Joint semiparametric mean-covariance model in longitudinal study

Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semipar...

Full description

Saved in:
Bibliographic Details
Published inScience China. Mathematics Vol. 54; no. 1; pp. 145 - 164
Main Authors Mao, Jie, Zhu, ZhongYi
Format Journal Article
LanguageEnglish
Published Heidelberg SP Science China Press 01.01.2011
Subjects
Online AccessGet full text
ISSN1674-7283
1869-1862
DOI10.1007/s11425-010-4078-4

Cover

Abstract Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.
AbstractList Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.
Author Zhu, ZhongYi
Mao, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Mao
  fullname: Mao, Jie
  organization: Department of Statistics, Fudan University
– sequence: 2
  givenname: ZhongYi
  surname: Zhu
  fullname: Zhu, ZhongYi
  email: zhuzy@fudan.edu.cn
  organization: Department of Statistics, Fudan University
BookMark eNp9kM1OAjEUhRuDiYg8gLt5gertD9POTkNUNCRudN2Uzh1SMtOSdjDh7S3BlQvu4tyz-e7PuSWTEAMScs_ggQGox8yY5AsKDKgEpam8IlOm64YW4ZPiayWp4lrckHnOOyglGpBKTMnTR_RhrDIOfm-THXBM3lUD2kBd_LHJ2-CwGmKLfeVD1cew9eOh9cH2VS7meEeuO9tnnP_1Gfl-fflaruj68-19-bymjms9Uo1qoYRFLmTHWsag4zVTulyP7QK1FhaajVI1Sq2la52UvNECYFNEQy3EjLDzXJdizgk7s09-sOloGJhTCuacgikpmFMKRhZG_WOcH-3oYxiT9f1Fkp_JXLaELSazi4dUns4XoF-U9HHa
CitedBy_id crossref_primary_10_12677_SA_2020_95094
crossref_primary_10_1016_j_jkss_2016_10_003
crossref_primary_10_1007_s11425_016_0126_3
crossref_primary_10_1080_02664763_2014_920778
Cites_doi 10.1214/09-AOS695
10.1198/016214504000001060
10.1093/biomet/89.3.579
10.2307/2532783
10.1198/016214508000000742
10.2307/2670121
10.2307/3109751
10.1093/biomet/93.4.927
10.1111/1467-9868.00233
10.1093/biomet/90.1.239
10.2307/2291516
10.1093/oso/9780198524847.001.0001
10.3150/bj/1137421639
10.1093/biomet/90.4.831
10.1093/biomet/87.2.425
10.1214/009053607000000523
10.1093/biomet/86.3.677
10.1093/biomet/73.1.13
10.1198/016214505000000277
10.1093/biomet/86.3.691
10.1093/biomet/89.1.111
10.1198/016214507000000095
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2010
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2010
DBID AAYXX
CITATION
DOI 10.1007/s11425-010-4078-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1869-1862
EndPage 164
ExternalDocumentID 10_1007_s11425_010_4078_4
GroupedDBID -5D
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.VR
06D
0R~
0VY
1N0
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
5XA
5XB
8TC
8UJ
92E
92I
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BAPOH
BDATZ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCVFK
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9J
P9R
PF0
PT4
Q--
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TSG
TUC
U1G
U2A
U5K
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c288t-8e7573ae234f1d110f26178007ed5e883a09b776e4884cdc44298300b83080633
IEDL.DBID AGYKE
ISSN 1674-7283
IngestDate Tue Jul 01 03:54:47 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
Fri Feb 21 02:33:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords local linear regression
semiparametric varying-coefficient partially linear model
62G08
62G20
generalized estimating equation
62F12
kernel estimation
modified Cholesky decomposition
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-8e7573ae234f1d110f26178007ed5e883a09b776e4884cdc44298300b83080633
PageCount 20
ParticipantIDs crossref_primary_10_1007_s11425_010_4078_4
crossref_citationtrail_10_1007_s11425_010_4078_4
springer_journals_10_1007_s11425_010_4078_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20110100
2011-1-00
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 1
  year: 2011
  text: 20110100
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Science China. Mathematics
PublicationTitleAbbrev Sci. China Math
PublicationYear 2011
Publisher SP Science China Press
Publisher_xml – name: SP Science China Press
References SunY.ZhangW.TongH.Estimation of the covariance matrix of random effects in longitudinal studiesAnn Statist200735279528141129.6205310.1214/0090536070000005232382666
FanJ.HuangT.Profile likelihood inferences on semiparametric varying coefficient partially linear modelsBernoulli200511103110591098.6207710.3150/bj/11374216392189080
RuppertD.ShealtherS. J.WandM. P.An effect bandwidth selector for local least squares regressionJ Amer Statist Assoc199590125712700868.6203410.2307/22915161379468
FanJ.ZhangW.Two-step estimation of functional linear models with application to longitudinal dataJ Roy Statist Soc Ser B20006230332210.1111/1467-9868.002331749541
LiangK. Y.ZegerS. L.Longitudinal data analysis using generalized linear modelBiometrika19867313220595.6211010.1093/biomet/73.1.13836430
DiggleP. T.HeagertyP. J.LiangK.Analysis of Longitudinal Data20022nd ed.OxfordOxford University Press
FanJ.WuY.Semiparametric estimation of covariance matrices for longitudinal dataJ Amer Statist Assoc20081031520153310.1198/0162145080000007422504201
WangH.ZhuZ.ZhouJ.Quantile regression in partially linear varying coefficient modelsAnn Statist200937384138661191.6207710.1214/09-AOS6952572445
ZhangD. W.LinX. H.RazJ.Semiparametric stochastic mixed models for longitudinal dataJ Amer Statist Assoc1998937107190918.6203910.2307/26701211631369
DiggleP.VerbylaA.Nonparametric estimation of covariance structure in longitudinal dataBiometrics1998544014151058.6260010.2307/3109751
HeX.ZhuZ. Y.FungW. K.Estimation in a semiparametric model for longitudinal data with unspecified dependence structureBiometrika2002895795901036.6203510.1093/biomet/89.3.5791929164
MartinussenT.ScheikeT. H.A semiparametric additive regression model for longitudinal dataBiometrika1999866917020938.6204310.1093/biomet/86.3.6911723787
PourahmadiM.Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrixBiometrika2000874254350954.6209110.1093/biomet/87.2.4251782488
FanJ.LiR.New estimation and model selection procedures for semiparametric modeling in longitudinal data analysisJ Amer Statist Assoc2004997107231117.6232910.1198/0162145040000010602090905
PourahmadiM.Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisationBiometrika1999866776900949.6206610.1093/biomet/86.3.6771723786
HuangJ. Z.WuC. O.ZhouL.Varying-coefficient models and basis function approximations for the analysis of repeated measurementsBiometrika2002891111280998.6202410.1093/biomet/89.1.1111888349
ZegerS. L.DiggleP. J.Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconvertersBiometrics1994506896990821.6209310.2307/2532783
FanJ.HuangT.LiR.Analysis of longitudinal data with semiparametric estimation of covariance functionJ Amer Statist Assoc200710063264110.1198/0162145070000000952370857
PanJ.MackenzieG.Model selection for joint mean-covariance structures in longitudinal studiesBiometrika2003902392441039.6206810.1093/biomet/90.1.2391966564
YeH.PanJ.Modelling of covariance structure in generalised estimation equations for longitudinal dataBiometrika20069392794110.1093/biomet/93.4.9272285080
HeX.FungW. K.ZhuZ. Y.Robust estimation in generalized partial linear models for clustered dataJ Amer Statist Assoc2005100117611841117.6235110.1198/0162145050000002772236433
WuW. B.PourahmadiM.Nonparametric estimation of large covariance matrices of longitudinal dataBiometrika20039083184410.1093/biomet/90.4.8312024760
FanJ.ZhangW.Statistical estimation in varying-coefficient modelsJ Amer Statist Assoc199927149115180977.620391742497
J. Fan (4078_CR5) 2004; 99
X. He (4078_CR10) 2002; 89
J. Fan (4078_CR8) 2000; 62
X. He (4078_CR9) 2005; 100
M. Pourahmadi (4078_CR15) 1999; 86
D. W. Zhang (4078_CR23) 1998; 93
J. Fan (4078_CR3) 2005; 11
P. Diggle (4078_CR2) 1998; 54
J. Pan (4078_CR14) 2003; 90
M. Pourahmadi (4078_CR16) 2000; 87
J. Fan (4078_CR7) 1999; 27
J. Z. Huang (4078_CR11) 2002; 89
T. Martinussen (4078_CR13) 1999; 86
D. Ruppert (4078_CR17) 1995; 90
Y. Sun (4078_CR18) 2007; 35
J. Fan (4078_CR4) 2007; 100
K. Y. Liang (4078_CR12) 1986; 73
W. B. Wu (4078_CR20) 2003; 90
S. L. Zeger (4078_CR22) 1994; 50
P. T. Diggle (4078_CR1) 2002
J. Fan (4078_CR6) 2008; 103
H. Wang (4078_CR19) 2009; 37
H. Ye (4078_CR21) 2006; 93
References_xml – reference: PanJ.MackenzieG.Model selection for joint mean-covariance structures in longitudinal studiesBiometrika2003902392441039.6206810.1093/biomet/90.1.2391966564
– reference: RuppertD.ShealtherS. J.WandM. P.An effect bandwidth selector for local least squares regressionJ Amer Statist Assoc199590125712700868.6203410.2307/22915161379468
– reference: LiangK. Y.ZegerS. L.Longitudinal data analysis using generalized linear modelBiometrika19867313220595.6211010.1093/biomet/73.1.13836430
– reference: WangH.ZhuZ.ZhouJ.Quantile regression in partially linear varying coefficient modelsAnn Statist200937384138661191.6207710.1214/09-AOS6952572445
– reference: FanJ.HuangT.LiR.Analysis of longitudinal data with semiparametric estimation of covariance functionJ Amer Statist Assoc200710063264110.1198/0162145070000000952370857
– reference: HuangJ. Z.WuC. O.ZhouL.Varying-coefficient models and basis function approximations for the analysis of repeated measurementsBiometrika2002891111280998.6202410.1093/biomet/89.1.1111888349
– reference: PourahmadiM.Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisationBiometrika1999866776900949.6206610.1093/biomet/86.3.6771723786
– reference: FanJ.ZhangW.Statistical estimation in varying-coefficient modelsJ Amer Statist Assoc199927149115180977.620391742497
– reference: WuW. B.PourahmadiM.Nonparametric estimation of large covariance matrices of longitudinal dataBiometrika20039083184410.1093/biomet/90.4.8312024760
– reference: ZhangD. W.LinX. H.RazJ.Semiparametric stochastic mixed models for longitudinal dataJ Amer Statist Assoc1998937107190918.6203910.2307/26701211631369
– reference: YeH.PanJ.Modelling of covariance structure in generalised estimation equations for longitudinal dataBiometrika20069392794110.1093/biomet/93.4.9272285080
– reference: MartinussenT.ScheikeT. H.A semiparametric additive regression model for longitudinal dataBiometrika1999866917020938.6204310.1093/biomet/86.3.6911723787
– reference: FanJ.HuangT.Profile likelihood inferences on semiparametric varying coefficient partially linear modelsBernoulli200511103110591098.6207710.3150/bj/11374216392189080
– reference: FanJ.ZhangW.Two-step estimation of functional linear models with application to longitudinal dataJ Roy Statist Soc Ser B20006230332210.1111/1467-9868.002331749541
– reference: HeX.FungW. K.ZhuZ. Y.Robust estimation in generalized partial linear models for clustered dataJ Amer Statist Assoc2005100117611841117.6235110.1198/0162145050000002772236433
– reference: ZegerS. L.DiggleP. J.Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconvertersBiometrics1994506896990821.6209310.2307/2532783
– reference: DiggleP. T.HeagertyP. J.LiangK.Analysis of Longitudinal Data20022nd ed.OxfordOxford University Press
– reference: HeX.ZhuZ. Y.FungW. K.Estimation in a semiparametric model for longitudinal data with unspecified dependence structureBiometrika2002895795901036.6203510.1093/biomet/89.3.5791929164
– reference: PourahmadiM.Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrixBiometrika2000874254350954.6209110.1093/biomet/87.2.4251782488
– reference: FanJ.WuY.Semiparametric estimation of covariance matrices for longitudinal dataJ Amer Statist Assoc20081031520153310.1198/0162145080000007422504201
– reference: DiggleP.VerbylaA.Nonparametric estimation of covariance structure in longitudinal dataBiometrics1998544014151058.6260010.2307/3109751
– reference: FanJ.LiR.New estimation and model selection procedures for semiparametric modeling in longitudinal data analysisJ Amer Statist Assoc2004997107231117.6232910.1198/0162145040000010602090905
– reference: SunY.ZhangW.TongH.Estimation of the covariance matrix of random effects in longitudinal studiesAnn Statist200735279528141129.6205310.1214/0090536070000005232382666
– volume: 37
  start-page: 3841
  year: 2009
  ident: 4078_CR19
  publication-title: Ann Statist
  doi: 10.1214/09-AOS695
– volume: 99
  start-page: 710
  year: 2004
  ident: 4078_CR5
  publication-title: J Amer Statist Assoc
  doi: 10.1198/016214504000001060
– volume: 89
  start-page: 579
  year: 2002
  ident: 4078_CR10
  publication-title: Biometrika
  doi: 10.1093/biomet/89.3.579
– volume: 50
  start-page: 689
  year: 1994
  ident: 4078_CR22
  publication-title: Biometrics
  doi: 10.2307/2532783
– volume: 103
  start-page: 1520
  year: 2008
  ident: 4078_CR6
  publication-title: J Amer Statist Assoc
  doi: 10.1198/016214508000000742
– volume: 27
  start-page: 1491
  year: 1999
  ident: 4078_CR7
  publication-title: J Amer Statist Assoc
– volume: 93
  start-page: 710
  year: 1998
  ident: 4078_CR23
  publication-title: J Amer Statist Assoc
  doi: 10.2307/2670121
– volume: 54
  start-page: 401
  year: 1998
  ident: 4078_CR2
  publication-title: Biometrics
  doi: 10.2307/3109751
– volume: 93
  start-page: 927
  year: 2006
  ident: 4078_CR21
  publication-title: Biometrika
  doi: 10.1093/biomet/93.4.927
– volume: 62
  start-page: 303
  year: 2000
  ident: 4078_CR8
  publication-title: J Roy Statist Soc Ser B
  doi: 10.1111/1467-9868.00233
– volume: 90
  start-page: 239
  year: 2003
  ident: 4078_CR14
  publication-title: Biometrika
  doi: 10.1093/biomet/90.1.239
– volume: 90
  start-page: 1257
  year: 1995
  ident: 4078_CR17
  publication-title: J Amer Statist Assoc
  doi: 10.2307/2291516
– volume-title: Analysis of Longitudinal Data
  year: 2002
  ident: 4078_CR1
  doi: 10.1093/oso/9780198524847.001.0001
– volume: 11
  start-page: 1031
  year: 2005
  ident: 4078_CR3
  publication-title: Bernoulli
  doi: 10.3150/bj/1137421639
– volume: 90
  start-page: 831
  year: 2003
  ident: 4078_CR20
  publication-title: Biometrika
  doi: 10.1093/biomet/90.4.831
– volume: 87
  start-page: 425
  year: 2000
  ident: 4078_CR16
  publication-title: Biometrika
  doi: 10.1093/biomet/87.2.425
– volume: 35
  start-page: 2795
  year: 2007
  ident: 4078_CR18
  publication-title: Ann Statist
  doi: 10.1214/009053607000000523
– volume: 86
  start-page: 677
  year: 1999
  ident: 4078_CR15
  publication-title: Biometrika
  doi: 10.1093/biomet/86.3.677
– volume: 73
  start-page: 13
  year: 1986
  ident: 4078_CR12
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume: 100
  start-page: 1176
  year: 2005
  ident: 4078_CR9
  publication-title: J Amer Statist Assoc
  doi: 10.1198/016214505000000277
– volume: 86
  start-page: 691
  year: 1999
  ident: 4078_CR13
  publication-title: Biometrika
  doi: 10.1093/biomet/86.3.691
– volume: 89
  start-page: 111
  year: 2002
  ident: 4078_CR11
  publication-title: Biometrika
  doi: 10.1093/biomet/89.1.111
– volume: 100
  start-page: 632
  year: 2007
  ident: 4078_CR4
  publication-title: J Amer Statist Assoc
  doi: 10.1198/016214507000000095
SSID ssj0000390473
Score 1.8169678
Snippet Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 145
SubjectTerms Applications of Mathematics
Mathematics
Mathematics and Statistics
Title Joint semiparametric mean-covariance model in longitudinal study
URI https://link.springer.com/article/10.1007/s11425-010-4078-4
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-47aIHv8X5MXrwpGS0TdqkN4c4x2SeNpinkqQpDLdWbOfBv96kHxsTFQalp9fSPl7yfsnv5fcAbqiget4LYmTgKiICK8QdTJGOpzhwlfIdYRjd0Ys_mJDh1JtW57izutq9piSLmXp92M3R8YUMeWu4J0Qa0PIcFrAmtHpPr8_rrRVbr-NJwS2bEntEdQat-czf3rOZkTbp0CLL9A9gXH9fWVzy1l3moiu_fkg3bvkDh7BfoU6rV4bJEeyo5Bj2RivJ1uwE7ofpLMmtTC1mRg58YTptSWuheIJk-qlX1CY8rKJxjjVLrHlqGh0tI9NUyyo0ak9h0n8cPwxQ1V4BSZexHDFFPYq5cjGJnUjDgNios2sASVXkKcYwtwNBqa_0GCcykkSnLoZtW-gb08gGn0EzSRN1DpbP7ZhorEclJtqMC8UdQpUiXhBxHrM22LWLQ1lpj5sWGPNwrZpsnBNq54TGOSFpw-3qkfdSeOM_47va5WE1BrO_rS-2sr6E3XIf2VxX0Mw_lupaA5FcdKrA60Bj4va-AU2F0W4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20HtSD-In1MwdPykKS3WQ3N4tYam17aqG3sEkmUGgTMam_35k0aSmoIIScJjnMfszbfbvvMfagIoXzXpBygqtcRgK4cYTi2J_SwAXwnYgY3eHI701kf-pN63vcRXPavaEkq5l6c9nNwf7Fibwl7onLXbaHWECTbcHE7aw3VmxcxcuKWaYD9lxh_WzYzJ_-sl2PtsnQqsZ0j9lRDQ6tzqo1T9gOZKfscLhWVi3O2HM_n2WlVcBiRqrdCzLEiq0FmIzH-RcufKkVrcrfxppl1jwnP6JlQt5XViUle84m3dfxS4_XLgg8drUuuQblKWHAFTJ1EqzWKYmoI85TkHigtTB2ECnlAw5FGSexxAqjhW1H-NIIQMQFa2V5BpfM8o2dSoRkKhYSw0wExpEKQHpBYkyq28xuchHGtUQ4OVXMw424MaUvxPSFlL5Qttnj-pOPlT7GX8FPTYLDeqgUv0df_Sv6nu33xsNBOHgbvV-zg9XWLz03rFV-LuEWsUMZ3VV95RuoPLam
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86QfQgfuL8zMGTEmybtElvDnXM6YYHB7uVtE1hsLXDdv79vtePjYEKQsjptYeXl7yX_JLfj5AbGUpY9_yEYbnKRMgN0zaXDOIp8R1jPDtERHcw9Hoj0R-741rnNG9uuzeQZPWmAVma0uJ-Hif3q4dvNsQaQyAXcSgmNskWrMY2BvrI6SwPWSzY0YsSZcbL9kxCLm2QzZ_-sp6b1oHRMt9098leXSjSTjWyB2TDpIdkd7BkWc2PyEM_m6QFzc1sggzeMxTHiujM6JRF2RdsgnFEaal1QycpnWaoTbSIUQeLlrSyx2TUff547LFaEYFFjlIFU0a6kmvjcJHYMWTuBAnVoeaTJnaNUlxbfiilZ2BaiiiOBGQbxS0rhE5BMcJPSCvNUnNKqKetREB5JiMuwEyHRttCGiNcP9Y6UW1iNb4IopouHFUrpsGK6BjdF4D7AnRfINrkdvnJvOLK-Mv4rnFwUE-b_Hfrs39ZX5Pt96du8PYyfD0nO9UpMLYL0io-F-YSyogivCpD5Ru9Fbri
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+semiparametric+mean-covariance+model+in+longitudinal+study&rft.jtitle=Science+China.+Mathematics&rft.au=Mao%2C+Jie&rft.au=Zhu%2C+ZhongYi&rft.date=2011-01-01&rft.pub=SP+Science+China+Press&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=54&rft.issue=1&rft.spage=145&rft.epage=164&rft_id=info:doi/10.1007%2Fs11425-010-4078-4&rft.externalDocID=10_1007_s11425_010_4078_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7283&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7283&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7283&client=summon