Recoverable robust knapsacks: the discrete scenario case
The knapsack problem is one of the basic problems in combinatorial optimization. In real-world applications it is often part of a more complex problem. Examples are machine capacities in production planning or bandwidth restrictions in telecommunication network design. Due to unpredictable future se...
Saved in:
Published in | Optimization letters Vol. 5; no. 3; pp. 379 - 392 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer-Verlag
01.08.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The knapsack problem is one of the basic problems in combinatorial optimization. In real-world applications it is often part of a more complex problem. Examples are machine capacities in production planning or bandwidth restrictions in telecommunication network design. Due to unpredictable future settings or erroneous data, parameters of such a subproblem are subject to uncertainties. In high risk situations a robust approach should be chosen to deal with these uncertainties. Unfortunately, classical robust optimization outputs solutions with little profit by prohibiting any adaption of the solution when the actual realization of the uncertain parameters is known. This ignores the fact that in most settings minor changes to a previously determined solution are possible. To overcome these drawbacks we allow a limited recovery of a previously fixed item set as soon as the data are known by deleting at most
k
items and adding up to
ℓ
new items. We consider the complexity status of this recoverable robust knapsack problem and extend the classical concept of cover inequalities to obtain stronger polyhedral descriptions. Finally, we present two extensive computational studies to investigate the influence of parameters
k
and
ℓ
to the objective and evaluate the effectiveness of our new class of valid inequalities. |
---|---|
AbstractList | The knapsack problem is one of the basic problems in combinatorial optimization. In real-world applications it is often part of a more complex problem. Examples are machine capacities in production planning or bandwidth restrictions in telecommunication network design. Due to unpredictable future settings or erroneous data, parameters of such a subproblem are subject to uncertainties. In high risk situations a robust approach should be chosen to deal with these uncertainties. Unfortunately, classical robust optimization outputs solutions with little profit by prohibiting any adaption of the solution when the actual realization of the uncertain parameters is known. This ignores the fact that in most settings minor changes to a previously determined solution are possible. To overcome these drawbacks we allow a limited recovery of a previously fixed item set as soon as the data are known by deleting at most
k
items and adding up to
ℓ
new items. We consider the complexity status of this recoverable robust knapsack problem and extend the classical concept of cover inequalities to obtain stronger polyhedral descriptions. Finally, we present two extensive computational studies to investigate the influence of parameters
k
and
ℓ
to the objective and evaluate the effectiveness of our new class of valid inequalities. |
Author | Koster, Arie M. C. A. Büsing, Christina Kutschka, Manuel |
