.1016/j.geodrs.2024.e00871_bb0080) 2013; 202 Soil Science Division Staff (10.1016/j.geodrs.2024.e00871_bb0160) 2017 Cheng (10.1016/j.geodrs.2024.e00871_bb0040) 2011; 75 Chen (10.1016/j.geodrs.2024.e00871_bb0035) 2001; 55 Garnier (10.1016/j.geodrs.2024.e00871_bb0055) 2008; 72 Oze (10.1016/j.geodrs.2024.e00871_bb0135) 2004; 304 Hodel (10.1016/j.geodrs.2024.e00871_bb0070) 2020; 21 Loeppert (10.1016/j.geodrs.2024.e00871_bb0115) 1996 Garnier (10.1016/j.geodrs.2024.e00871_bb0060) 2013; 193 Pyrgaki (10.1016/j.geodrs.2024.e00871_bb0140) 2021; 80 Thomas (10.1016/j.geodrs.2024.e00871_bb0175) 1996 Kabata-Pendias (10.1016/j.geodrs.2024.e00871_bb0090) 2000 Kierczak (10.1016/j.geodrs.2024.e00871_bb0105) 2021; 755 Yang (10.1016/j.geodrs.2024.e00871_bb0190) 2022; 216 Becquer (10.1016/j.geodrs.2024.e00871_bb0020) 2003; 301 Biesinger (10.1016/j.geodrs.2024.e00871_bb0025) 2011; 257 Morrison (10.1016/j.geodrs.2024.e00871_bb0125) 2009; 24 Gee (10.1016/j.geodrs.2024.e00871_bb0065) 1986; vol. 9 Wei (10.1016/j.geodrs.2024.e00871_bb0185) 2007; 156-158 Ziemniak (10.1016/j.geodrs.2024.e00871_bb0195) 2003; 64 Nelson (10.1016/j.geodrs.2024.e00871_bb0130) 1996 Lilli (10.1016/j.geodrs.2024.e00871_bb0110) 2019; 366 Shaw (10.1016/j.geodrs.2024.e00871_bb0155) 2001; 81 Chrysochoou (10.1016/j.geodrs.2024.e00871_bb0045) 2016; 2 Sumner (10.1016/j.geodrs.2024.e00871_bb0170) 1996 Soil Survey Staff (10.1016/j.geodrs.2024.e00871_bb0165) 2022 Abre (10.1016/j.geodrs.2024.e00871_bb0005) 2009; 28 Tripathy (10.1016/j.geodrs.2024.e00871_bb0180) 2016; 37 Kierczak (10.1016/j.geodrs.2024.e00871_bb0100) 2016; 268 Kelepertzis (10.1016/j.geodrs.2024.e00871_bb0095) 2013; 125 Evans (10.1016/j.geodrs.2024.e00871_bb0050) 2003 Horen (10.1016/j.geodrs.2024.e00871_bb0075) 2014; 235 Burkhard (10.1016/j.geodrs.2024.e00871_bb0030) 1993; 57 Hseu (10.1016/j.geodrs.2024.e00871_bb0085) 2018; 327 Maher (10.1016/j.geodrs.2024.e00871_bb0120) 2002; 21 Rajapaksha (10.1016/j.geodrs.2024.e00871_bb0145) 2013; 47 Amacher (10.1016/j.geodrs.2024.e00871_bb0015) 1996 Robles-Camacho (10.1016/j.geodrs.2024.e00871_bb0150) 2000; 68 |
References_xml | – start-page: 961 year: 1996 end-page: 1006 ident: bb0130 article-title: Total carbon, organic carbon, and organic matter publication-title: Methods of Soil Analysis. Part 3; Chemical Methods – volume: 68 start-page: 167 year: 2000 end-page: 181 ident: bb0150 article-title: Natural chromium contamination of groundwater at Leon Valley, Mexico publication-title: J. Geochem. Explor. – volume: 216 year: 2022 ident: bb0190 article-title: Increases in Ca/Mg ratios caused the increases in the mobile fractions of Cr and Ni in serpentinite-derived soils in humid Asia publication-title: Catena – volume: vol. 9 start-page: 383 year: 1986 end-page: 411 ident: bb0065 article-title: Particle-size analysis publication-title: Methods of Soil Analysis. Part 1., 2nd ed.: Agronomy Monograph – volume: 235 start-page: 83 year: 2014 end-page: 89 ident: bb0075 article-title: Magnetic characterization of ferrichromite in soils developed on serpentinites under temperate climate publication-title: Geoderma – volume: 125 start-page: 56 year: 2013 end-page: 68 ident: bb0095 article-title: Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva Valley (Central Greece) publication-title: J. Geochem. Explor. – volume: 55 start-page: 3 year: 2001 end-page: 10 ident: bb0035 article-title: Effect of chromium on