Joint semiparametric mean-covariance model in longitudinal study
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semipar...
Saved in:
Published in | Science China. Mathematics Vol. 54; no. 1; pp. 145 - 164 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
SP Science China Press
01.01.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-7283 1869-1862 |
DOI | 10.1007/s11425-010-4078-4 |
Cover
Abstract | Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach. |
---|---|
AbstractList | Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach. |
Author | Zhu, ZhongYi Mao, Jie |
Author_xml | – sequence: 1 givenname: Jie surname: Mao fullname: Mao, Jie organization: Department of Statistics, Fudan University – sequence: 2 givenname: ZhongYi surname: Zhu fullname: Zhu, ZhongYi email: zhuzy@fudan.edu.cn organization: Department of Statistics, Fudan University |
BookMark | eNp9kM1OAjEUhRuDiYg8gLt5gertD9POTkNUNCRudN2Uzh1SMtOSdjDh7S3BlQvu4tyz-e7PuSWTEAMScs_ggQGox8yY5AsKDKgEpam8IlOm64YW4ZPiayWp4lrckHnOOyglGpBKTMnTR_RhrDIOfm-THXBM3lUD2kBd_LHJ2-CwGmKLfeVD1cew9eOh9cH2VS7meEeuO9tnnP_1Gfl-fflaruj68-19-bymjms9Uo1qoYRFLmTHWsag4zVTulyP7QK1FhaajVI1Sq2la52UvNECYFNEQy3EjLDzXJdizgk7s09-sOloGJhTCuacgikpmFMKRhZG_WOcH-3oYxiT9f1Fkp_JXLaELSazi4dUns4XoF-U9HHa |
CitedBy_id | crossref_primary_10_12677_SA_2020_95094 crossref_primary_10_1016_j_jkss_2016_10_003 crossref_primary_10_1007_s11425_016_0126_3 crossref_primary_10_1080_02664763_2014_920778 |
Cites_doi | 10.1214/09-AOS695 10.1198/016214504000001060 10.1093/biomet/89.3.579 10.2307/2532783 10.1198/016214508000000742 10.2307/2670121 10.2307/3109751 10.1093/biomet/93.4.927 10.1111/1467-9868.00233 10.1093/biomet/90.1.239 10.2307/2291516 10.1093/oso/9780198524847.001.0001 10.3150/bj/1137421639 10.1093/biomet/90.4.831 10.1093/biomet/87.2.425 10.1214/009053607000000523 10.1093/biomet/86.3.677 10.1093/biomet/73.1.13 10.1198/016214505000000277 10.1093/biomet/86.3.691 10.1093/biomet/89.1.111 10.1198/016214507000000095 |
ContentType | Journal Article |
Copyright | Science China Press and Springer-Verlag Berlin Heidelberg 2010 |
Copyright_xml | – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2010 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11425-010-4078-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1869-1862 |
EndPage | 164 |
ExternalDocumentID | 10_1007_s11425_010_4078_4 |
GroupedDBID | -5D -5G -BR -EM -SA -S~ -Y2 -~C .VR 06D 0R~ 0VY 1N0 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 5XA 5XB 8TC 8UJ 92E 92I 92Q 93N 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BAPOH BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP CJPJV COF CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9J P9R PF0 PT4 Q-- QOS R89 RIG ROL RSV S16 S3B SAP SCL SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TSG TUC U1G U2A U5K UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ACMFV AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c288t-8e7573ae234f1d110f26178007ed5e883a09b776e4884cdc44298300b83080633 |
IEDL.DBID | AGYKE |
ISSN | 1674-7283 |
IngestDate | Tue Jul 01 03:54:47 EDT 2025 Thu Apr 24 23:12:42 EDT 2025 Fri Feb 21 02:33:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | local linear regression semiparametric varying-coefficient partially linear model 62G08 62G20 generalized estimating equation 62F12 kernel estimation modified Cholesky decomposition |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-8e7573ae234f1d110f26178007ed5e883a09b776e4884cdc44298300b83080633 |
PageCount | 20 |
ParticipantIDs | crossref_primary_10_1007_s11425_010_4078_4 crossref_citationtrail_10_1007_s11425_010_4078_4 springer_journals_10_1007_s11425_010_4078_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20110100 2011-1-00 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 1 year: 2011 text: 20110100 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Science China. Mathematics |
PublicationTitleAbbrev | Sci. China Math |
PublicationYear | 2011 |
Publisher | SP Science China Press |
Publisher_xml | – name: SP Science China Press |
References | SunY.ZhangW.TongH.Estimation of the covariance matrix of random effects in longitudinal studiesAnn Statist200735279528141129.6205310.1214/0090536070000005232382666 FanJ.HuangT.Profile likelihood inferences on semiparametric varying coefficient partially linear modelsBernoulli200511103110591098.6207710.3150/bj/11374216392189080 RuppertD.ShealtherS. J.WandM. P.An effect bandwidth selector for local least squares regressionJ Amer Statist Assoc199590125712700868.6203410.2307/22915161379468 FanJ.ZhangW.Two-step estimation of functional linear models with application to longitudinal dataJ Roy Statist Soc Ser B20006230332210.1111/1467-9868.002331749541 LiangK. Y.ZegerS. L.Longitudinal data analysis using generalized linear modelBiometrika19867313220595.6211010.1093/biomet/73.1.13836430 DiggleP. T.HeagertyP. J.LiangK.Analysis of Longitudinal Data20022nd ed.OxfordOxford University Press FanJ.WuY.Semiparametric estimation of covariance matrices for longitudinal dataJ Amer Statist Assoc20081031520153310.1198/0162145080000007422504201 WangH.ZhuZ.ZhouJ.Quantile regression in partially linear varying coefficient modelsAnn Statist200937384138661191.6207710.1214/09-AOS6952572445 ZhangD. W.LinX. H.RazJ.Semiparametric stochastic mixed models for longitudinal dataJ Amer Statist Assoc1998937107190918.6203910.2307/26701211631369 DiggleP.VerbylaA.Nonparametric estimation of covariance structure in longitudinal dataBiometrics1998544014151058.6260010.2307/3109751 HeX.ZhuZ. Y.FungW. K.Estimation in a semiparametric model for longitudinal data with unspecified dependence structureBiometrika2002895795901036.6203510.1093/biomet/89.3.5791929164 MartinussenT.ScheikeT. H.A semiparametric additive regression model for longitudinal dataBiometrika1999866917020938.6204310.1093/biomet/86.3.6911723787 PourahmadiM.Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrixBiometrika2000874254350954.6209110.1093/biomet/87.2.4251782488 FanJ.LiR.New estimation and model selection procedures for semiparametric modeling in longitudinal data analysisJ Amer Statist Assoc2004997107231117.6232910.1198/0162145040000010602090905 PourahmadiM.Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisationBiometrika1999866776900949.6206610.1093/biomet/86.3.6771723786 HuangJ. Z.WuC. O.ZhouL.Varying-coefficient models and basis function approximations for the analysis of repeated measurementsBiometrika2002891111280998.6202410.1093/biomet/89.1.1111888349 ZegerS. L.DiggleP. J.Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconvertersBiometrics1994506896990821.6209310.2307/2532783 FanJ.HuangT.LiR.Analysis of longitudinal data with semiparametric estimation of covariance functionJ Amer Statist Assoc200710063264110.1198/0162145070000000952370857 PanJ.MackenzieG.Model selection for joint mean-covariance structures in longitudinal studiesBiometrika2003902392441039.6206810.1093/biomet/90.1.2391966564 YeH.PanJ.Modelling of covariance structure in generalised estimation equations for longitudinal dataBiometrika20069392794110.1093/biomet/93.4.9272285080 HeX.FungW. K.ZhuZ. Y.Robust estimation in generalized partial linear models for clustered dataJ Amer Statist Assoc2005100117611841117.6235110.1198/0162145050000002772236433 WuW. B.PourahmadiM.Nonparametric estimation of large covariance matrices of longitudinal dataBiometrika20039083184410.1093/biomet/90.4.8312024760 FanJ.ZhangW.Statistical estimation in varying-coefficient modelsJ Amer Statist Assoc199927149115180977.620391742497 J. Fan (4078_CR5) 2004; 99 X. He (4078_CR10) 2002; 89 J. Fan (4078_CR8) 2000; 62 X. He (4078_CR9) 2005; 100 M. Pourahmadi (4078_CR15) 1999; 86 D. W. Zhang (4078_CR23) 1998; 93 J. Fan (4078_CR3) 2005; 11 P. Diggle (4078_CR2) 1998; 54 J. Pan (4078_CR14) 2003; 90 M. Pourahmadi (4078_CR16) 2000; 87 J. Fan (4078_CR7) 1999; 27 J. Z. Huang (4078_CR11) 2002; 89 T. Martinussen (4078_CR13) 1999; 86 D. Ruppert (4078_CR17) 1995; 90 Y. Sun (4078_CR18) 2007; 35 J. Fan (4078_CR4) 2007; 100 K. Y. Liang (4078_CR12) 1986; 73 W. B. Wu (4078_CR20) 2003; 90 S. L. Zeger (4078_CR22) 1994; 50 P. T. Diggle (4078_CR1) 2002 J. Fan (4078_CR6) 2008; 103 H. Wang (4078_CR19) 2009; 37 H. Ye (4078_CR21) 2006; 93 |
References_xml | – reference: PanJ.MackenzieG.Model selection for joint mean-covariance structures in longitudinal studiesBiometrika2003902392441039.6206810.1093/biomet/90.1.2391966564 – reference: RuppertD.ShealtherS. J.WandM. P.An effect bandwidth selector for local least squares regressionJ Amer Statist Assoc199590125712700868.6203410.2307/22915161379468 – reference: LiangK. Y.ZegerS. L.Longitudinal data analysis using generalized linear modelBiometrika19867313220595.6211010.1093/biomet/73.1.13836430 – reference: WangH.ZhuZ.ZhouJ.Quantile regression in partially linear varying coefficient modelsAnn Statist200937384138661191.6207710.1214/09-AOS6952572445 – reference: FanJ.HuangT.LiR.Analysis of longitudinal data with semiparametric estimation of covariance functionJ Amer Statist Assoc200710063264110.1198/0162145070000000952370857 – reference: HuangJ. Z.WuC. O.ZhouL.Varying-coefficient models and basis function approximations for the analysis of repeated measurementsBiometrika2002891111280998.6202410.1093/biomet/89.1.1111888349 – reference: PourahmadiM.Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisationBiometrika1999866776900949.6206610.1093/biomet/86.3.6771723786 – reference: FanJ.ZhangW.Statistical estimation in varying-coefficient modelsJ Amer Statist Assoc199927149115180977.620391742497 – reference: WuW. B.PourahmadiM.Nonparametric estimation of large covariance matrices of longitudinal dataBiometrika20039083184410.1093/biomet/90.4.8312024760 – reference: ZhangD. W.LinX. H.RazJ.Semiparametric stochastic mixed models for longitudinal dataJ Amer Statist Assoc1998937107190918.6203910.2307/26701211631369 – reference: YeH.PanJ.Modelling of covariance structure in generalised estimation equations for longitudinal dataBiometrika20069392794110.1093/biomet/93.4.9272285080 – reference: MartinussenT.ScheikeT. H.A semiparametric additive regression model for longitudinal dataBiometrika1999866917020938.6204310.1093/biomet/86.3.6911723787 – reference: FanJ.HuangT.Profile likelihood inferences on semiparametric varying coefficient partially linear modelsBernoulli200511103110591098.6207710.3150/bj/11374216392189080 – reference: FanJ.ZhangW.Two-step estimation of functional linear models with application to longitudinal dataJ Roy Statist Soc Ser B20006230332210.1111/1467-9868.002331749541 – reference: HeX.FungW. K.ZhuZ. Y.Robust estimation in generalized partial linear models for clustered dataJ Amer Statist Assoc2005100117611841117.6235110.1198/0162145050000002772236433 – reference: ZegerS. L.DiggleP. J.Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconvertersBiometrics1994506896990821.6209310.2307/2532783 – reference: DiggleP. T.HeagertyP. J.LiangK.Analysis of Longitudinal Data20022nd ed.OxfordOxford University Press – reference: HeX.ZhuZ. Y.FungW. K.Estimation in a semiparametric model for longitudinal data with unspecified dependence structureBiometrika2002895795901036.6203510.1093/biomet/89.3.5791929164 – reference: PourahmadiM.Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrixBiometrika2000874254350954.6209110.1093/biomet/87.2.4251782488 – reference: FanJ.WuY.Semiparametric estimation of covariance matrices for longitudinal dataJ Amer Statist Assoc20081031520153310.1198/0162145080000007422504201 – reference: DiggleP.VerbylaA.Nonparametric estimation of covariance structure in longitudinal dataBiometrics1998544014151058.6260010.2307/3109751 – reference: FanJ.LiR.New estimation and model selection procedures for semiparametric modeling in longitudinal data analysisJ Amer Statist Assoc2004997107231117.6232910.1198/0162145040000010602090905 – reference: SunY.ZhangW.TongH.Estimation of the covariance matrix of random effects in longitudinal studiesAnn Statist200735279528141129.6205310.1214/0090536070000005232382666 – volume: 37 start-page: 3841 year: 2009 ident: 4078_CR19 publication-title: Ann Statist doi: 10.1214/09-AOS695 – volume: 99 start-page: 710 year: 2004 ident: 4078_CR5 publication-title: J Amer Statist Assoc doi: 10.1198/016214504000001060 – volume: 89 start-page: 579 year: 2002 ident: 4078_CR10 publication-title: Biometrika doi: 10.1093/biomet/89.3.579 – volume: 50 start-page: 689 year: 1994 ident: 4078_CR22 publication-title: Biometrics doi: 10.2307/2532783 – volume: 103 start-page: 1520 year: 2008 ident: 4078_CR6 publication-title: J Amer Statist Assoc doi: 10.1198/016214508000000742 – volume: 27 start-page: 1491 year: 1999 ident: 4078_CR7 publication-title: J Amer Statist Assoc – volume: 93 start-page: 710 year: 1998 ident: 4078_CR23 publication-title: J Amer Statist Assoc doi: 10.2307/2670121 – volume: 54 start-page: 401 year: 1998 ident: 4078_CR2 publication-title: Biometrics doi: 10.2307/3109751 – volume: 93 start-page: 927 year: 2006 ident: 4078_CR21 publication-title: Biometrika doi: 10.1093/biomet/93.4.927 – volume: 62 start-page: 303 year: 2000 ident: 4078_CR8 publication-title: J Roy Statist Soc Ser B doi: 10.1111/1467-9868.00233 – volume: 90 start-page: 239 year: 2003 ident: 4078_CR14 publication-title: Biometrika doi: 10.1093/biomet/90.1.239 – volume: 90 start-page: 1257 year: 1995 ident: 4078_CR17 publication-title: J Amer Statist Assoc doi: 10.2307/2291516 – volume-title: Analysis of Longitudinal Data year: 2002 ident: 4078_CR1 doi: 10.1093/oso/9780198524847.001.0001 – volume: 11 start-page: 1031 year: 2005 ident: 4078_CR3 publication-title: Bernoulli doi: 10.3150/bj/1137421639 – volume: 90 start-page: 831 year: 2003 ident: 4078_CR20 publication-title: Biometrika doi: 10.1093/biomet/90.4.831 – volume: 87 start-page: 425 year: 2000 ident: 4078_CR16 publication-title: Biometrika doi: 10.1093/biomet/87.2.425 – volume: 35 start-page: 2795 year: 2007 ident: 4078_CR18 publication-title: Ann Statist doi: 10.1214/009053607000000523 – volume: 86 start-page: 677 year: 1999 ident: 4078_CR15 publication-title: Biometrika doi: 10.1093/biomet/86.3.677 – volume: 73 start-page: 13 year: 1986 ident: 4078_CR12 publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume: 100 start-page: 1176 year: 2005 ident: 4078_CR9 publication-title: J Amer Statist Assoc doi: 10.1198/016214505000000277 – volume: 86 start-page: 691 year: 1999 ident: 4078_CR13 publication-title: Biometrika doi: 10.1093/biomet/86.3.691 – volume: 89 start-page: 111 year: 2002 ident: 4078_CR11 publication-title: Biometrika doi: 10.1093/biomet/89.1.111 – volume: 100 start-page: 632 year: 2007 ident: 4078_CR4 publication-title: J Amer Statist Assoc doi: 10.1198/016214507000000095 |
SSID | ssj0000390473 |
Score | 1.8169678 |
Snippet | Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 145 |
SubjectTerms | Applications of Mathematics Mathematics Mathematics and Statistics |
Title | Joint semiparametric mean-covariance model in longitudinal study |
URI | https://link.springer.com/article/10.1007/s11425-010-4078-4 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH-47aIHv8X5MXrwpGS0TdqkN4c4x2SeNpinkqQpDLdWbOfBv96kHxsTFQalp9fSPl7yfsnv5fcAbqiget4LYmTgKiICK8QdTJGOpzhwlfIdYRjd0Ys_mJDh1JtW57izutq9piSLmXp92M3R8YUMeWu4J0Qa0PIcFrAmtHpPr8_rrRVbr-NJwS2bEntEdQat-czf3rOZkTbp0CLL9A9gXH9fWVzy1l3moiu_fkg3bvkDh7BfoU6rV4bJEeyo5Bj2RivJ1uwE7ofpLMmtTC1mRg58YTptSWuheIJk-qlX1CY8rKJxjjVLrHlqGh0tI9NUyyo0ak9h0n8cPwxQ1V4BSZexHDFFPYq5cjGJnUjDgNios2sASVXkKcYwtwNBqa_0GCcykkSnLoZtW-gb08gGn0EzSRN1DpbP7ZhorEclJtqMC8UdQpUiXhBxHrM22LWLQ1lpj5sWGPNwrZpsnBNq54TGOSFpw-3qkfdSeOM_47va5WE1BrO_rS-2sr6E3XIf2VxX0Mw_lupaA5FcdKrA60Bj4va-AU2F0W4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEF20HtSD-In1MwdPykKS3WQ3N4tYam17aqG3sEkmUGgTMam_35k0aSmoIIScJjnMfszbfbvvMfagIoXzXpBygqtcRgK4cYTi2J_SwAXwnYgY3eHI701kf-pN63vcRXPavaEkq5l6c9nNwf7Fibwl7onLXbaHWECTbcHE7aw3VmxcxcuKWaYD9lxh_WzYzJ_-sl2PtsnQqsZ0j9lRDQ6tzqo1T9gOZKfscLhWVi3O2HM_n2WlVcBiRqrdCzLEiq0FmIzH-RcufKkVrcrfxppl1jwnP6JlQt5XViUle84m3dfxS4_XLgg8drUuuQblKWHAFTJ1EqzWKYmoI85TkHigtTB2ECnlAw5FGSexxAqjhW1H-NIIQMQFa2V5BpfM8o2dSoRkKhYSw0wExpEKQHpBYkyq28xuchHGtUQ4OVXMw424MaUvxPSFlL5Qttnj-pOPlT7GX8FPTYLDeqgUv0df_Sv6nu33xsNBOHgbvV-zg9XWLz03rFV-LuEWsUMZ3VV95RuoPLam |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86QfQgfuL8zMGTEmybtElvDnXM6YYHB7uVtE1hsLXDdv79vtePjYEKQsjptYeXl7yX_JLfj5AbGUpY9_yEYbnKRMgN0zaXDOIp8R1jPDtERHcw9Hoj0R-741rnNG9uuzeQZPWmAVma0uJ-Hif3q4dvNsQaQyAXcSgmNskWrMY2BvrI6SwPWSzY0YsSZcbL9kxCLm2QzZ_-sp6b1oHRMt9098leXSjSTjWyB2TDpIdkd7BkWc2PyEM_m6QFzc1sggzeMxTHiujM6JRF2RdsgnFEaal1QycpnWaoTbSIUQeLlrSyx2TUff547LFaEYFFjlIFU0a6kmvjcJHYMWTuBAnVoeaTJnaNUlxbfiilZ2BaiiiOBGQbxS0rhE5BMcJPSCvNUnNKqKetREB5JiMuwEyHRttCGiNcP9Y6UW1iNb4IopouHFUrpsGK6BjdF4D7AnRfINrkdvnJvOLK-Mv4rnFwUE-b_Hfrs39ZX5Pt96du8PYyfD0nO9UpMLYL0io-F-YSyogivCpD5Ru9Fbri |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+semiparametric+mean-covariance+model+in+longitudinal+study&rft.jtitle=Science+China.+Mathematics&rft.au=Mao%2C+Jie&rft.au=Zhu%2C+ZhongYi&rft.date=2011-01-01&rft.pub=SP+Science+China+Press&rft.issn=1674-7283&rft.eissn=1869-1862&rft.volume=54&rft.issue=1&rft.spage=145&rft.epage=164&rft_id=info:doi/10.1007%2Fs11425-010-4078-4&rft.externalDocID=10_1007_s11425_010_4078_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7283&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7283&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7283&client=summon |