Author_xml | – sequence: 1 givenname: Christina surname: Büsing fullname: Büsing, Christina email: cbuesing@math.tu-berlin.de organization: Institut für Mathematik, Technische Universität Berlin – sequence: 2 givenname: Arie M. C. A. surname: Koster fullname: Koster, Arie M. C. A. organization: Lehrstuhl II für Mathematik, RWTH Aachen University – sequence: 3 givenname: Manuel surname: Kutschka fullname: Kutschka, Manuel organization: Lehrstuhl II für Mathematik, RWTH Aachen University |
BookMark | eNp9j8tOwzAQRS1UJNrCB7DLDxhm7CS22aGKl1QJCcHacpwJpC1J5UmR-HtSBbFkNXcx5-qehZh1fUdCXCJcIYC5ZsTCgQRECRqMxBMxR1sqmecWZn_ZqDOxYN4AlIjOzYV9odh_UQrVjrLUVwcesm0X9hzilm-y4YOyuuWYaKCMI3UhtX0WA9O5OG3Cjuni9y7F2_3d6-pRrp8fnla3axmVtYN0gDYGQoVkC6tNravKOiTQqjKgMVLMtXFUawKn8yK3ZAIVZdC2amrd6KXAqTemnjlR4_ep_Qzp2yP4o7qf1P2o7o_qHkdGTQyPv907Jb_pD6kbZ_4D_QBEnl1L |
CitedBy_id | crossref_primary_10_1016_j_ejor_2017_08_013 crossref_primary_10_1137_120880355 crossref_primary_10_1007_s13675_018_0103_0 crossref_primary_10_1007_s10479_023_05725_4 crossref_primary_10_1016_j_cor_2014_09_010 crossref_primary_10_1016_j_cor_2017_02_009 crossref_primary_10_1007_s11235_015_9987_7 crossref_primary_10_1137_16M1070049 crossref_primary_10_1186_s13677_014_0018_0 crossref_primary_10_1007_s11590_016_1057_x crossref_primary_10_1007_s10479_014_1618_2 crossref_primary_10_1287_ijoc_1120_0511 crossref_primary_10_1016_j_orl_2022_05_001 crossref_primary_10_1016_j_trb_2015_06_001 crossref_primary_10_1007_s10878_017_0147_8 crossref_primary_10_1016_j_cor_2024_106608 crossref_primary_10_1007_s10951_018_0559_z crossref_primary_10_1016_j_ejor_2017_02_014 crossref_primary_10_1016_j_cor_2021_105692 crossref_primary_10_1016_j_cor_2013_05_005 crossref_primary_10_1016_j_ejor_2015_12_008 crossref_primary_10_1080_10556788_2013_869807 crossref_primary_10_1287_ijoc_2014_0606 crossref_primary_10_1016_j_dam_2017_08_014 crossref_primary_10_1007_s13675_013_0013_0 crossref_primary_10_1007_s13675_018_0107_9 crossref_primary_10_1007_s10878_016_0089_6 |
Cites_doi | 10.1007/BF01580441 10.1007/s12532-008-0001-1 10.1287/opre.31.5.803 10.1002/nav.3800030107 10.1007/s10107-003-0396-4 10.1023/A:1009821323279 10.1287/opre.1030.0065 10.1007/BF01580440 10.1287/opre.44.2.407 10.1007/s10107-010-0359-5 10.1007/978-1-4419-1306-7_2 10.1007/978-3-540-24777-7 10.1109/ICSSSM.2006.320662 10.1057/jors.1990.166 10.1007/978-1-4684-2001-2_9 |
ContentType | Journal Article |
Copyright | Springer-Verlag 2011 |
Copyright_xml | – notice: Springer-Verlag 2011 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11590-011-0307-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1862-4480 |
EndPage | 392 |
ExternalDocumentID | 10_1007_s11590_011_0307_1 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBXA ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BAPOH BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9M PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7Y Z81 Z83 Z88 ZMTXR ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c288t-9018cae121e85837d3bb891e032b7031cec4379ed3e0934548e7ae56a38bfd3f3 |
IEDL.DBID | AGYKE |
ISSN | 1862-4472 |
IngestDate | Thu Sep 12 17:09:40 EDT 2024 Sat Dec 16 12:07:00 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Recoverable robustness Extended cover inequalities Knapsack |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-9018cae121e85837d3bb891e032b7031cec4379ed3e0934548e7ae56a38bfd3f3 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1007_s11590_011_0307_1 springer_journals_10_1007_s11590_011_0307_1 |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Optimization letters |
PublicationTitleAbbrev | Optim Lett |
PublicationYear | 2011 |
Publisher | Springer-Verlag |
Publisher_xml | – name: Springer-Verlag |
References | Kaparis, Letchford (CR15) 2010; 124 CR2 Achterberg (CR1) 2009; 1 CR4 CR8 CR18 CR17 Crowder, Johnson, Padberg (CR9) 1983; 31 CR16 Bertimas, Sim (CR7) 2004; 52 CR14 Balas (CR3) 1975; 8 Cicerone, D’Angelo, Di Stefano, Frigioni, Navarra, Schachtebeck, Schöbel (CR10) 2009 Wolsey (CR22) 1975; 8 Gabrel, Minoux (CR12) 2002; 30 Fischetti, Lodi, Salvagnin (CR11) 2009; 10 Iida (CR13) 1999; 3 CR20 Weismantel (CR21) 1997; 77 Bellman (CR5) 1956; 3 Bertimas, Sim (CR6) 2003; 98 Liebchen, Lübbecke, Möhring, Stiller (CR19) 2009 Yu (CR23) 1996; 44 307_CR18 307_CR17 R. Bellman (307_CR5) 1956; 3 307_CR16 S. Cicerone (307_CR10) 2009 307_CR2 M. Fischetti (307_CR11) 2009; 10 V. Gabrel (307_CR12) 2002; 30 307_CR20 G. Yu (307_CR23) 1996; 44 H. Iida (307_CR13) 1999; 3 307_CR14 D. Bertimas (307_CR7) 2004; 52 R. Weismantel (307_CR21) 1997; 77 T. Achterberg (307_CR1) 2009; 1 H. Crowder (307_CR9) 1983; 31 307_CR4 E. Balas (307_CR3) 1975; 8 C. Liebchen (307_CR19) 2009 D. Bertimas (307_CR6) 2003; 98 307_CR8 K. Kaparis (307_CR15) 2010; 124 L. Wolsey (307_CR22) 1975; 8 |
References_xml | – volume: 77 start-page: 49 year: 1997 end-page: 68 ident: CR21 article-title: On the 0-1 knapsack polytope publication-title: Math. Prog. contributor: fullname: Weismantel – ident: CR18 – volume: 8 start-page: 165 year: 1975 end-page: 178 ident: CR22 article-title: Faces for a linear inequality in 0-1 variables publication-title: Math. Prog. doi: 10.1007/BF01580441 contributor: fullname: Wolsey – volume: 1 start-page: 1 issue: 1 year: 2009 end-page: 42 ident: CR1 article-title: SCIP: solving constraint integer programs publication-title: Math. Prog. Comp doi: 10.1007/s12532-008-0001-1 contributor: fullname: Achterberg – ident: CR4 – volume: 31 start-page: 803 year: 1983 end-page: 834 ident: CR9 article-title: Large-scale zero-one linear programming problems publication-title: Oper. Res. doi: 10.1287/opre.31.5.803 contributor: fullname: Padberg – ident: CR14 – ident: CR2 – ident: CR16 – volume: 3 start-page: 67 year: 1956 end-page: 70 ident: CR5 article-title: Notes on the theory of dynamic programming iv—maximization over discrete sets publication-title: Naval Res. Logist. Quart. doi: 10.1002/nav.3800030107 contributor: fullname: Bellman – ident: CR17 – volume: 98 start-page: 49 year: 2003 end-page: 71 ident: CR6 article-title: Robust discrete optimization and network flows publication-title: Math. Prog. Ser. B doi: 10.1007/s10107-003-0396-4 contributor: fullname: Sim – volume: 3 start-page: 89 year: 1999 end-page: 94 ident: CR13 article-title: A note on the max- min 0-1 knapsack problem publication-title: J. Comb. Opt. doi: 10.1023/A:1009821323279 contributor: fullname: Iida – volume: 52 start-page: 35 year: 2004 end-page: 53 ident: CR7 article-title: The price of robustness publication-title: Oper. Res doi: 10.1287/opre.1030.0065 contributor: fullname: Sim – volume: 8 start-page: 146 year: 1975 end-page: 164 ident: CR3 article-title: Facets of the knapsack polytope publication-title: Math. Prog doi: 10.1007/BF01580440 contributor: fullname: Balas – year: 2009 ident: CR19 