Conditions for quantile process approximations

Csörgo[dacute]and Révész (1978) introduced a condition on the density of a distribution function that is sufficient to obtain weighted approximations for the pertaining normalized quantile process. We prove that this condition implies the extended regular variation of the density quantile function a...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Stochastic models Vol. 15; no. 3; pp. 485 - 502
Main Authors Drees, Holger, Haan, Laurens de
Format Journal Article
LanguageEnglish
Published Monticello, NY Marcel Dekker, Inc 01.01.1999
Dekker
Subjects
Online AccessGet full text
ISSN0882-0287
DOI10.1080/15326349908807546

Cover

Abstract Csörgo[dacute]and Révész (1978) introduced a condition on the density of a distribution function that is sufficient to obtain weighted approximations for the pertaining normalized quantile process. We prove that this condition implies the extended regular variation of the density quantile function and that therefore it is substantially stronger than another sufficient condition due to Shorack, which is implied by -regular variation. The relationship between these conditions is clarified by introducing a new Csörgó- Révész type condition that is equivalent to -regular variation. Then we show that the Csörgo[dacute]- Révész condition is sufficient to establish stochastic and almost sure approximations of the tail quantile function, which were proven in previous papers under the stronger assumption that the density quantile function is regularly varying
AbstractList Csörgo[dacute]and Révész (1978) introduced a condition on the density of a distribution function that is sufficient to obtain weighted approximations for the pertaining normalized quantile process. We prove that this condition implies the extended regular variation of the density quantile function and that therefore it is substantially stronger than another sufficient condition due to Shorack, which is implied by -regular variation. The relationship between these conditions is clarified by introducing a new Csörgó- Révész type condition that is equivalent to -regular variation. Then we show that the Csörgo[dacute]- Révész condition is sufficient to establish stochastic and almost sure approximations of the tail quantile function, which were proven in previous papers under the stronger assumption that the density quantile function is regularly varying
Author Haan, Laurens de
Drees, Holger
Author_xml – sequence: 1
  givenname: Holger
  surname: Drees
  fullname: Drees, Holger
  organization: Mathematisches Institut , Universität zu Köln
– sequence: 2
  givenname: Laurens de
  surname: Haan
  fullname: Haan, Laurens de
  organization: Erasmus Universiteit , Econometrisch Instituut
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1835264$$DView record in Pascal Francis
BookMark eNqFkLtOAzEURF0EiSTwAXRb0G7wY_2IRIMiIEiRaKC2vF5bMtrYi21E8veYJFAQAdWdYs7c0UzAyAdvALhAcIaggFeIEsxIM59DISCnDRuBcZG4hljwUzBJ6QVCymgzH4PZIvjOZRd8qmyI1eub8tn1phpi0CalSg1Fbdxa7Txn4MSqPpnzw52C57vbp8WyXj3ePyxuVrXGQuRacNx12HLEWyMYRQRhjFpoLIbQEo4JayFHhFumKYFYNQq1TGNuGo006SyZgst97qCSVr2NymuX5BBLkbiVSBCKWVNsfG_TMaQUjZXa5V3THJXrJYLycxF5tEgh0Q_yO_sP5vDN-TLVWr2H2Hcyq20f4lfDI0rmTS7k9b8k-f3xB8hXis0
CODEN CSSME8
CitedBy_id crossref_primary_10_1214_aoap_1019487617
crossref_primary_10_1016_j_insmatheco_2016_03_015
Cites_doi 10.1214/aop/1176996610
10.1017/CBO9780511721434
10.1214/aop/1176992617
10.1016/0378-3758(92)90156-M
10.1214/aop/1176993915
10.1016/0047-259X(87)90004-2
10.1214/aop/1176993307
10.1016/0378-3758(94)00064-6
10.1214/aos/1176344261
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 1999
1999 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 1999
– notice: 1999 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1080/15326349908807546
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EndPage 502
ExternalDocumentID 1835264
10_1080_15326349908807546
8807546
GroupedDBID -~X
.7F
.QJ
0BK
4.4
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABLIJ
ABPAQ
ABPEM
ABXUL
ABXYU
ACAGQ
ACTIO
ADCVX
ADGTB
AEISY
AFFNX
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AI.
AIJEM
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CRFIH
DGEBU
DKSSO
DMQIW
EBS
EJD
E~A
E~B
H13
HF~
H~9
KYCEM
M4Z
NHB
P2P
QCRFL
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
UT5
UU3
VH1
XOL
ZGOLN
~S~
07G
AAGDL
AAIKQ
AAKBW
AAYXX
ABJNI
ACGEE
AEUMN
AFRVT
AGLEN
AIYEW
AMXXU
BCCOT
BPLKW
C06
CITATION
DWIFK
IVXBP
TAQ
TASJS
TFMCV
UB9
UU8
V3K
V4Q
VOH
ADYSH
IQODW
ID FETCH-LOGICAL-c288t-872dd2f717be865131221b0ef200f37236b07137f6c5302a4a1b6c27e4c1c3df3
ISSN 0882-0287
IngestDate Mon Jul 21 09:13:42 EDT 2025
Thu Apr 24 22:57:08 EDT 2025
Wed Aug 13 03:18:53 EDT 2025
Mon May 13 12:09:37 EDT 2019
Wed Dec 25 09:06:16 EST 2024
IsPeerReviewed false
IsScholarly false
Issue 3
Keywords Density estimation
Almost sure convergence
Tail probability
Probability theory
Stochastic approximation
Quantile
Limit theorem
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c288t-872dd2f717be865131221b0ef200f37236b07137f6c5302a4a1b6c27e4c1c3df3
PageCount 18
ParticipantIDs pascalfrancis_primary_1835264
crossref_citationtrail_10_1080_15326349908807546
crossref_primary_10_1080_15326349908807546
informaworld_taylorfrancis_310_1080_15326349908807546
PublicationCentury 1900
PublicationDate 1/1/1999
1999-01-00
1999
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – month: 01
  year: 1999
  text: 1/1/1999
  day: 01
PublicationDecade 1990
PublicationPlace Monticello, NY
PublicationPlace_xml – name: Monticello, NY
PublicationTitle Communications in statistics. Stochastic models
PublicationYear 1999
Publisher Marcel Dekker, Inc
Dekker
Publisher_xml – name: Marcel Dekker, Inc
– name: Dekker
References CIT0010
CIT0001
CIT0012
Geluk J. (CIT0011) 1987; 32
CIT0014
CIT0002
CIT0013
CIT0005
CIT0004
CIT0007
CIT0006
Csörgó M. (CIT0003) 1983
CIT0009
CIT0008
References_xml – ident: CIT0012
  doi: 10.1214/aop/1176996610
– ident: CIT0002
  doi: 10.1017/CBO9780511721434
– ident: CIT0004
  doi: 10.1214/aop/1176992617
– ident: CIT0010
  doi: 10.1016/0378-3758(92)90156-M
– volume: 32
  year: 1987
  ident: CIT0011
  publication-title: CWI tract
– ident: CIT0013
– ident: CIT0014
  doi: 10.1214/aop/1176993915
– ident: CIT0005
  doi: 10.1016/0047-259X(87)90004-2
– ident: CIT0009
  doi: 10.1214/aop/1176993307
– ident: CIT0006
– ident: CIT0001
– year: 1983
  ident: CIT0003
  publication-title: SIAM
– ident: CIT0008
  doi: 10.1016/0378-3758(94)00064-6
– ident: CIT0007
  doi: 10.1214/aos/1176344261
SSID ssj0056549
Score 1.2696047
Snippet Csörgo[dacute]and Révész (1978) introduced a condition on the density of a distribution function that is sufficient to obtain weighted approximations for the...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 485
SubjectTerms AMS Subject classification: Primary 60F15, 60F17; secondary 62G30
approximation
Chibisov-O'reilly weight function
Csörgó- Révész condition
Exact sciences and technology
extended regular variation
Limit theorems
Mathematics
Nonparametric inference
O-regular variation
Probability and statistics
Probability theory and stochastic processes
quantile process
Sciences and techniques of general use
Statistics
tail quantile process
Title Conditions for quantile process approximations
URI https://www.tandfonline.com/doi/abs/10.1080/15326349908807546
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61y4UeUEupulCqHHoqyhI_4rjHFbvVqlI5FBCIyyp-RK2gC4UgIX4949h5ddH2cYnydjQzHn92Zr4B-KAdzb7OZWxyLmIuqYmVtiZGx6cLI5lhuoq2OBSzE_7lLD1r6xNW2SWlGumHJ_NK_kereA716rJk_0GzzUvxBO6jfnGLGsbtX-n44Mr9cK5C2Vy04K87FBP28r1rH_3vCcPvf_zsrMrVpATdvJAqJNZlFnnS5pFj6Nbfc3fgK-W0xee_TadHvZSGyXRvNh4ftvkLJqTUtR5qYi8uQgxw7XFojIAj67nHtGMGrOPruK-1E4bNtEqcXvbIPoQR_SoVDGdX2ASCFP4E-_Vvo1ITK0gcRhT8OazRLCPpANbGs8n5aT3cIiD1c5z62-tf1zLZX2q1Bz561LQuJja_xW5R-HomHZBx_BI2wuwgGntVv4JndrEJL7421Lq3m7B-1CjqNYxaC4iwlai2gChYQNS3gC04-Tw9PpjFoQJGrKmUJQ5V1Bha4JRbWSlSwgilRCW2wF5QsIwyodwqQ1YI7ao_5TwnSmiaWa6JZqZgb2CwuFrYtxBJkSc2FQYxmuappUqqT0wJQwQiVMTEQ0hq0cx1oId3VUou5ySwyC5Jcwgfm0euPTfKqpuTrrznZbUgFaS9fPu8vC-HkK54hK1oareny_bjvClt_-H6Dqx7cg630PYOBuXNnd1F6Fmq98H4HgFCHoBY
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditions+for+quantile+process+approximations&rft.jtitle=Communications+in+statistics.+Stochastic+models&rft.au=DREES%2C+H&rft.au=DE+HAAN%2C+L&rft.date=1999&rft.pub=Dekker&rft.issn=0882-0287&rft.volume=15&rft.issue=3&rft.spage=485&rft.epage=502&rft_id=info:doi/10.1080%2F15326349908807546&rft.externalDBID=n%2Fa&rft.externalDocID=1835264
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0882-0287&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0882-0287&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0882-0287&client=summon