Macroscopic Time Evolution and MaxEnt Inference for Closed Systems with Hamiltonian Dynamics

MaxEnt inference algorithm and information theory are relevant for the time evolution of macroscopic systems considered as problem of incomplete information. Two different MaxEnt approaches are introduced in this work, both applied to prediction of time evolution for closed Hamiltonian systems. The...

Full description

Saved in:
Bibliographic Details
Published inFoundations of physics Vol. 42; no. 2; pp. 319 - 339
Main Authors Kuić, Domagoj, Županović, Paško, Juretić, Davor
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.02.2012
Subjects
Online AccessGet full text
ISSN0015-9018
1572-9516
DOI10.1007/s10701-011-9604-x

Cover

Abstract MaxEnt inference algorithm and information theory are relevant for the time evolution of macroscopic systems considered as problem of incomplete information. Two different MaxEnt approaches are introduced in this work, both applied to prediction of time evolution for closed Hamiltonian systems. The first one is based on Liouville equation for the conditional probability distribution, introduced as a strict microscopic constraint on time evolution in phase space. The conditional probability distribution is defined for the set of microstates associated with the set of phase space paths determined by solutions of Hamilton’s equations. The MaxEnt inference algorithm with Shannon’s concept of the conditional information entropy is then applied to prediction, consistently with this strict microscopic constraint on time evolution in phase space. The second approach is based on the same concepts, with a difference that Liouville equation for the conditional probability distribution is introduced as a macroscopic constraint given by a phase space average. We consider the incomplete nature of our information about microscopic dynamics in a rational way that is consistent with Jaynes’ formulation of predictive statistical mechanics, and the concept of macroscopic reproducibility for time dependent processes. Maximization of the conditional information entropy subject to this macroscopic constraint leads to a loss of correlation between the initial phase space paths and final microstates. Information entropy is the theoretic upper bound on the conditional information entropy, with the upper bound attained only in case of the complete loss of correlation. In this alternative approach to prediction of macroscopic time evolution, maximization of the conditional information entropy is equivalent to the loss of statistical correlation, and leads to corresponding loss of information. In accordance with the original idea of Jaynes, irreversibility appears as a consequence of gradual loss of information about possible microstates of the system.
AbstractList MaxEnt inference algorithm and information theory are relevant for the time evolution of macroscopic systems considered as problem of incomplete information. Two different MaxEnt approaches are introduced in this work, both applied to prediction of time evolution for closed Hamiltonian systems. The first one is based on Liouville equation for the conditional probability distribution, introduced as a strict microscopic constraint on time evolution in phase space. The conditional probability distribution is defined for the set of microstates associated with the set of phase space paths determined by solutions of Hamilton’s equations. The MaxEnt inference algorithm with Shannon’s concept of the conditional information entropy is then applied to prediction, consistently with this strict microscopic constraint on time evolution in phase space. The second approach is based on the same concepts, with a difference that Liouville equation for the conditional probability distribution is introduced as a macroscopic constraint given by a phase space average. We consider the incomplete nature of our information about microscopic dynamics in a rational way that is consistent with Jaynes’ formulation of predictive statistical mechanics, and the concept of macroscopic reproducibility for time dependent processes. Maximization of the conditional information entropy subject to this macroscopic constraint leads to a loss of correlation between the initial phase space paths and final microstates. Information entropy is the theoretic upper bound on the conditional information entropy, with the upper bound attained only in case of the complete loss of correlation. In this alternative approach to prediction of macroscopic time evolution, maximization of the conditional information entropy is equivalent to the loss of statistical correlation, and leads to corresponding loss of information. In accordance with the original idea of Jaynes, irreversibility appears as a consequence of gradual loss of information about possible microstates of the system.
Author Županović, Paško
Kuić, Domagoj
Juretić, Davor
Author_xml – sequence: 1
  givenname: Domagoj
  surname: Kuić
  fullname: Kuić, Domagoj
  email: dkuic@pmfst.hr
  organization: Faculty of Science, University of Split
– sequence: 2
  givenname: Paško
  surname: Županović
  fullname: Županović, Paško
  organization: Faculty of Science, University of Split
– sequence: 3
  givenname: Davor
  surname: Juretić
  fullname: Juretić, Davor
  organization: Faculty of Science, University of Split
BookMark eNp9kMFOAyEQQImpiW31A7zxA6tAlwWOplbbxMaD9WZCWBaUZhcaoNr-vbupJw89TSaZN8l7EzDywRsAbjG6wwix-4QRQ7hAGBeiQmVxuABjTBkpBMXVCIwRwrQQCPMrMElpixASrCrH4GOtdAxJh53TcOM6Axffod1nFzxUvoFrdVj4DFfemmi8NtCGCOdtSKaBb8eUTZfgj8tfcKk61-bgnfLw8ej7TadrcGlVm8zN35yC96fFZr4sXl6fV_OHl0ITznPBLSNM1MRgRS2uFKWcl5bqxrCmLjlpNGeWzCjRZUMYZTMhRFWXFaW4VhzVsylgp7-DSorGSu2yGhxyVK6VGMkhkjxFkn0kOUSSh57E_8hddJ2Kx7MMOTGpv_WfJspt2EffC56BfgG0hHzl
CitedBy_id crossref_primary_10_1007_s10701_012_9664_6
crossref_primary_10_1007_s10701_016_0009_8
crossref_primary_10_1140_epjb_e2016_70175_6
Cites_doi 10.3390/e6010021
10.1119/1.1971557
10.1146/annurev.pc.31.100180.003051
10.1016/S0378-4371(98)00271-4
10.1103/PhysRevLett.72.2508
10.1016/j.physa.2006.07.046
10.1023/B:FOOP.0000022187.45866.81
10.1103/PhysRevA.30.1477
10.1016/0378-4371(96)00140-9
10.1103/RevModPhys.75.715
10.1023/B:FOOP.0000012008.36856.c1
10.1017/CBO9780511790423
10.1103/PhysRev.108.171
10.1103/PhysRevA.40.4731
10.1007/978-3-642-70795-7_18
10.1016/S0375-9601(97)00409-X
10.1023/B:FOOP.0000012007.06843.ed
10.1007/s10701-007-9159-z
10.1016/0370-1573(80)90093-9
10.1103/PhysRev.106.620
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2011
Copyright_xml – notice: Springer Science+Business Media, LLC 2011
DBID AAYXX
CITATION
DOI 10.1007/s10701-011-9604-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Astronomy & Astrophysics
Physics
EISSN 1572-9516
EndPage 339
ExternalDocumentID 10_1007_s10701_011_9604_x
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29H
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
9M8
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ3
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MQGED
MVM
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9T
PF0
PT4
PT5
QF4
QM9
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
XJT
YLTOR
YYP
Z45
Z7R
Z7X
Z7Y
Z83
Z88
Z8R
Z8W
Z92
ZKB
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AETEA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c288t-8f7279b2e1a5f16a55884f5cde7db482dc87f2352c4d275739996b46551ba80b3
IEDL.DBID U2A
ISSN 0015-9018
IngestDate Tue Jul 01 01:20:26 EDT 2025
Thu Apr 24 23:10:34 EDT 2025
Fri Feb 21 02:35:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords MaxEnt algorithm
Hamiltonian dynamics
Statistical mechanics
Information theory
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-8f7279b2e1a5f16a55884f5cde7db482dc87f2352c4d275739996b46551ba80b3
PageCount 21
ParticipantIDs crossref_citationtrail_10_1007_s10701_011_9604_x
crossref_primary_10_1007_s10701_011_9604_x
springer_journals_10_1007_s10701_011_9604_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120200
2012-2-00
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 2
  year: 2012
  text: 20120200
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
PublicationSubtitle An International Journal Devoted to the Conceptual Bases and Fundamental Theories of Modern Physics
PublicationTitle Foundations of physics
PublicationTitleAbbrev Found Phys
PublicationYear 2012
Publisher Springer US
Publisher_xml – name: Springer US
References Grandy (CR18) 2004; 34
Khinchin (CR24) 1949
Zwick (CR30) 1978; 1
Jaynes (CR6) 1965; 33
Jaynes, Haken (CR9) 1985
Jaynes (CR1) 1957; 106
Grandy (CR16) 2004; 34
Zurek (CR13) 1989; 40
CR12
Tishby, Levine (CR19) 1984; 30
Jaynes, Ford (CR5) 1963
Nagel, Newman (CR32) 1960
Gibbs (CR3) 1902
Plastino, Plastino (CR22) 1998; 258
Zurek (CR28) 2003; 75
CR4
Kittel (CR26) 1958
Schönfeldt, Jimenez, Plastino, Plastino, Casas (CR23) 2007; 374
Garrod (CR11) 1995
Wan (CR25) 1995
Plastino, Plastino (CR20) 1996; 232
Zurek, Paz (CR27) 1994; 72
Jaynes, Levine, Tribus (CR7) 1979
Grandy (CR17) 2004; 34
Pattee, Pattee (CR33) 1973
Grandy (CR10) 1980; 62
Jaynes (CR29) 2003
Plastino, Plastino, Miller (CR21) 1997; 232
Duncan, Semura (CR14) 2004; 6
Jaynes (CR2) 1957; 108
Jaynes (CR8) 1980; 31
Gödel (CR31) 1962
Duncan, Semura (CR15) 2007; 37
F.Y.M. Wan (9604_CR25) 1995
A. Plastino (9604_CR21) 1997; 232
A.R. Plastino (9604_CR20) 1996; 232
W.H. Zurek (9604_CR13) 1989; 40
E.T. Jaynes (9604_CR8) 1980; 31
E. Nagel (9604_CR32) 1960
E.T. Jaynes (9604_CR9) 1985
9604_CR12
T.L. Duncan (9604_CR15) 2007; 37
A.R. Plastino (9604_CR22) 1998; 258
H.H. Pattee (9604_CR33) 1973
E.T. Jaynes (9604_CR6) 1965; 33
W.H. Zurek (9604_CR28) 2003; 75
N.Z. Tishby (9604_CR19) 1984; 30
W.H. Zurek (9604_CR27) 1994; 72
W.T. Grandy (9604_CR17) 2004; 34
E.T. Jaynes (9604_CR29) 2003
J.W. Gibbs (9604_CR3) 1902
W.T. Grandy (9604_CR16) 2004; 34
E.T. Jaynes (9604_CR1) 1957; 106
9604_CR4
J.-H. Schönfeldt (9604_CR23) 2007; 374
A.I. Khinchin (9604_CR24) 1949
C. Kittel (9604_CR26) 1958
E.T. Jaynes (9604_CR7) 1979
E.T. Jaynes (9604_CR2) 1957; 108
W.T. Grandy (9604_CR10) 1980; 62
M. Zwick (9604_CR30) 1978; 1
E.T. Jaynes (9604_CR5) 1963
W.T. Grandy (9604_CR18) 2004; 34
C. Garrod (9604_CR11) 1995
T.L. Duncan (9604_CR14) 2004; 6
K. Gödel (9604_CR31) 1962
References_xml – volume: 6
  start-page: 21
  year: 2004
  end-page: 29
  ident: CR14
  article-title: The deep physics behind the second law: information and energy as independent forms of bookkeeping
  publication-title: Entropy
  doi: 10.3390/e6010021
– start-page: 181
  year: 1963
  end-page: 218
  ident: CR5
  article-title: Information theory and statistical mechanics
  publication-title: 1962 Brandeis Lectures in Theoretical Physics
– ident: CR4
– start-page: 131
  year: 1973
  end-page: 156
  ident: CR33
  article-title: Postscript
  publication-title: Hierarchy Theory
– ident: CR12
– year: 1949
  ident: CR24
  publication-title: Mathematical Foundations of Statistical Mechanics
– volume: 1
  start-page: 135
  year: 1978
  end-page: 145
  ident: CR30
  article-title: Quantum measurement and Gödel’s proof
  publication-title: Specul. Sci. Technol.
– year: 1962
  ident: CR31
  publication-title: On Formally Undecidable Propositions of Principia Mathematica and Related Systems
– volume: 33
  start-page: 391
  year: 1965
  end-page: 398
  ident: CR6
  article-title: Gibbs vs Boltzmann entropies
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1971557
– volume: 31
  start-page: 579
  year: 1980
  end-page: 601
  ident: CR8
  article-title: The minimum entropy production principle
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.31.100180.003051
– volume: 258
  start-page: 429
  year: 1998
  end-page: 445
  ident: CR22
  article-title: Universality of Jaynes’ approach to the evolution of time-dependent probability distributions
  publication-title: Physica A
  doi: 10.1016/S0378-4371(98)00271-4
– volume: 72
  start-page: 2508
  year: 1994
  end-page: 2512
  ident: CR27
  article-title: Decoherence, chaos, and the second law
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2508
– volume: 374
  start-page: 573
  year: 2007
  end-page: 584
  ident: CR23
  article-title: Maximum entropy principle and classical evolution equations with source terms
  publication-title: Physica A
  doi: 10.1016/j.physa.2006.07.046
– volume: 34
  start-page: 771
  year: 2004
  end-page: 813
  ident: CR18
  article-title: Time evolution in macroscopic systems. III. Selected applications
  publication-title: Found. Phys.
  doi: 10.1023/B:FOOP.0000022187.45866.81
– volume: 30
  start-page: 1477
  year: 1984
  end-page: 1490
  ident: CR19
  article-title: Time evolution via a self-consistent maximal-entropy propagation: the reversible case
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.30.1477
– volume: 232
  start-page: 458
  year: 1996
  end-page: 476
  ident: CR20
  article-title: Statistical treatment of autonomous systems with divergenceless flows
  publication-title: Physica A
  doi: 10.1016/0378-4371(96)00140-9
– year: 1958
  ident: CR26
  publication-title: Elementary Statistical Physics
– volume: 75
  start-page: 715
  year: 2003
  end-page: 775
  ident: CR28
  article-title: Decoherence, einselection, and the quantum origins of the classical
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.75.715
– volume: 34
  start-page: 21
  year: 2004
  end-page: 57
  ident: CR17
  article-title: Time evolution in macroscopic systems. II. The entropy
  publication-title: Found. Phys.
  doi: 10.1023/B:FOOP.0000012008.36856.c1
– year: 2003
  ident: CR29
  publication-title: Probability Theory: The Logic of Science
  doi: 10.1017/CBO9780511790423
– volume: 108
  start-page: 171
  year: 1957
  end-page: 190
  ident: CR2
  article-title: Information theory and statistical mechanics. II
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.171
– volume: 40
  start-page: 4731
  year: 1989
  end-page: 4751
  ident: CR13
  article-title: Algorithmic randomness and physical entropy
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.40.4731
– start-page: 254
  year: 1985
  end-page: 269
  ident: CR9
  article-title: Macroscopic prediction
  publication-title: Complex Systems—Operational Approaches in Neurobiology, Physics, and Computers
  doi: 10.1007/978-3-642-70795-7_18
– volume: 232
  start-page: 349
  year: 1997
  end-page: 355
  ident: CR21
  article-title: Continuity equations, H-theorems, and maximum entropy
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(97)00409-X
– volume: 34
  start-page: 1
  year: 2004
  end-page: 20
  ident: CR16
  article-title: Time evolution in macroscopic systems. I. Equations of motion
  publication-title: Found. Phys.
  doi: 10.1023/B:FOOP.0000012007.06843.ed
– year: 1995
  ident: CR11
  publication-title: Statistical Mechanics and Thermodynamics
– volume: 37
  start-page: 1767
  year: 2007
  end-page: 1773
  ident: CR15
  article-title: Information loss as a foundational principle for the second law of thermodynamics
  publication-title: Found. Phys.
  doi: 10.1007/s10701-007-9159-z
– year: 1995
  ident: CR25
  publication-title: Introduction to the Calculus of Variations and Its Applications
– volume: 62
  start-page: 175
  year: 1980
  end-page: 266
  ident: CR10
  article-title: Principle of maximum entropy and irreversible processes
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(80)90093-9
– start-page: 15
  year: 1979
  end-page: 118
  ident: CR7
  article-title: Where do we stand on maximum entropy?
  publication-title: The Maximum Entropy Formalism
– volume: 106
  start-page: 620
  year: 1957
  end-page: 630
  ident: CR1
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.620
– year: 1902
  ident: CR3
  publication-title: Elementary Principles in Statistical Mechanics
– year: 1960
  ident: CR32
  publication-title: Gödel’s Proof
– volume: 75
  start-page: 715
  year: 2003
  ident: 9604_CR28
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.75.715
– start-page: 15
  volume-title: The Maximum Entropy Formalism
  year: 1979
  ident: 9604_CR7
– ident: 9604_CR12
– volume: 33
  start-page: 391
  year: 1965
  ident: 9604_CR6
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1971557
– start-page: 254
  volume-title: Complex Systems—Operational Approaches in Neurobiology, Physics, and Computers
  year: 1985
  ident: 9604_CR9
  doi: 10.1007/978-3-642-70795-7_18
– volume: 34
  start-page: 771
  year: 2004
  ident: 9604_CR18
  publication-title: Found. Phys.
  doi: 10.1023/B:FOOP.0000022187.45866.81
– volume: 37
  start-page: 1767
  year: 2007
  ident: 9604_CR15
  publication-title: Found. Phys.
  doi: 10.1007/s10701-007-9159-z
– volume-title: Elementary Statistical Physics
  year: 1958
  ident: 9604_CR26
– volume: 30
  start-page: 1477
  year: 1984
  ident: 9604_CR19
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.30.1477
– volume: 72
  start-page: 2508
  year: 1994
  ident: 9604_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2508
– volume: 62
  start-page: 175
  year: 1980
  ident: 9604_CR10
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(80)90093-9
– volume: 6
  start-page: 21
  year: 2004
  ident: 9604_CR14
  publication-title: Entropy
  doi: 10.3390/e6010021
– volume: 108
  start-page: 171
  year: 1957
  ident: 9604_CR2
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.108.171
– start-page: 181
  volume-title: 1962 Brandeis Lectures in Theoretical Physics
  year: 1963
  ident: 9604_CR5
– volume: 374
  start-page: 573
  year: 2007
  ident: 9604_CR23
  publication-title: Physica A
  doi: 10.1016/j.physa.2006.07.046
– start-page: 131
  volume-title: Hierarchy Theory
  year: 1973
  ident: 9604_CR33
– volume-title: Statistical Mechanics and Thermodynamics
  year: 1995
  ident: 9604_CR11
– volume: 40
  start-page: 4731
  year: 1989
  ident: 9604_CR13
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.40.4731
– volume: 106
  start-page: 620
  year: 1957
  ident: 9604_CR1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.620
– volume-title: Gödel’s Proof
  year: 1960
  ident: 9604_CR32
– volume: 232
  start-page: 349
  year: 1997
  ident: 9604_CR21
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(97)00409-X
– volume-title: Introduction to the Calculus of Variations and Its Applications
  year: 1995
  ident: 9604_CR25
– volume-title: On Formally Undecidable Propositions of Principia Mathematica and Related Systems
  year: 1962
  ident: 9604_CR31
– volume-title: Probability Theory: The Logic of Science
  year: 2003
  ident: 9604_CR29
  doi: 10.1017/CBO9780511790423
– ident: 9604_CR4
– volume-title: Elementary Principles in Statistical Mechanics
  year: 1902
  ident: 9604_CR3
– volume: 232
  start-page: 458
  year: 1996
  ident: 9604_CR20
  publication-title: Physica A
  doi: 10.1016/0378-4371(96)00140-9
– volume: 1
  start-page: 135
  year: 1978
  ident: 9604_CR30
  publication-title: Specul. Sci. Technol.
– volume: 34
  start-page: 21
  year: 2004
  ident: 9604_CR17
  publication-title: Found. Phys.
  doi: 10.1023/B:FOOP.0000012008.36856.c1
– volume: 34
  start-page: 1
  year: 2004
  ident: 9604_CR16
  publication-title: Found. Phys.
  doi: 10.1023/B:FOOP.0000012007.06843.ed
– volume-title: Mathematical Foundations of Statistical Mechanics
  year: 1949
  ident: 9604_CR24
– volume: 31
  start-page: 579
  year: 1980
  ident: 9604_CR8
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.pc.31.100180.003051
– volume: 258
  start-page: 429
  year: 1998
  ident: 9604_CR22
  publication-title: Physica A
  doi: 10.1016/S0378-4371(98)00271-4
SSID ssj0009764
Score 1.9067405
Snippet MaxEnt inference algorithm and information theory are relevant for the time evolution of macroscopic systems considered as problem of incomplete information....
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 319
SubjectTerms Classical and Quantum Gravitation
Classical Mechanics
History and Philosophical Foundations of Physics
Philosophy of Science
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Statistical Physics and Dynamical Systems
Title Macroscopic Time Evolution and MaxEnt Inference for Closed Systems with Hamiltonian Dynamics
URI https://link.springer.com/article/10.1007/s10701-011-9604-x
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kRfQiWpXWR9mDeFACySbpbo5pTa1KiwcLFYSwjwSEmhQTpf57d_KwFlTwlBA2CczO7nwzs_MNQmfcMr3YiSNDafMBaUbb4MqWBvdYL1ZKUVUQmI4nvdHUuZ25s6qOO6tPu9cpyWKn_lbsRgvX1zKAUMTQwLHpatcdVuOU-CumXVpyRmk7B2cPWJ3K_OkT68ZoPRNaGJjhLtqpkCH2y6ncQxtR0kJtP4NYdfrygc9xcV-GIrIW2hrUvdpaaPO-fLqPnsYc_iXTxbPEUN-Bg_dKuzBPFB7zZZDk-Kau88MatOLBPM0ihSv2cgyxWTyCyIcGhlp98FXZtj47QNNh8DAYGVUHBUMSxnKDxRqeeIJEFndjq8ddKEuNXakiqoTDiJKMxkRjMOkoQl1qg_sjgFLNEpyZwj5EjSRNojbCGreYxDNtKYACjNtCxY6yCOwRVsSo6iCzFmUoK3px6HIxD1fEyCD9UEs_BOmHyw66-HplUXJr_DX4sp6fsFpm2e-jj_41-hhtaxxEysPYJ6iRv75Fpxpr5KKLmv6w35_A9frxLugWuvYJZf7OMA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kIvUiWpXW5x7EgxJINkl3cyy1JdWmeGihByFsdjcg1KSYKPXfu5OHtaCCtxAmCcxOdr6dxzcIXXHL9GInVobU7gPSjLbBpS0M7rFuLKWksiAwDSZdf-bcz9151ced1dXudUqy2Km_NbvR4uhrGUAoYmjguK2xAIOxBTPSWzPt0pIzSvs5qD1gdSrzp1dsOqPNTGjhYIb7aK9ChrhXLuUB2lJJC7V7GcSq05cPfI2L6zIUkbVQs1_Pamuhncfy7iF6Cjh8S6TLZ4GhvwMP3ivrwjyROOCrQZLjUd3nhzVoxf1FmimJK_ZyDLFZ7EPkQwNDbT74rhxbnx2h2XAw7ftGNUHBEISx3GCxhideRJTF3djqchfaUmNXSEVl5DAiBaMx0RhMOJJQl9pw_ImAUs2KODMj-xg1kjRRbYQ1bjGJZ9oiAgowbkcydqRFYI-wFKOyg8xalaGo6MVhysUiXBMjg_ZDrf0QtB-uOujm65Flya3xl_BtvT5h9Ztlv0uf_Ev6EjX9aTAOx6PJwyna1ZiIlIXZZ6iRv76pc4078uiisLNPV1rOEw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6k4uMiWpXW5x7EgxKa3STN9lj6oFVberDQgxA2-wChJsVEqf_enTysBRW8hTBJYHay8-08vkHoihO7pV2tLGncB6QZHYtLR1i8xZpaSunLjMB0NG4Opu7dzJsVc06Tstq9TEnmPQ3A0hSljYXUjW-Nb352DCYWkItYBkRumt2YgKFPaXvFuuvn_FHG50EdAivTmj-9Yt0xrWdFM2fT30d7BUrE7XxZD9CGiqqo1k4gbh2_fOBrnF3nYYmkinY65dy2Ktqa5HcP0dOIw7dEvHgWGHo9cO-9sDTMI4lHfNmLUjwse_6wAbC4M48TJXHBZI4hTosHEAUxINGYEu7mI-yTIzTt9x47A6uYpmAJylhqMW2gSiukinBPkyb3oEVVe0IqX4Yuo1IwX1ODx4Qrqe_5DhyFQqBXIyFndugco0oUR6qGsMEwNm3ZjgiBDow7odSuJBT2C6KYL-vILlUZiIJqHCZezIMVSTJoPzDaD0D7wbKObr4eWeQ8G38J35brExS_XPK79Mm_pC_R9qTbDx6G4_tTtGvgEc1rtM9QJX19U-cGgqThRWZmn3PD0k8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Macroscopic+Time+Evolution+and+MaxEnt+Inference+for+Closed+Systems+with+Hamiltonian+Dynamics&rft.jtitle=Foundations+of+physics&rft.au=Kui%C4%87%2C+Domagoj&rft.au=%C5%BDupanovi%C4%87%2C+Pa%C5%A1ko&rft.au=Jureti%C4%87%2C+Davor&rft.date=2012-02-01&rft.issn=0015-9018&rft.eissn=1572-9516&rft.volume=42&rft.issue=2&rft.spage=319&rft.epage=339&rft_id=info:doi/10.1007%2Fs10701-011-9604-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10701_011_9604_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0015-9018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0015-9018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0015-9018&client=summon