some enzyme activities in the wheat rhizosphere publication-title: Soil Microorg. – volume: 21 start-page: 1571 year: 2002 end-page: 1576 ident: bb0120 article-title: Variation of soil magnetism across the Russian steppe: its significance for use of soil magnetism as a palaeorainfall proxy publication-title: Quat. Sci. Rev. – volume: 64 start-page: 2081 year: 2003 end-page: 2091 ident: bb0195 article-title: Immiscibility in the Fe publication-title: J. Phys. Chem. Solids – volume: 57 start-page: 1297 year: 1993 end-page: 1306 ident: bb0030 article-title: Accessory chromium spinels: their coexistence and alteration in serpentinites publication-title: Geochim. Cosmochim. Acta – start-page: 475 year: 1996 end-page: 489 ident: bb0175 article-title: Soil pH and soil acidity publication-title: Methods of Soil Analysis. Part 3; Chemical Methods – start-page: 1201 year: 1996 end-page: 1229 ident: bb0170 article-title: Cation exchange capacity and exchange coefficients publication-title: Methods of Soil Analysis. Part 3; Chemical Methods – volume: 327 start-page: 97 year: 2018 end-page: 106 ident: bb0085 article-title: Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient publication-title: Geoderma – year: 2007 ident: bb0010 article-title: Serpentine Geoecology of Western North America: Geology, Soils, and Vegetation – volume: 301 start-page: 251 year: 2003 end-page: 261 ident: bb0020 article-title: Chromium availability in ultramafic soils from New Caledonia publication-title: Sci. Total Environ. – year: 2003 ident: bb0050 article-title: Environmental Magnetism: Principles and Applications of Enviromagnetics – start-page: 739 year: 1996 end-page: 768 ident: bb0015 article-title: Nickel, cadmium, and lead publication-title: Methods of Soil Analysis. Part 3; Chemical Methods. J Am Soc Agron and Soil Sci. Soc. Am., Madison, Wisconsin, USA – volume: 257 start-page: 2717 year: 2011 end-page: 2730 ident: bb0025 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Min N, Fe, Co and Ni publication-title: Appl. Surf. Sci. – volume: 202 start-page: 126 year: 2013 end-page: 133 ident: bb0080 article-title: Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites publication-title: Geoderma – volume: 156-158 start-page: 204 year: 2007 end-page: 207 ident: bb0185 article-title: XAS study of chromium recoverable from plating sludge publication-title: J. Electron Spectrosc. Relat. Phenom. – year: 2022 ident: bb0165 article-title: Keys to Soil Taxonomy – volume: 28 start-page: 407 year: 2009 end-page: 418 ident: bb0005 article-title: Detrital chromian spinels from upper Ordovician deposits in the Precordillera terrane, Argentina: a mafic crust input publication-title: J. S. Am. Earth Sci. – volume: 24 start-page: 1500 year: 2009 end-page: 1511 ident: bb0125 article-title: A regional-scale study of chromium and nickel in soils of northern California, USA publication-title: Appl. Geochem. – volume: 81 start-page: 415 year: 2001 end-page: 421 ident: bb0155 article-title: Ca-Mg ratios for evaluating pedogenesis in the piedmont province of the southeastern United States of America publication-title: Can. J. Soil Sci. – volume: 755 year: 2021 ident: bb0105 article-title: Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: a review publication-title: Sci. Total Environ. – volume: 2 start-page: 224 year: 2016 end-page: 235 ident: bb0045 article-title: Occurrence, origin