publication-title: The concept of recoverable robustness, linear programming recovery, and railway applications Robust and Online Large-Scale Optimization, vol 5868 of LNCS, 1–27 contributor: fullname: Stiller – ident: CR8 – volume: 30 start-page: 252 year: 2002 end-page: 264 ident: CR12 article-title: A scheme for exact separation of extended cover inequalities and application to multidimensional knapsack problems publication-title: OR Lett. contributor: fullname: Minoux – volume: 44 start-page: 407 year: 1996 end-page: 415 ident: CR23 article-title: On the max- min 0-1 knapsack problem with robust optimization applications publication-title: Oper. Res. doi: 10.1287/opre.44.2.407 contributor: fullname: Yu – volume: 124 start-page: 69 issue: 1-2 year: 2010 end-page: 91 ident: CR15 article-title: Separation algorithms for 0-1 knapsack polytopes publication-title: Math. Prog. doi: 10.1007/s10107-010-0359-5 contributor: fullname: Letchford – year: 2009 ident: CR10 publication-title: Recoverable robustness in shunting and timetabling Robust and Online Large-Scale Optimization, vol. 5868 of LNCS, 28–60 contributor: fullname: Schöbel – volume: 10 start-page: 39 year: 2009 end-page: 70 ident: CR11 article-title: Just MIP it! publication-title: Ann. Inf. Syst. doi: 10.1007/978-1-4419-1306-7_2 contributor: fullname: Salvagnin – ident: CR20 – volume: 30 start-page: 252 year: 2002 ident: 307_CR12 publication-title: OR Lett. contributor: fullname: V. Gabrel – volume: 98 start-page: 49 year: 2003 ident: 307_CR6 publication-title: Math. Prog. Ser. B doi: 10.1007/s10107-003-0396-4 contributor: fullname: D. Bertimas – volume: 8 start-page: 146 year: 1975 ident: 307_CR3 publication-title: Math. Prog doi: 10.1007/BF01580440 contributor: fullname: E. Balas – ident: 307_CR17 doi: 10.1007/978-3-540-24777-7 – ident: 307_CR14 doi: 10.1109/ICSSSM.2006.320662 – ident: 307_CR2 – volume-title: Recoverable robustness in shunting and timetabling Robust and Online Large-Scale Optimization, vol. 5868 of LNCS, 28–60 year: 2009 ident: 307_CR10 contributor: fullname: S. Cicerone – ident: 307_CR18 – volume: 3 start-page: 67 year: 1956 ident: 307_CR5 publication-title: Naval Res. Logist. Quart. doi: 10.1002/nav.3800030107 contributor: fullname: R. Bellman – volume: 31 start-page: 803 year: 1983 ident: 307_CR9 publication-title: Oper. Res. doi: 10.1287/opre.31.5.803 contributor: fullname: H. Crowder – volume: 8 start-page: 165 year: 1975 ident: 307_CR22 publication-title: Math. Prog. doi: 10.1007/BF01580441 contributor: fullname: L. Wolsey – ident: 307_CR4 doi: 10.1057/jors.1990.166 – ident: 307_CR8 – volume: 10 start-page: 39 year: 2009 ident: 307_CR11 publication-title: Ann. Inf. Syst. doi: 10.1007/978-1-4419-1306-7_2 contributor: fullname: M. Fischetti – volume: 77 start-page: 49 year: 1997 ident: 307_CR21 publication-title: Math. Prog. contributor: fullname: R. Weismantel – volume: 1 start-page: 1 issue: 1 year: 2009 ident: 307_CR1 publication-title: Math. Prog. Comp doi: 10.1007/s12532-008-0001-1 contributor: fullname: T. Achterberg – ident: 307_CR20 – volume-title: The concept of recoverable robustness, linear programming recovery, and railway applications Robust and Online Large-Scale Optimization, vol 5868 of LNCS, 1–27 year: 2009 ident: 307_CR19 contributor: fullname: C. Liebchen – volume: 124 start-page: 69 issue: 1-2 year: 2010 ident: 307_CR15 