Recoverable robust knapsacks: the discrete scenario case

The knapsack problem is one of the basic problems in combinatorial optimization. In real-world applications it is often part of a more complex problem. Examples are machine capacities in production planning or bandwidth restrictions in telecommunication network design. Due to unpredictable future se...

Full description

Saved in:
Bibliographic Details
Published inOptimization letters Vol. 5; no. 3; pp. 379 - 392
Main Authors Büsing, Christina, Koster, Arie M. C. A., Kutschka, Manuel
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The knapsack problem is one of the basic problems in combinatorial optimization. In real-world applications it is often part of a more complex problem. Examples are machine capacities in production planning or bandwidth restrictions in telecommunication network design. Due to unpredictable future settings or erroneous data, parameters of such a subproblem are subject to uncertainties. In high risk situations a robust approach should be chosen to deal with these uncertainties. Unfortunately, classical robust optimization outputs solutions with little profit by prohibiting any adaption of the solution when the actual realization of the uncertain parameters is known. This ignores the fact that in most settings minor changes to a previously determined solution are possible. To overcome these drawbacks we allow a limited recovery of a previously fixed item set as soon as the data are known by deleting at most k items and adding up to ℓ new items. We consider the complexity status of this recoverable robust knapsack problem and extend the classical concept of cover inequalities to obtain stronger polyhedral descriptions. Finally, we present two extensive computational studies to investigate the influence of parameters k and ℓ to the objective and evaluate the effectiveness of our new class of valid inequalities.
AbstractList The knapsack problem is one of the basic problems in combinatorial optimization. In real-world applications it is often part of a more complex problem. Examples are machine capacities in production planning or bandwidth restrictions in telecommunication network design. Due to unpredictable future settings or erroneous data, parameters of such a subproblem are subject to uncertainties. In high risk situations a robust approach should be chosen to deal with these uncertainties. Unfortunately, classical robust optimization outputs solutions with little profit by prohibiting any adaption of the solution when the actual realization of the uncertain parameters is known. This ignores the fact that in most settings minor changes to a previously determined solution are possible. To overcome these drawbacks we allow a limited recovery of a previously fixed item set as soon as the data are known by deleting at most k items and adding up to ℓ new items. We consider the complexity status of this recoverable robust knapsack problem and extend the classical concept of cover inequalities to obtain stronger polyhedral descriptions. Finally, we present two extensive computational studies to investigate the influence of parameters k and ℓ to the objective and evaluate the effectiveness of our new class of valid inequalities.
Author Koster, Arie M. C. A.
Büsing, Christina
Kutschka, Manuel
Author_xml – sequence: 1
  givenname: Christina
  surname: Büsing
  fullname: Büsing, Christina
  email: cbuesing@math.tu-berlin.de
  organization: Institut für Mathematik, Technische Universität Berlin
– sequence: 2
  givenname: Arie M. C. A.
  surname: Koster
  fullname: Koster, Arie M. C. A.
  organization: Lehrstuhl II für Mathematik, RWTH Aachen University
– sequence: 3
  givenname: Manuel
  surname: Kutschka
  fullname: Kutschka, Manuel
  organization: Lehrstuhl II für Mathematik, RWTH Aachen University