and transformation processes of geogenic chromium in soils and sediments publication-title: Curr. Pollut. Rep. – volume: 80 start-page: 1 year: 2021 end-page: 18 ident: bb0140 article-title: Hydrogeochemical investigation of Cr in the ultramafic rock-related water bodies of Loutraki basin, Northeast Peloponnese, Greece publication-title: Environ. Earth Sci. – year: 2000 ident: bb0090 article-title: Trace Elements in Soils and Plants – volume: 268 start-page: 78 year: 2016 end-page: 91 ident: bb0100 article-title: Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate publication-title: Geoderma – volume: 37 start-page: 196 year: 2016 end-page: 210 ident: bb0180 article-title: Processing of ferruginous chromite ore by dry high-intensity magnetic separation publication-title: Miner. Process. Extr. Metall. Rev. – year: 2017 ident: bb0160 article-title: Soil survey manual publication-title: USDA Handbook 18 – volume: 72 start-page: 49 year: 2008 end-page: 53 ident: bb0055 article-title: Can chromite weathering be a source of Cr in soils? publication-title: Mineral. Mag. – volume: 75 start-page: 659 year: 2011 end-page: 668 ident: bb0040 article-title: Pedogenic chromium and nickel partitioning in serpentine soils along a Toposequence publication-title: Soil Sci. Soc. Am. J. – volume: 21 year: 2020 ident: bb0070 article-title: Magnetic properties of Ferritchromite and Cr-magnetite and monitoring of Cr-Spinels alteration in ultramafic and mafic rocks publication-title: Geochem. Geophys. Geosyst. – volume: 47 start-page: 9722 year: 2013 end-page: 9729 ident: bb0145 article-title: Cr (VI) formation related to Cr (III)-muscovite and birnessite interactions in ultramafic environments publication-title: Environ. Sci. Technol. – volume: 304 start-page: 67 year: 2004 end-page: 101 ident: bb0135 article-title: Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California publication-title: Am. J. Sci. – start-page: 639 year: 1996 end-page: 661 ident: bb0115 article-title: Iron publication-title: Methods of Soil Analysis. Part 3; Chemical Methods – volume: 193 start-page: 256 year: 2013 end-page: 264 ident: bb0060 article-title: Cr (VI) genesis and dynamics in Ferralsols developed from ultramafic rocks: the case of Niquelândia, Brazil publication-title: Geoderma – volume: 366 start-page: 169 year: 2019 end-page: 176 ident: bb0110 article-title: Identifying the controlling mechanism of geogenic origin chromium release in soils publication-title: J. Hazard. Mater. – volume: 28 start-page: 407 year: 2009 ident: 10.1016/j.geodrs.2024.e00871_bb0005 article-title: Detrital chromian spinels from upper Ordovician deposits in the Precordillera terrane, Argentina: a mafic crust input publication-title: J. S. Am. Earth Sci. doi: 10.1016/j.jsames.2009.04.005 – volume: 257 start-page: 2717 issue: 7 year: 2011 ident: 10.1016/j.geodrs.2024.e00871_bb0025 article-title: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Min N, Fe, Co and Ni publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.10.051 – volume: 55 start-page: 3 year: 2001 ident: 10.1016/j.geodrs.2024.e00871_bb0035 article-title: Effect of chromium on some enzyme activities in the wheat rhizosphere publication-title: Soil Microorg. – start-page: 739 year: 1996 ident: 10.1016/j.geodrs.2024.e00871_bb0015 article-title: Nickel, cadmium, and lead – year: 2007 ident: 10.1016/j.geodrs.2024.e00871_bb0010 – year: 2000 ident: 10.1016/j.geodrs.2024.e00871_bb0090 – volume: 125 start-page: 56 year: 2013 ident: 10.1016/j.geodrs.2024.e00871_bb0095 article-title: Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva Valley (Central Greece) publication-title: J. Geochem. Explor. doi: 10.1016/j.gexplo.2012.11.007 – start-page: 961 year: 1996 ident: 10.1016/j.geodrs.2024.e00871_bb0130 article-title: Total carbon, organic carbon, and organic matter – volume: 304 start-page: 67 issue: 1 year: 2004 ident: 10.1016/j.geodrs.2024.e00871_bb0135 article-title: Chromium geochemistry in serpentinized ultramafic rocks and serpentine soils from the Franciscan complex of California publication-title: Am. J. Sci. doi: 10.2475/ajs.304.1.67 – volume: 755 year: 2021 ident: 10.1016/j.geodrs.2024.e00871_bb0105 article-title: Ultramafic geoecosystems as a natural source of Ni, Cr, and Co to the environment: a review publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142620 – year: 2003 ident: 10.1016/j.geodrs.2024.e00871_bb0050 – volume: 2 start-page: 224 issue: 4 year: 2016 ident: 10.1016/j.geodrs.2024.e00871_bb0045 article-title: Occurrence, origin and transformation processes of geogenic chromium in soils and sediments publication-title: Curr. Pollut. Rep. doi: 10.1007/s40726-016-0044-2 – start-page: 1201 year: 1996 ident: 10.1016/j.geodrs.2024.e00871_bb0170 article-title: Cation exchange capacity and exchange coefficients – volume: 156-158 start-page: 204 year: 2007 ident: 10.1016/j.geodrs.2024.e00871_bb0185 article-title: XAS study of chromium recoverable from plating sludge publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/j.elspec.2006.12.060 – volume: 21 start-page: 1571 issue: 14–15 year: 2002 ident: 10.1016/j.geodrs.2024.e00871_bb0120 article-title: Variation of soil magnetism across the Russian steppe: its significance for use of soil magnetism as a palaeorainfall proxy publication-title: Quat. Sci. Rev. doi: 10.1016/S0277-3791(02)00022-7 – volume: vol. 9 start-page: 383 year: 1986 ident: 10.1016/j.geodrs.2024.e00871_bb0065 article-title: Particle-size analysis – volume: 216 year: 2022 ident: 10.1016/j.geodrs.2024.e00871_bb0190 article-title: Increases in Ca/Mg ratios caused the increases in the mobile fractions of Cr and Ni in serpentinite-derived soils in humid Asia publication-title: Catena doi: 10.1016/j.catena.2022.106418 – volume: 75 start-page: 659 issue: 2 year: 2011 ident: 10.1016/j.geodrs.2024.e00871_bb0040 article-title: Pedogenic chromium and nickel partitioning in serpentine soils along a Toposequence publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0007 – year: 2022 ident: 10.1016/j.geodrs.2024.e00871_bb0165 – volume: 80 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.geodrs.2024.e00871_bb0140 article-title: Hydrogeochemical investigation of Cr in the ultramafic rock-related water bodies of Loutraki basin, Northeast Peloponnese, Greece publication-title: Environ. Earth Sci. doi: 10.1007/s12665-020-09342-3 – volume: 37 start-page: 196 issue: 3 year: 2016 ident: 10.1016/j.geodrs.2024.e00871_bb0180 article-title: Processing of ferruginous chromite ore by dry high-intensity magnetic separation publication-title: Miner. Process. Extr. Metall. Rev. doi: 10.1080/08827508.2016.1168418 – start-page: 475 year: 1996 ident: 10.1016/j.geodrs.2024.e00871_bb0175 article-title: Soil pH and soil acidity – volume: 57 start-page: 1297 issue: 6 year: 1993 ident: 10.1016/j.geodrs.2024.e00871_bb0030 article-title: Accessory chromium spinels: their coexistence and alteration in serpentinites publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(93)90066-6 – volume: 202 start-page: 126 year: 2013 ident: 10.1016/j.geodrs.2024.e00871_bb0080 article-title: Pedogeochemical characteristics of chromite in a paddy soil derived from serpentinites publication-title: Geoderma doi: 10.1016/j.geoderma.2013.03.021 – volume: 193 start-page: 256 year: 2013 ident: 10.1016/j.geodrs.2024.e00871_bb0060 article-title: Cr (VI) genesis and dynamics in Ferralsols developed from ultramafic rocks: the case of Niquelândia, Brazil publication-title: Geoderma doi: 10.1016/j.geoderma.2012.08.031 – volume: 327 start-page: 97 year: 2018 ident: 10.1016/j.geodrs.2024.e00871_bb0085 article-title: Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient publication-title: Geoderma doi: 10.1016/j.geoderma.2018.04.030 – volume: 235 start-page: 83 year: 2014 ident: 10.1016/j.geodrs.2024.e00871_bb0075 article-title: Magnetic characterization of ferrichromite in soils developed on serpentinites under temperate climate publication-title: Geoderma doi: 10.1016/j.geoderma.2014.06.026 – volume: 47 start-page: 9722 issue: 17 year: 2013 ident: 10.1016/j.geodrs.2024.e00871_bb0145 article-title: Cr (VI) formation related to Cr (III)-muscovite and birnessite interactions in ultramafic environments publication-title: Environ. Sci. Technol. doi: 10.1021/es4015025 – volume: 268 start-page: 78 year: 2016 ident: 10.1016/j.geodrs.2024.e00871_bb0100 article-title: Mobility of Ni, Cr and Co in serpentine soils derived on various ultrabasic bedrocks under temperate climate publication-title: Geoderma doi: 10.1016/j.geoderma.2016.01.025 – start-page: 639 year: 1996 ident: 10.1016/j.geodrs.2024.e00871_bb0115 article-title: Iron – volume: 68 start-page: 167 issue: 3 year: 2000 ident: 10.1016/j.geodrs.2024.e00871_bb0150 article-title: Natural chromium contamination of groundwater at Leon Valley, Mexico publication-title: J. Geochem. Explor. doi: 10.1016/S0375-6742(99)00083-7 – year: 2017 ident: 10.1016/j.geodrs.2024.e00871_bb0160 article-title: Soil survey manual – volume: 81 start-page: 415 issue: 4 year: 2001 ident: 10.1016/j.geodrs.2024.e00871_bb0155 article-title: Ca-Mg ratios for evaluating pedogenesis in the piedmont province of the southeastern United States of America publication-title: Can. J. Soil Sci. doi: 10.4141/S00-045 – volume: 366 start-page: 169 year: 2019 ident: 10.1016/j.geodrs.2024.e00871_bb0110 article-title: Identifying the controlling mechanism of geogenic origin chromium release in soils publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.11.090 – volume: 72 start-page: 49 issue: 1 year: 2008 ident: 10.1016/j.geodrs.2024.e00871_bb0055 article-title: Can chromite weathering be a source of Cr in soils? publication-title: Mineral. Mag. doi: 10.1180/minmag.2008.072.1.49 – volume: 24 start-page: 1500 issue: 8 year: 2009 ident: 10.1016/j.geodrs.2024.e00871_bb0125 article-title: A regional-scale study of chromium and nickel in soils of northern California, USA publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2009.04.027 – volume: 64 start-page: 2081 issue: 11 year: 2003 ident: 10.1016/j.geodrs.2024.e00871_bb0195 article-title: Immiscibility in the Fe3O4–FeCr2O4 spinel binary publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(03)00237-3 – volume: 21 issue: 11 year: 2020 ident: 10.1016/j.geodrs.2024.e00871_bb0070 article-title: Magnetic properties of Ferritchromite and Cr-magnetite and monitoring of Cr-Spinels alteration in ultramafic and mafic rocks publication-title: Geochem. Geophys. Geosyst. doi: 10.1029/2020GC009227 – volume: 301 start-page: 251 year: 2003 ident: 10.1016/j.geodrs.2024.e00871_bb0020 article-title: Chromium availability in ultramafic soils from New Caledonia publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(02)00298-X |
SSID | ssj0002953762 |
Score | 2.3014188 |
Snippet | Serpentine soils are highly rich in geogenic chromium (Cr), typically associated with spinel minerals. The high resistance of these minerals to weathering has... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e00871 |
SubjectTerms | bioavailability cations Chromite Chromium elemental composition Entisol Entisols geochemistry magnetic separation magnetism Magnetite mineral content Pedogenesis serpentine soil formation soil horizons Taiwan Ultisol Ultisols X-ray absorption spectroscopy X-ray diffraction X-ray photoelectron spectroscopy |
Title | How magnetism-based fractional spinels contribute to the bioavailability of geogenic chromium in serpentine soils of Taiwan |
URI | https://dx.doi.org/10.1016/j.geodrs.2024.e00871 https://www.proquest.com/docview/3153855598 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwFBT5uPQSUtrQtGlRoVdla0m25WMIDZss5NAmNDchyVKikLWWtbeh9M_3PX8UGgiFnoxtyYin59HIHo0I-VQZZQDmPMtMxpkEgs-s-yyZVcE7a2AGUPdun5fF_Fpe3OQ3W-R0WguDssoR-wdM79F6vDIbozlbxTj7xkVvGSRRBQk0WW6TXS6qAlJ79-R8Mb_886mFV-hZwvtt5nLOsM60iK5Xet36VK_RupvLY48ebdlzg9QTuO7HoLN9sjeSR3oytO8l2fLNK_Jrnh7p0tw2vovtkuGwVNOwHhYsQOl2BUTyoaW9KB13t_K0SxR4H7UxmR8mPgxW3T9pChQaCRkVHXV367SMmyWNDYUsXaGoqPG0TREeBQWvTHw0zWtyffbl6nTOxi0VmONKdazKvZDB2NJZlQcnpM9QRuo4zOqUtNAxovA2hLqq65oXcEcEr0ztSuWFdaU4IDtNavwbQoHoojdzVihVyKoI1qjcQl1eOpgl2eKQsCmGejU4Z-hJUnavh5hrjLkeYn5IyinQ-q8M0ADu_6j5ceoXDS8H_vEwjU-bVgvE8xw96N_-99PfkRd4NkhYjshOt97490BEOvthTDQ8Lr5-X_wGwm3iCA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LatwwFBXJZNFsSktamj5V6FadWpZteRlCg9Oks8kEshOSLKUKGWsYexpKf773-lFIIQS6tR6Iq-ujI_voiJBPpZYaYM6xRCecCSD4zNgvghnpnTUadgB17_a5yKtL8e0qu9ohx9NZGJRVjtg_YHqP1uOT-RjN-TqE-QVPe8sggSpIoMlil-yhO1U2I3tHp2fV4u-nFl6iZwnvr5nLOMM20yG6Xul17WK9QetuLj479GhLHlqk_oHrfg06eUaejuSRHg3je052XHNAflfxjq70deO60K4YLks19ZvhwALUbtdAJG9b2ovS8XYrR7tIgfdRE6L-qcPtYNX9i0ZPYZCQUcFS-2MTV2G7oqGhkKVrFBU1jrYxQFdQcanDnW5ekMuTr8vjio1XKjDLpexYmblUeG0Ka2TmbSpcgjJSy2FXJ4WBiUlzZ7yvy7queQ4lqXdS17aQLjW2SF-SWRMb94pQILrozZzkUuaizL3RMjPQlhcWdkkmPyRsiqFaD84ZapKU3agh5gpjroaYH5JiCrS6lwEKwP2Rlh-neVHwcuAfD924uG1VinieoQf96__u_QN5Ui2_n6vz08XZG7KPJYOc5S2ZdZutewekpDPvx6T7A1Tm40s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+magnetism-based+fractional+spinels+contribute+to+the+bioavailability+of+geogenic+chromium+in+serpentine+soils+of+Taiwan&rft.jtitle=Geoderma+Regional&rft.au=Yang%2C+Chia-Yu&rft.au=Lee%2C+Wei-Hao&rft.au=Wang%2C+Shan-Li&rft.au=Hseu%2C+Zeng-Yei&rft.date=2024-12-01&rft.pub=Elsevier+B.V&rft.issn=2352-0094&rft.eissn=2352-0094&rft.volume=39&rft_id=info:doi/10.1016%2Fj.geodrs.2024.e00871&rft.externalDocID=S2352009424001184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-0094&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-0094&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-0094&client=summon |