publication-title: Math. Prog. doi: 10.1007/s10107-010-0359-5 contributor: fullname: K. Kaparis – ident: 307_CR16 doi: 10.1007/978-1-4684-2001-2_9 – volume: 52 start-page: 35 year: 2004 ident: 307_CR7 publication-title: Oper. Res doi: 10.1287/opre.1030.0065 contributor: fullname: D. Bertimas – volume: 3 start-page: 89 year: 1999 ident: 307_CR13 publication-title: J. Comb. Opt. doi: 10.1023/A:1009821323279 contributor: fullname: H. Iida – volume: 44 start-page: 407 year: 1996 ident: 307_CR23 publication-title: Oper. Res. doi: 10.1287/opre.44.2.407 contributor: fullname: G. Yu |
SSID | ssj0061199 |
Score | 2.085735 |
Snippet | The knapsack problem is one of the basic problems in combinatorial optimization. In real-world applications it is often part of a more complex problem.... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 379 |
SubjectTerms | Computational Intelligence Mathematics Mathematics and Statistics Numerical and Computational Physics Operations Research/Decision Theory Optimization Original Paper Simulation |
Title | Recoverable robust knapsacks: the discrete scenario case |
URI | https://link.springer.com/article/10.1007/s11590-011-0307-1 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED7xWNqh7wr6QB46tQqK7QScblBBUSuYikSnKH5kQQqIhKW_vj6SQFHbgdHSyYpOF999vvs-AzwEMg4kjlVYcOE7Xky1E0itHU-wKPCVDnSE5OTxpDOaem8zf1YBtr26SObtsiO5Oah3XDebeHGGCieAUNiwCvWCd1rvvX6-D8rzt0PzVyOpQD6Q12VlL_OvTfaz0X4rdJNhhqc56y_dCBPiYMm8vc5kW339lm084OPP4KQoOEkvj5BzqJjkAo5_yBDa1Xir3ZpegkBEagMcOVVktZDrNCPzJFqmyMZ_JtaSIJV3ZattglJQFmwviLLJ8Aqmw8HHy8gp3ldwFBMiw8kMoSJDGTXCt0BVcylFQI3LmURZe2UUqhUazY0bcM9iG9ONjN-JuJCx5jG_hlqySEwDiEGoJTxtyzHtKZ9Lyrqxb4xLY8ZippvwWPo5XOYyGuFOMBmdE1rnhOickDbhqfRiWPxR6f_WNwdZ38JReSvs0juoZau1ubdlRSZbNo6G_f6kVcRTC6pT1vsGn07ELQ |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SnKpwcmUKTYTlKbrUJUBdpOrdTNij-yIKVVk_5_fG1MqQQDY6RThrPlu-d77xngQepCaqRVeHCRRklBbSS1tVEiWC5TY6XNUZw8HGX9SfI-TaeNjrsKbPcwklyd1Buxm6-8SKJCChA6G-7CHtqro2H-hHXD8ZvR9aORVKAcKOmwMMr87RfbxWh7EroqML1jOGo6Q9JdL-UJ7LjyFA5_-AX6r-G3yWp1BgKho9-JKH4ii5leVjX5LPN5hbL5Z-IjCWpuF74tJujZ5FHxjBhftc5h0nsdv_Sj5iGEyDAhaqRQCJM7yqgTqUeUlmstJHUxZxr9540zaCvoLHex5IkHIa6TuzTLudCF5QW_gFY5K90lEIeYSCTW9002MSnXlHWK1LmYFowVzLbhMWREzdd-F2rjbIzpUz59CtOnaBueQs5Us_Wrv6Ov_hV9D_v98XCgBm-jj2s4CFe5Mb2BVr1YulvfC9T6brX2X_h9qOg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAMiE9RPj0wgaLGdtzabBVQlY9WDFTqFsWxvSClUZP-f3xNQqkEA2OkU4ZzkruXe-8dwI3STmmkVXhwIYLIURMobUwQSZYokRplEhQnj8bd4SR6mYppvee0aNjuzUiy0jSgS1NWdnLjOivhm6_CSKhCOhC6HG7Clq9EHDl9E9ZvPsVdWi2QpBKlQVGPNWPN326xXpjWp6LLYjPYh726SyT96lgPYMNmh7D7wzvQX42-DVeLI5AII_1TiUIoMp_pRVGSzyzJC5TQ3xMfSVB_O_ctMkH_Jo-QZyT1FewYJoOnj4dhUC9FCFImZYl0CpkmljJqpfDo0nCtpaI25EyjF31qU7QYtIbbUPHIAxLbS6zoJlxqZ7jjJ9DKZpk9BWIRH8nI-B7KRKngmrKeE9aG1DHmmGnDbZOROK-8L-KVyzGmL_bpizF9MW3DXZOzuH4Nir-jz_4VfQ3b74-D-O15_HoOO81f3ZBeQKucL-ylbwtKfbU8-i9cAa0t |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recoverable+robust+knapsacks%3A+the+discrete+scenario+case&rft.jtitle=Optimization+letters&rft.au=B%C3%BCsing%2C+Christina&rft.au=Koster%2C+Arie+M.+C.+A.&rft.au=Kutschka%2C+Manuel&rft.date=2011-08-01&rft.pub=Springer-Verlag&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=5&rft.issue=3&rft.spage=379&rft.epage=392&rft_id=info:doi/10.1007%2Fs11590-011-0307-1&rft.externalDocID=10_1007_s11590_011_0307_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon |