On the Lotka–Volterra competition system with Allee effects

We study asymptotic dynamics of the classical Lotka–Volterra competition model when both competing populations are subject to Allee effects. The resulting system can have up to four interior steady states. In such case, it is proved that both competing populations may either go extinct, coexist, or...

Full description

Saved in:
Bibliographic Details
Published inComputational and Applied Mathematics Vol. 32; no. 1; pp. 179 - 189
Main Author Jang, Sophia R.-J.
Format Journal Article
LanguageEnglish
Published Basel SP Birkhäuser Verlag Basel 01.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study asymptotic dynamics of the classical Lotka–Volterra competition model when both competing populations are subject to Allee effects. The resulting system can have up to four interior steady states. In such case, it is proved that both competing populations may either go extinct, coexist, or one population drives the other population to extinction depending on initial conditions.
AbstractList We study asymptotic dynamics of the classical Lotka–Volterra competition model when both competing populations are subject to Allee effects. The resulting system can have up to four interior steady states. In such case, it is proved that both competing populations may either go extinct, coexist, or one population drives the other population to extinction depending on initial conditions.
Author Jang, Sophia R.-J.
Author_xml – sequence: 1
  givenname: Sophia R.-J.
  surname: Jang
  fullname: Jang, Sophia R.-J.
  email: srjjang@gmail.com
  organization: Department of Mathematics and Statistics, Texas Tech University
BookMark eNp9kD1OAzEQRi0UJELIAeh8AcOM7ay9BUUU8SdFogFay3JssmGzjmwjko47cENOwkahosg008wbfd87J4Mudp6QS4QrBFDXWYJAyQAFA-CcbU_IEDUoBgL4gAwBAZnmMDkj45xX0I8EQF4Nyc1TR8vS03ks7_bn6_s1tsWnZKmL640vTWliR_MuF7-mn01Z0mnbek99CN6VfEFOg22zH__tEXm5u32ePbD50_3jbDpnjmtdmNZ17WoMYhG0C1XldO1UgImtEZGrSgnprA9OSlEJjkIvYCJDrVS9QOACxIiow1-XYs7JB-OaYvfZSrJNaxDMXoQ5iDC9CLMXYbY9if_ITWrWNu2OMvzA5P62e_PJrOJH6vqCR6BfG0ByMQ
CitedBy_id crossref_primary_10_1016_j_chaos_2023_113995
crossref_primary_10_1080_23737867_2017_1282843
crossref_primary_10_1186_s13662_018_1860_z
crossref_primary_10_1142_S1793524523500778
crossref_primary_10_1016_j_matcom_2019_01_006
Cites_doi 10.1016/j.mbs.2003.06.001
10.1080/17513750903026429
10.1016/j.mbs.2007.02.006
10.1086/282171
10.1080/17513750802376313
10.1098/rspb.2004.2733
10.1080/10236190412331335373
10.1007/978-1-4612-0601-9
10.1016/j.tpb.2004.06.007
10.1080/00036811.2012.692365
10.5962/bhl.title.7226
10.1002/9781444313765
10.1016/S0304-3800(99)00160-X
10.1017/CBO9780511530043
10.2307/1937362
10.1093/acprof:oso/9780198570301.001.0001
10.1111/j.1939-7445.1989.tb00119.x
10.1137/1030003
10.1007/978-3-642-56166-5
10.1080/10236190500539238
ContentType Journal Article
Copyright SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2013
Copyright_xml – notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2013
DBID AAYXX
CITATION
DOI 10.1007/s40314-013-0022-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1807-0302
EndPage 189
ExternalDocumentID 10_1007_s40314_013_0022_x
GroupedDBID -EM
.4S
.DC
06D
0R~
203
29F
2WC
30V
4.4
406
5GY
69Q
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACIPV
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ARCSS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KQ8
KWQ
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
P2P
PT4
RLLFE
RNS
ROL
RSC
RSV
SCD
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z7R
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
OVT
ID FETCH-LOGICAL-c288t-8899c91f3df8cf66c89c7f05a9111276734caefc443632138d054f9779d102303
IEDL.DBID AGYKE
ISSN 0101-8205
IngestDate Thu Apr 24 23:11:47 EDT 2025
Tue Jul 01 00:45:58 EDT 2025
Fri Feb 21 02:27:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Allee effects
Global stable manifolds
92D25
92D40
Monotone dynamical systems
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-8899c91f3df8cf66c89c7f05a9111276734caefc443632138d054f9779d102303
PageCount 11
ParticipantIDs crossref_citationtrail_10_1007_s40314_013_0022_x
crossref_primary_10_1007_s40314_013_0022_x
springer_journals_10_1007_s40314_013_0022_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-04-01
PublicationDateYYYYMMDD 2013-04-01
PublicationDate_xml – month: 04
  year: 2013
  text: 2013-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Computational and Applied Mathematics
PublicationTitleAbbrev Comp. Appl. Math
PublicationYear 2013
Publisher SP Birkhäuser Verlag Basel
Publisher_xml – name: SP Birkhäuser Verlag Basel
References SommerUWormBCompetition and Coexistence2002New YorkSpringer10.1007/978-3-642-56166-5
ZhouSWangGAllee-like effects in metapopulation dynamicsMath Biosci200418910311320549581073.9203910.1016/j.mbs.2003.06.001
Cushing JM (1988) The Allee effect in age-structured population dynamics. In: Hallam T, Gross L, Levin S (eds) Mathematical Ecology, pp 479–505
SmithHLWaltmanPThe Theory of Chemostat1995New YorkCambridge University Press0860.9203110.1017/CBO9780511530043
WalterWOrdinary Differential Equations, Graduate Texts in Mathematics1998New YorkSpringer10.1007/978-1-4612-0601-9
WangGLiangX-GWangF-ZThe competitive dynamics of populations subject to an Allee effectEcol Model199912418319210.1016/S0304-3800(99)00160-X
HilkerFMPopulation collapse to extinction: the catastrophic combination of parasitism and Allee effectJ Biol Dyn2010486101260571110.1080/17513750903026429
HutchinsonGEThe paradox of the planktonAmer Natur19619513714510.1086/282171
VoornGHemerikLBoerMKooiBHeteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effectMath Biosci200720945146923595591126.9206210.1016/j.mbs.2007.02.006
AllenLFaganJHognasGFagerhalmHPopulation extinction in discrete-time stochastic population models with an Allee effectJ Differ Equ Appl2005112732931064.9203610.1080/10236190412331335373
JangSR-JAllee effects in a discrete-time host-parasitoid modelJ Differ Equ Appl2006121651811088.9205810.1080/10236190500539238
Thieme HR (2005) Mathematics in Population Biology, Princeton University Press, Princeton
SmithHLSystems of ordinary differential equations which generate an order preserving flow: a survey of resultsSIAM Rev198830871139312790674.3401210.1137/1030003
ZhouSLiuYWangGThe stability of predator-prey systems subject to the Allee effectsTheo Pop Biol20056723311072.9206010.1016/j.tpb.2004.06.007
Jang SR-J (2013) Competitive exclusion and coexistence in a Leslie-Gower competition model with Allee effects. Appl Anal doi:10.1080/00036811.2012.692365
ThiemeHRDhirasakdanonTHanZTrevinoRSpecies decline and extinction: synergy of infectious diseases and Allee effect?J Biol Dyn20093305323257401010.1080/17513750802376313
PringleCMNutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algaeEcology19907190592010.2307/1937362
DennisBAllee effects, population growth, critical density, and the chance of extinctionNat Res Mod1989348153810371930850.92062
Begon M, Harper J, Townsend C (1996) Ecology: Individuals. Populations and Communities, Blackwell Science Ltd, New York
MorozovAPetrovskiiSLiB-LBifurcations and chaos in a predator-prey system with the Allee effectProc Roy Soc Ser B20042711407141410.1098/rspb.2004.2733
Allee WC (1938) The Social Life of Animals, William Heinemann, University of Chicago Press, Chicago
CourchampFBerecLGascoigneJAllee Effects in Ecology and Conservation2008New YorkOxford University Press10.1093/acprof:oso/9780198570301.001.0001
TilmanDResource Competition and Community Structure1982PrincetonPrinceton University Press
D Tilman (22_CR18) 1982
F Courchamp (22_CR4) 2008
S Zhou (22_CR23) 2005; 67
B Dennis (22_CR6) 1989; 3
U Sommer (22_CR15) 2002
22_CR10
G Voorn (22_CR19) 2007; 209
A Morozov (22_CR11) 2004; 271
L Allen (22_CR2) 2005; 11
GE Hutchinson (22_CR7) 1961; 95
HL Smith (22_CR13) 1988; 30
CM Pringle (22_CR12) 1990; 71
SR-J Jang (22_CR9) 2006; 12
HL Smith (22_CR14) 1995
HR Thieme (22_CR17) 2009; 3
W Walter (22_CR20) 1998
FM Hilker (22_CR8) 2010; 4
22_CR16
S Zhou (22_CR22) 2004; 189
22_CR5
22_CR3
22_CR1
G Wang (22_CR21) 1999; 124
References_xml – reference: PringleCMNutrient spatial heterogeneity: effects on community structure, physiognomy, and diversity of stream algaeEcology19907190592010.2307/1937362
– reference: HilkerFMPopulation collapse to extinction: the catastrophic combination of parasitism and Allee effectJ Biol Dyn2010486101260571110.1080/17513750903026429
– reference: TilmanDResource Competition and Community Structure1982PrincetonPrinceton University Press
– reference: Begon M, Harper J, Townsend C (1996) Ecology: Individuals. Populations and Communities, Blackwell Science Ltd, New York
– reference: VoornGHemerikLBoerMKooiBHeteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effectMath Biosci200720945146923595591126.9206210.1016/j.mbs.2007.02.006
– reference: DennisBAllee effects, population growth, critical density, and the chance of extinctionNat Res Mod1989348153810371930850.92062
– reference: SommerUWormBCompetition and Coexistence2002New YorkSpringer10.1007/978-3-642-56166-5
– reference: WangGLiangX-GWangF-ZThe competitive dynamics of populations subject to an Allee effectEcol Model199912418319210.1016/S0304-3800(99)00160-X
– reference: Thieme HR (2005) Mathematics in Population Biology, Princeton University Press, Princeton
– reference: ZhouSWangGAllee-like effects in metapopulation dynamicsMath Biosci200418910311320549581073.9203910.1016/j.mbs.2003.06.001
– reference: Cushing JM (1988) The Allee effect in age-structured population dynamics. In: Hallam T, Gross L, Levin S (eds) Mathematical Ecology, pp 479–505
– reference: WalterWOrdinary Differential Equations, Graduate Texts in Mathematics1998New YorkSpringer10.1007/978-1-4612-0601-9
– reference: CourchampFBerecLGascoigneJAllee Effects in Ecology and Conservation2008New YorkOxford University Press10.1093/acprof:oso/9780198570301.001.0001
– reference: AllenLFaganJHognasGFagerhalmHPopulation extinction in discrete-time stochastic population models with an Allee effectJ Differ Equ Appl2005112732931064.9203610.1080/10236190412331335373
– reference: SmithHLWaltmanPThe Theory of Chemostat1995New YorkCambridge University Press0860.9203110.1017/CBO9780511530043
– reference: ThiemeHRDhirasakdanonTHanZTrevinoRSpecies decline and extinction: synergy of infectious diseases and Allee effect?J Biol Dyn20093305323257401010.1080/17513750802376313
– reference: Allee WC (1938) The Social Life of Animals, William Heinemann, University of Chicago Press, Chicago
– reference: Jang SR-J (2013) Competitive exclusion and coexistence in a Leslie-Gower competition model with Allee effects. Appl Anal doi:10.1080/00036811.2012.692365
– reference: HutchinsonGEThe paradox of the planktonAmer Natur19619513714510.1086/282171
– reference: MorozovAPetrovskiiSLiB-LBifurcations and chaos in a predator-prey system with the Allee effectProc Roy Soc Ser B20042711407141410.1098/rspb.2004.2733
– reference: SmithHLSystems of ordinary differential equations which generate an order preserving flow: a survey of resultsSIAM Rev198830871139312790674.3401210.1137/1030003
– reference: JangSR-JAllee effects in a discrete-time host-parasitoid modelJ Differ Equ Appl2006121651811088.9205810.1080/10236190500539238
– reference: ZhouSLiuYWangGThe stability of predator-prey systems subject to the Allee effectsTheo Pop Biol20056723311072.9206010.1016/j.tpb.2004.06.007
– volume: 189
  start-page: 103
  year: 2004
  ident: 22_CR22
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2003.06.001
– volume: 4
  start-page: 86
  year: 2010
  ident: 22_CR8
  publication-title: J Biol Dyn
  doi: 10.1080/17513750903026429
– ident: 22_CR16
– volume: 209
  start-page: 451
  year: 2007
  ident: 22_CR19
  publication-title: Math Biosci
  doi: 10.1016/j.mbs.2007.02.006
– volume: 95
  start-page: 137
  year: 1961
  ident: 22_CR7
  publication-title: Amer Natur
  doi: 10.1086/282171
– volume: 3
  start-page: 305
  year: 2009
  ident: 22_CR17
  publication-title: J Biol Dyn
  doi: 10.1080/17513750802376313
– volume: 271
  start-page: 1407
  year: 2004
  ident: 22_CR11
  publication-title: Proc Roy Soc Ser B
  doi: 10.1098/rspb.2004.2733
– volume: 11
  start-page: 273
  year: 2005
  ident: 22_CR2
  publication-title: J Differ Equ Appl
  doi: 10.1080/10236190412331335373
– volume-title: Ordinary Differential Equations, Graduate Texts in Mathematics
  year: 1998
  ident: 22_CR20
  doi: 10.1007/978-1-4612-0601-9
– volume: 67
  start-page: 23
  year: 2005
  ident: 22_CR23
  publication-title: Theo Pop Biol
  doi: 10.1016/j.tpb.2004.06.007
– ident: 22_CR10
  doi: 10.1080/00036811.2012.692365
– ident: 22_CR1
  doi: 10.5962/bhl.title.7226
– ident: 22_CR3
  doi: 10.1002/9781444313765
– volume: 124
  start-page: 183
  year: 1999
  ident: 22_CR21
  publication-title: Ecol Model
  doi: 10.1016/S0304-3800(99)00160-X
– ident: 22_CR5
– volume-title: The Theory of Chemostat
  year: 1995
  ident: 22_CR14
  doi: 10.1017/CBO9780511530043
– volume: 71
  start-page: 905
  year: 1990
  ident: 22_CR12
  publication-title: Ecology
  doi: 10.2307/1937362
– volume-title: Allee Effects in Ecology and Conservation
  year: 2008
  ident: 22_CR4
  doi: 10.1093/acprof:oso/9780198570301.001.0001
– volume: 3
  start-page: 481
  year: 1989
  ident: 22_CR6
  publication-title: Nat Res Mod
  doi: 10.1111/j.1939-7445.1989.tb00119.x
– volume: 30
  start-page: 87
  year: 1988
  ident: 22_CR13
  publication-title: SIAM Rev
  doi: 10.1137/1030003
– volume-title: Competition and Coexistence
  year: 2002
  ident: 22_CR15
  doi: 10.1007/978-3-642-56166-5
– volume: 12
  start-page: 165
  year: 2006
  ident: 22_CR9
  publication-title: J Differ Equ Appl
  doi: 10.1080/10236190500539238
– volume-title: Resource Competition and Community Structure
  year: 1982
  ident: 22_CR18
SSID ssj0000400126
ssj0037144
Score 1.9295912
Snippet We study asymptotic dynamics of the classical Lotka–Volterra competition model when both competing populations are subject to Allee effects. The resulting...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 179
SubjectTerms Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Title On the Lotka–Volterra competition system with Allee effects
URI https://link.springer.com/article/10.1007/s40314-013-0022-x
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdoGBQgFRHpUHJlCq1HHzGBhaRKl4lKVFZYocN15apahJJcTEf-Af8ks4O05RESB1jHSxkrvz-bPv7jPAWRwHVKJhLUkZt5jnBpYvqeoC8QIeCMV4oqst-m5vyG5HrZHp406LavciJakj9bLZjSmmdUvfRqBK0BE4lhF-2KwE5fbN89330Yryy6ZCFXlAVpx0OcU37pxxwWsVyc3fBl1dnlZzo3rJ6VZgUHxsXmkyaSyyqCHefvA4rvk3O7BtIChp5z6zCxtxUoWKgaPETPa0ClsPS0rXdA8uHxOCj-R-lk345_vH00zl2eecCI28deUXyXmhiTrcJe3pNI6JqRfZh2H3enDVs8zdC5agvp9ZPu7DRNCUzlj6Qrqu8APhSbvFVXCknus5TPBYCsYc16FNxx8j9pMIJoOxIoOwnQMoJbMkPgQibBa5uKtDJIHw0La5QNDAKI042ibiogZ2ofJQGGJydT_GNFxSKmtlhaisUCkrfK3B-fKVl5yV4z_hi8IEoZmg6d_SR2tJH8Mm1TZUpjyBUjZfxKeIUrKojl7Z7XT6deOdXwQo2v4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQHYCBQgFRnh6YQKlSx81jYKgQpdAHS4vKFDmuvbRKUZNKiIn_wD_kl3B2nKAiQOoY6WIld2f7O9_dZ4QuhAiIBMNaklBmUc8NLF8S1QXiBSzgivFEV1v03faQPowaI9PHneTV7nlKUq_URbMbVUzrlr6NQJWgA3AsUQjBwa1LzbvnzvfRivLLukIV2YKsOOkyim-InGHDa-TJzd8GXd6elnOjestpldEg_9is0mRSW6RRjb_94HFc8W920LaBoLiZ-cwuWhNxBZUNHMVmsicVtNUrKF2TPXT9GGN4xN1ZOmGf7x9PM5VnnzPMNfLWlV8444XG6nAXN6dTIbCpF9lHw9bt4KZtmbsXLE58P7V8iMN4UJfOWPpcui73A-5Ju8HU4kg813MoZ0JySh3XIXXHHwP2kwAmg7Eig7CdA7Qez2JxiDC3aeRCVAdIAuChbTMOoIESEjGwTcR4Fdm5ykNuiMnV_RjTsKBU1soKQVmhUlb4WkWXxSsvGSvHf8JXuQlCM0GTv6WPVpI-RxvtQa8bdu_7nWO0SbQ9lVlP0Ho6X4hTQCxpdGY89AuTP9xx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMdfDCRGD6KoEX_24EkzHF3Zj4MHoiIKogcxeJpd114gg7CRGE_-D_6H_iW2W4fBqInxuKRbtve69tu-188DOOTcw0I61hCYUIM4tme4AqtTII5HPaaIJ2m2Rddu9ch1v97XdU7jPNs9D0lmZxoUpSlKTsahOJkdfCOKum6klQlUOroUkUWi0HYFKDYuH9uf2yyqj9aUwsgGZ8Wny3DfchUtJ796Huj87qHzU9V8nDSdfpoleMpfPMs6GVSnSVBlL1-Yjv_4slVY0dIUNbK-tAYLPCpDSctUpAeBuAzLNzPUa7wOp7cRkpeoM0oG9P317WGk4u8TiliqyNOMMJTxopHa9EWN4ZBzpPNINqDXvLg_axm6JoPBsOsmhivXZ8yrCSsULhO2zVyPOcKsUzVoYsd2LMIoF4wQy7ZwzXJDqQmFFJleqCARprUJhWgU8S1AzCSBLVd7UmFI2WialEkxQTAOqPRTQFkFzNz8PtPAclU3Y-jPUMupsXxpLF8Zy3-uwNHslnFG6_it8XHuDl__uPHPrbf_1PoAFu_Om37nqtvegSWculN5dRcKyWTK96SQSYJ93Vk_ALIt5VU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Lotka%E2%80%93Volterra+competition+system+with+Allee+effects&rft.jtitle=Computational+and+Applied+Mathematics&rft.au=Jang%2C+Sophia+R.-J.&rft.date=2013-04-01&rft.issn=0101-8205&rft.eissn=1807-0302&rft.volume=32&rft.issue=1&rft.spage=179&rft.epage=189&rft_id=info:doi/10.1007%2Fs40314-013-0022-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40314_013_0022_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0101-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0101-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0101-8205&client=summon