BookMark eNp9j8tOwzAQRS1UJNrCB7DLDxhm7CS22aGKl1QJCcHacpwJpC1J5UmR-HtSBbFkNXcx5-qehZh1fUdCXCJcIYC5ZsTCgQRECRqMxBMxR1sqmecWZn_ZqDOxYN4AlIjOzYV9odh_UQrVjrLUVwcesm0X9hzilm-y4YOyuuWYaKCMI3UhtX0WA9O5OG3Cjuni9y7F2_3d6-pRrp8fnla3axmVtYN0gDYGQoVkC6tNravKOiTQqjKgMVLMtXFUawKn8yK3ZAIVZdC2amrd6KXAqTemnjlR4_ep_Qzp2yP4o7qf1P2o7o_qHkdGTQyPv907Jb_pD6kbZ_4D_QBEnl1L
CitedBy_id crossref_primary_10_1016_j_ejor_2017_08_013
crossref_primary_10_1137_120880355
crossref_primary_10_1007_s13675_018_0103_0
crossref_primary_10_1007_s10479_023_05725_4
crossref_primary_10_1016_j_cor_2014_09_010
crossref_primary_10_1016_j_cor_2017_02_009
crossref_primary_10_1007_s11235_015_9987_7
crossref_primary_10_1137_16M1070049
crossref_primary_10_1186_s13677_014_0018_0
crossref_primary_10_1007_s11590_016_1057_x
crossref_primary_10_1007_s10479_014_1618_2
crossref_primary_10_1287_ijoc_1120_0511
crossref_primary_10_1016_j_orl_2022_05_001
crossref_primary_10_1016_j_trb_2015_06_001
crossref_primary_10_1007_s10878_017_0147_8
crossref_primary_10_1016_j_cor_2024_106608
crossref_primary_10_1007_s10951_018_0559_z
crossref_primary_10_1016_j_ejor_2017_02_014
crossref_primary_10_1016_j_cor_2021_105692
crossref_primary_10_1016_j_cor_2013_05_005
crossref_primary_10_1016_j_ejor_2015_12_008
crossref_primary_10_1080_10556788_2013_869807
crossref_primary_10_1287_ijoc_2014_0606
crossref_primary_10_1016_j_dam_2017_08_014
crossref_primary_10_1007_s13675_013_0013_0
crossref_primary_10_1007_s13675_018_0107_9
crossref_primary_10_1007_s10878_016_0089_6
Cites_doi 10.1007/BF01580441
10.1007/s12532-008-0001-1
10.1287/opre.31.5.803
10.1002/nav.3800030107
10.1007/s10107-003-0396-4
10.1023/A:1009821323279
10.1287/opre.1030.0065
10.1007/BF01580440
10.1287/opre.44.2.407
10.1007/s10107-010-0359-5
10.1007/978-1-4419-1306-7_2
10.1007/978-3-540-24777-7
10.1109/ICSSSM.2006.320662
10.1057/jors.1990.166
10.1007/978-1-4684-2001-2_9
ContentType Journal Article
Copyright Springer-Verlag 2011
Copyright_xml – notice: Springer-Verlag 2011
DBID AAYXX
CITATION
DOI 10.1007/s11590-011-0307-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 392
ExternalDocumentID 10_1007_s11590_011_0307_1
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Y
Z81
Z83
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c288t-9018cae121e85837d3bb891e032b7031cec4379ed3e0934548e7ae56a38bfd3f3
IEDL.DBID AGYKE
ISSN 1862-4472
IngestDate Thu Sep 12 17:09:40 EDT 2024
Sat Dec 16 12:07:00 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Recoverable robustness
Extended cover inequalities
Knapsack
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-9018cae121e85837d3bb891e032b7031cec4379ed3e0934548e7ae56a38bfd3f3
PageCount 14
ParticipantIDs crossref_primary_10_1007_s11590_011_0307_1
springer_journals_10_1007_s11590_011_0307_1
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2011
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References Kaparis, Letchford (CR15) 2010; 124
CR2
Achterberg (CR1) 2009; 1
CR4
CR8
CR18
CR17
Crowder, Johnson, Padberg (CR9) 1983; 31
CR16
Bertimas, Sim (CR7) 2004; 52
CR14
Balas (CR3) 1975; 8
Cicerone, D’Angelo, Di Stefano, Frigioni, Navarra, Schachtebeck, Schöbel (CR10) 2009
Wolsey (CR22) 1975; 8
Gabrel, Minoux (CR12) 2002; 30
Fischetti, Lodi, Salvagnin (CR11) 2009; 10
Iida (CR13) 1999; 3
CR20
Weismantel (CR21) 1997; 77
Bellman (CR5) 1956; 3
Bertimas, Sim (CR6) 2003; 98
Liebchen, Lübbecke, Möhring, Stiller (CR19) 2009
Yu (CR23) 1996; 44
307_CR18
307_CR17
R. Bellman (307_CR5) 1956; 3
307_CR16
S. Cicerone (307_CR10) 2009
307_CR2
M. Fischetti (307_CR11) 2009; 10
V. Gabrel (307_CR12) 2002; 30
307_CR20
G. Yu (307_CR23) 1996; 44
H. Iida (307_CR13) 1999; 3
307_CR14
D. Bertimas (307_CR7) 2004; 52
R. Weismantel (307_CR21) 1997; 77
T. Achterberg (307_CR1) 2009; 1
H. Crowder (307_CR9) 1983; 31
307_CR4
E. Balas (307_CR3) 1975; 8
C. Liebchen (307_CR19) 2009
D. Bertimas (307_CR6) 2003; 98
307_CR8
K. Kaparis (307_CR15) 2010; 124
L. Wolsey (307_CR22) 1975; 8
References_xml – volume: 77
  start-page: 49
  year: 1997
  end-page: 68
  ident: CR21
  article-title: On the 0-1 knapsack polytope
  publication-title: Math. Prog.
  contributor:
    fullname: Weismantel
– ident: CR18
– volume: 8
  start-page: 165
  year: 1975
  end-page: 178
  ident: CR22
  article-title: Faces for a linear inequality in 0-1 variables
  publication-title: Math. Prog.
  doi: 10.1007/BF01580441
  contributor:
    fullname: Wolsey
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  end-page: 42
  ident: CR1
  article-title: SCIP: solving constraint integer programs
  publication-title: Math. Prog. Comp
  doi: 10.1007/s12532-008-0001-1
  contributor:
    fullname: Achterberg
– ident: CR4
– volume: 31
  start-page: 803
  year: 1983
  end-page: 834
  ident: CR9
  article-title: Large-scale zero-one linear programming problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.31.5.803
  contributor:
    fullname: Padberg
– ident: CR14
– ident: CR2
– ident: CR16
– volume: 3
  start-page: 67
  year: 1956
  end-page: 70
  ident: CR5
  article-title: Notes on the theory of dynamic programming iv—maximization over discrete sets
  publication-title: Naval Res. Logist. Quart.
  doi: 10.1002/nav.3800030107
  contributor:
    fullname: Bellman
– ident: CR17
– volume: 98
  start-page: 49
  year: 2003
  end-page: 71
  ident: CR6
  article-title: Robust discrete optimization and network flows
  publication-title: Math. Prog. Ser. B
  doi: 10.1007/s10107-003-0396-4
  contributor:
    fullname: Sim
– volume: 3
  start-page: 89
  year: 1999
  end-page: 94
  ident: CR13
  article-title: A note on the max- min 0-1 knapsack problem
  publication-title: J. Comb. Opt.
  doi: 10.1023/A:1009821323279
  contributor:
    fullname: Iida
– volume: 52
  start-page: 35
  year: 2004
  end-page: 53
  ident: CR7
  article-title: The price of robustness
  publication-title: Oper. Res
  doi: 10.1287/opre.1030.0065
  contributor:
    fullname: Sim
– volume: 8
  start-page: 146
  year: 1975
  end-page: 164
  ident: CR3
  article-title: Facets of the knapsack polytope
  publication-title: Math. Prog
  doi: 10.1007/BF01580440
  contributor:
    fullname: Balas
– year: 2009
  ident: CR19
  publication-title: The concept of recoverable robustness, linear programming recovery, and railway applications Robust and Online Large-Scale Optimization, vol 5868 of LNCS, 1–27
  contributor:
    fullname: Stiller
– ident: CR8
– volume: 30
  start-page: 252
  year: 2002
  end-page: 264
  ident: CR12
  article-title: A scheme for exact separation of extended cover inequalities and application to multidimensional knapsack problems
  publication-title: OR Lett.
  contributor:
    fullname: Minoux
– volume: 44
  start-page: 407
  year: 1996
  end-page: 415
  ident: CR23
  article-title: On the max- min 0-1 knapsack problem with robust optimization applications
  publication-title: Oper. Res.
  doi: 10.1287/opre.44.2.407
  contributor:
    fullname: Yu
– volume: 124
  start-page: 69
  issue: 1-2
  year: 2010
  end-page: 91
  ident: CR15
  article-title: Separation algorithms for 0-1 knapsack polytopes
  publication-title: Math. Prog.
  doi: 10.1007/s10107-010-0359-5
  contributor:
    fullname: Letchford
– year: 2009
  ident: CR10
  publication-title: Recoverable robustness in shunting and timetabling Robust and Online Large-Scale Optimization, vol. 5868 of LNCS, 28–60
  contributor:
    fullname: Schöbel
– volume: 10
  start-page: 39
  year: 2009
  end-page: 70
  ident: CR11
  article-title: Just MIP it!
  publication-title: Ann. Inf. Syst.
  doi: 10.1007/978-1-4419-1306-7_2
  contributor:
    fullname: Salvagnin
– ident: CR20
– volume: 30
  start-page: 252
  year: 2002
  ident: 307_CR12
  publication-title: OR Lett.
  contributor:
    fullname: V. Gabrel
– volume: 98
  start-page: 49
  year: 2003
  ident: 307_CR6
  publication-title: Math. Prog. Ser. B
  doi: 10.1007/s10107-003-0396-4
  contributor:
    fullname: D. Bertimas
– volume: 8
  start-page: 146
  year: 1975
  ident: 307_CR3
  publication-title: Math. Prog
  doi: 10.1007/BF01580440
  contributor:
    fullname: E. Balas
– ident: 307_CR17
  doi: 10.1007/978-3-540-24777-7
– ident: 307_CR14
  doi: 10.1109/ICSSSM.2006.320662
– ident: 307_CR2
– volume-title: Recoverable robustness in shunting and timetabling Robust and Online Large-Scale Optimization, vol. 5868 of LNCS, 28–60
  year: 2009
  ident: 307_CR10
  contributor:
    fullname: S. Cicerone
– ident: 307_CR18
– volume: 3
  start-page: 67
  year: 1956
  ident: 307_CR5
  publication-title: Naval Res. Logist. Quart.
  doi: 10.1002/nav.3800030107
  contributor:
    fullname: R. Bellman
– volume: 31
  start-page: 803
  year: 1983
  ident: 307_CR9
  publication-title: Oper. Res.
  doi: 10.1287/opre.31.5.803
  contributor:
    fullname: H. Crowder
– volume: 8
  start-page: 165
  year: 1975
  ident: 307_CR22
  publication-title: Math. Prog.
  doi: 10.1007/BF01580441
  contributor:
    fullname: L. Wolsey
– ident: 307_CR4
  doi: 10.1057/jors.1990.166
– ident: 307_CR8
– volume: 10
  start-page: 39
  year: 2009
  ident: 307_CR11
  publication-title: Ann. Inf. Syst.
  doi: 10.1007/978-1-4419-1306-7_2
  contributor:
    fullname: M. Fischetti
– volume: 77
  start-page: 49
  year: 1997
  ident: 307_CR21
  publication-title: Math. Prog.
  contributor:
    fullname: R. Weismantel
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 307_CR1
  publication-title: Math. Prog. Comp
  doi: 10.1007/s12532-008-0001-1
  contributor:
    fullname: T. Achterberg
– ident: 307_CR20
– volume-title: The concept of recoverable robustness, linear programming recovery, and railway applications Robust and Online Large-Scale Optimization, vol 5868 of LNCS, 1–27
  year: 2009
  ident: 307_CR19
  contributor:
    fullname: C. Liebchen
– volume: 124
  start-page: 69
  issue: 1-2
  year: 2010
  ident: 307_CR15
  publication-title: Math. Prog.
  doi: 10.1007/s10107-010-0359-5
  contributor:
    fullname: K. Kaparis
– ident: 307_CR16
  doi: 10.1007/978-1-4684-2001-2_9
– volume: 52
  start-page: 35
  year: 2004
  ident: 307_CR7
  publication-title: Oper. Res
  doi: 10.1287/opre.1030.0065
  contributor:
    fullname: D. Bertimas
– volume: 3
  start-page: 89
  year: 1999
  ident: 307_CR13
  publication-title: J. Comb. Opt.
  doi: 10.1023/A:1009821323279
  contributor:
    fullname: H. Iida
– volume: 44
  start-page: 407
  year: 1996
  ident: 307_CR23
  publication-title: Oper. Res.
  doi: 10.1287/opre.44.2.407
  contributor:
    fullname: G. Yu
SSID ssj0061199
Score 2.085735
Snippet The knapsack problem is one of the basic problems in combinatorial optimization. In real-world applications it is often part of a more complex problem....
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 379
SubjectTerms Computational Intelligence
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title Recoverable robust knapsacks: the discrete scenario case
URI https://link.springer.com/article/10.1007/s11590-011-0307-1
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED7xWNqh7wr6QB46tQqK7QScblBBUSuYikSnKH5kQQqIhKW_vj6SQFHbgdHSyYpOF999vvs-AzwEMg4kjlVYcOE7Xky1E0itHU-wKPCVDnSE5OTxpDOaem8zf1YBtr26SObtsiO5Oah3XDebeHGGCieAUNiwCvWCd1rvvX6-D8rzt0PzVyOpQD6Q12VlL_OvTfaz0X4rdJNhhqc56y_dCBPiYMm8vc5kW339lm084OPP4KQoOEkvj5BzqJjkAo5_yBDa1Xir3ZpegkBEagMcOVVktZDrNCPzJFqmyMZ_JtaSIJV3ZattglJQFmwviLLJ8Aqmw8HHy8gp3ldwFBMiw8kMoSJDGTXCt0BVcylFQI3LmURZe2UUqhUazY0bcM9iG9ONjN-JuJCx5jG_hlqySEwDiEGoJTxtyzHtKZ9Lyrqxb4xLY8ZippvwWPo5XOYyGuFOMBmdE1rnhOickDbhqfRiWPxR6f_WNwdZ38JReSvs0juoZau1ubdlRSZbNo6G_f6kVcRTC6pT1vsGn07ELQ
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BGYAB8SnKpwcmUKTYTlKbrUJUBdpOrdTNij-yIKVVk_5_fG1MqQQDY6RThrPlu-d77xngQepCaqRVeHCRRklBbSS1tVEiWC5TY6XNUZw8HGX9SfI-TaeNjrsKbPcwklyd1Buxm6-8SKJCChA6G-7CHtqro2H-hHXD8ZvR9aORVKAcKOmwMMr87RfbxWh7EroqML1jOGo6Q9JdL-UJ7LjyFA5_-AX6r-G3yWp1BgKho9-JKH4ii5leVjX5LPN5hbL5Z-IjCWpuF74tJujZ5FHxjBhftc5h0nsdv_Sj5iGEyDAhaqRQCJM7yqgTqUeUlmstJHUxZxr9540zaCvoLHex5IkHIa6TuzTLudCF5QW_gFY5K90lEIeYSCTW9002MSnXlHWK1LmYFowVzLbhMWREzdd-F2rjbIzpUz59CtOnaBueQs5Us_Wrv6Ov_hV9D_v98XCgBm-jj2s4CFe5Mb2BVr1YulvfC9T6brX2X_h9qOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BkRAMiE9RPj0wgaLGdtzabBVQlY9WDFTqFsWxvSClUZP-f3xNQqkEA2OkU4ZzkruXe-8dwI3STmmkVXhwIYLIURMobUwQSZYokRplEhQnj8bd4SR6mYppvee0aNjuzUiy0jSgS1NWdnLjOivhm6_CSKhCOhC6HG7Clq9EHDl9E9ZvPsVdWi2QpBKlQVGPNWPN326xXpjWp6LLYjPYh726SyT96lgPYMNmh7D7wzvQX42-DVeLI5AII_1TiUIoMp_pRVGSzyzJC5TQ3xMfSVB_O_ctMkH_Jo-QZyT1FewYJoOnj4dhUC9FCFImZYl0CpkmljJqpfDo0nCtpaI25EyjF31qU7QYtIbbUPHIAxLbS6zoJlxqZ7jjJ9DKZpk9BWIRH8nI-B7KRKngmrKeE9aG1DHmmGnDbZOROK-8L-KVyzGmL_bpizF9MW3DXZOzuH4Nir-jz_4VfQ3b74-D-O15_HoOO81f3ZBeQKucL-ylbwtKfbU8-i9cAa0t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recoverable+robust+knapsacks%3A+the+discrete+scenario+case&rft.jtitle=Optimization+letters&rft.au=B%C3%BCsing%2C+Christina&rft.au=Koster%2C+Arie+M.+C.+A.&rft.au=Kutschka%2C+Manuel&rft.date=2011-08-01&rft.pub=Springer-Verlag&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=5&rft.issue=3&rft.spage=379&rft.epage=392&rft_id=info:doi/10.1007%2Fs11590-011-0307-1&rft.externalDocID=10_1007_s11590_011_0307_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon