Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability

Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO 2 /NiO) nanocomposite via a facile hydrothermal method is reported....

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 30; no. 5; pp. 5222 - 5232
Main Authors Racik, K. Mohamed, Guruprasad, K., Mahendiran, M., Madhavan, J., Maiyalagan, T., Raj, M. Victor Antony
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO 2 /NiO) nanocomposite via a facile hydrothermal method is reported. The crystallographic and morphological features were studied by Powder XRD, FTIR, HRSEM, EDX and TEM analysis. Cyclic voltammetry, galvanostatic charge–discharge and impedance analysis are implemented in order to examine the applicability of the MnO 2 /NiO nanocomposite electrode material as a supercapacitor. The MnO 2 /NiO composites revealed good electrochemical performance by exhibiting a specific capacitance of 247 Fg −1 at the discharge current density rate of 0.5 Ag −1 using 1 M KOH as the electrolyte. Moreover, the composite electrode shows enhanced cycling stability. The improvement in specific capacitance of the MnO 2 /NiO composite is primarily due to its hybrid structure, which offers a better contact of surface of electrode and electrolyte, and active sites with large scale. These results expose the development of MnO 2 /NiO electrode material shown enhanced performance for supercapacitors.
AbstractList Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO2/NiO) nanocomposite via a facile hydrothermal method is reported. The crystallographic and morphological features were studied by Powder XRD, FTIR, HRSEM, EDX and TEM analysis. Cyclic voltammetry, galvanostatic charge–discharge and impedance analysis are implemented in order to examine the applicability of the MnO2/NiO nanocomposite electrode material as a supercapacitor. The MnO2/NiO composites revealed good electrochemical performance by exhibiting a specific capacitance of 247 Fg−1 at the discharge current density rate of 0.5 Ag−1 using 1 M KOH as the electrolyte. Moreover, the composite electrode shows enhanced cycling stability. The improvement in specific capacitance of the MnO2/NiO composite is primarily due to its hybrid structure, which offers a better contact of surface of electrode and electrolyte, and active sites with large scale. These results expose the development of MnO2/NiO electrode material shown enhanced performance for supercapacitors.
Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO 2 /NiO) nanocomposite via a facile hydrothermal method is reported. The crystallographic and morphological features were studied by Powder XRD, FTIR, HRSEM, EDX and TEM analysis. Cyclic voltammetry, galvanostatic charge–discharge and impedance analysis are implemented in order to examine the applicability of the MnO 2 /NiO nanocomposite electrode material as a supercapacitor. The MnO 2 /NiO composites revealed good electrochemical performance by exhibiting a specific capacitance of 247 Fg −1 at the discharge current density rate of 0.5 Ag −1 using 1 M KOH as the electrolyte. Moreover, the composite electrode shows enhanced cycling stability. The improvement in specific capacitance of the MnO 2 /NiO composite is primarily due to its hybrid structure, which offers a better contact of surface of electrode and electrolyte, and active sites with large scale. These results expose the development of MnO 2 /NiO electrode material shown enhanced performance for supercapacitors.
Author Raj, M. Victor Antony
Guruprasad, K.
Racik, K. Mohamed
Mahendiran, M.
Madhavan, J.
Maiyalagan, T.
Author_xml – sequence: 1
  givenname: K. Mohamed
  surname: Racik
  fullname: Racik, K. Mohamed
  organization: Department of Physics, Loyola College, Loyola Institute of Frontier Energy (LIFE), Loyola College
– sequence: 2
  givenname: K.
  surname: Guruprasad
  fullname: Guruprasad, K.
  organization: Department of Chemistry, SRM Institute of Science and Technology
– sequence: 3
  givenname: M.
  surname: Mahendiran
  fullname: Mahendiran, M.
  organization: Department of Physics, Loyola College, Loyola Institute of Frontier Energy (LIFE), Loyola College
– sequence: 4
  givenname: J.
  surname: Madhavan
  fullname: Madhavan, J.
  organization: Department of Physics, Loyola College
– sequence: 5
  givenname: T.
  surname: Maiyalagan
  fullname: Maiyalagan, T.
  organization: Department of Chemistry, SRM Institute of Science and Technology
– sequence: 6
  givenname: M. Victor Antony
  orcidid: 0000-0003-3259-8177
  surname: Raj
  fullname: Raj, M. Victor Antony
  email: vicvad2003@yahoo.co.in
  organization: Department of Physics, Loyola College, Loyola Institute of Frontier Energy (LIFE), Loyola College
BookMark eNp9kN9rFDEQx4NU8Fr9B3wK-Lx28mNvZx-lVCtU70XBtxDnZnspe8ma5NAD_3hTryD4UAgMYb6fmeFzLs5iiizEawVvFcBwWRRgbztQYweAWnXmmVipfjCdRf3tTKxg7IfO9lq_EOel3APA2hpcid_Xcecj8VbyzFRzoh3vA_lZLpynlPcPTZkm-Slu9OXnsJHRx0Rpv6QSKssWkeXQsuQXT6G27-OgLcufoe4k_yKeZ45V0pHmEO9kqf57mEM9vhTPJz8XfvVYL8TX99dfrm66282Hj1fvbjvSiLVDMwChR94ybbWxbHV7loGmNfdGG7bIk8YRJw1KjehHJLC9VwOhtWtzId6c5i45_Thwqe4-HXJsK51WwxpGZRS2lD6lKKdSMk9uyWHv89EpcA-W3cmya5bdX8vONAj_g5oEX0OKNfswP42aE1rannjH-d9VT1B_AII8lZk
CitedBy_id crossref_primary_10_1016_j_diamond_2023_110383
crossref_primary_10_1016_j_surfin_2023_103321
crossref_primary_10_1016_j_cej_2023_141583
crossref_primary_10_1016_j_jpcs_2024_112310
crossref_primary_10_1016_j_physe_2024_116121
crossref_primary_10_1016_j_rechem_2024_101682
crossref_primary_10_1016_j_electacta_2021_138609
crossref_primary_10_1038_s41598_024_70111_4
crossref_primary_10_1016_j_jece_2024_112015
crossref_primary_10_1021_acsaem_4c02018
crossref_primary_10_1016_j_jpowsour_2024_235746
crossref_primary_10_1007_s11581_024_05617_y
crossref_primary_10_1016_j_mtcomm_2022_104377
crossref_primary_10_1021_acsomega_2c00826
crossref_primary_10_1016_j_jiec_2023_03_031
crossref_primary_10_1016_j_jallcom_2021_158685
crossref_primary_10_1016_j_sna_2024_115995
crossref_primary_10_1016_j_jallcom_2020_156582
crossref_primary_10_1016_j_jcis_2023_11_086
crossref_primary_10_1007_s13369_024_08860_7
crossref_primary_10_1016_j_molstruc_2024_139859
crossref_primary_10_1002_celc_202100098
crossref_primary_10_1007_s00339_023_06938_x
crossref_primary_10_1016_j_ceramint_2019_06_038
crossref_primary_10_1149_1945_7111_ab9b98
crossref_primary_10_1016_j_actbio_2022_10_014
crossref_primary_10_14233_ajchem_2022_23879
crossref_primary_10_15251_JOR_2022_181_93
crossref_primary_10_1016_j_ceramint_2025_01_244
crossref_primary_10_1016_j_jallcom_2020_157289
crossref_primary_10_3390_molecules29122854
crossref_primary_10_1139_cjc_2020_0283
crossref_primary_10_62638_ZasMat1120
crossref_primary_10_1016_j_apcatb_2023_123442
crossref_primary_10_1016_j_molstruc_2023_137375
crossref_primary_10_1080_16583655_2023_2221827
crossref_primary_10_1002_adfm_202408043
crossref_primary_10_1016_j_jiec_2025_01_035
crossref_primary_10_3390_app11010411
crossref_primary_10_1007_s11356_024_35856_5
crossref_primary_10_1021_acs_langmuir_4c02192
crossref_primary_10_1007_s10854_020_04830_5
crossref_primary_10_1007_s10904_020_01801_5
crossref_primary_10_1016_j_microc_2024_110998
crossref_primary_10_1088_2043_6262_abebd5
crossref_primary_10_1016_j_heliyon_2024_e26631
crossref_primary_10_1016_j_materresbull_2022_111745
crossref_primary_10_1016_j_talanta_2020_121715
crossref_primary_10_1016_j_electacta_2023_142937
crossref_primary_10_1021_acs_langmuir_4c00723
crossref_primary_10_1016_j_biortech_2022_127529
crossref_primary_10_1007_s11581_023_04998_w
crossref_primary_10_3390_w15203679
crossref_primary_10_1016_j_inoche_2025_114336
crossref_primary_10_1007_s11356_024_35747_9
crossref_primary_10_1016_j_est_2022_105403
crossref_primary_10_1016_j_solidstatesciences_2025_107831
crossref_primary_10_1016_j_jcis_2024_08_047
crossref_primary_10_1016_j_inoche_2024_112089
crossref_primary_10_1016_j_surfin_2023_103015
crossref_primary_10_1002_er_8380
crossref_primary_10_1007_s44371_024_00006_w
crossref_primary_10_1016_j_jallcom_2020_157939
crossref_primary_10_3390_ma17163976
crossref_primary_10_1016_j_jpcs_2021_110467
crossref_primary_10_1016_j_physe_2020_114033
crossref_primary_10_1002_aesr_202300164
crossref_primary_10_1007_s10854_024_12755_6
crossref_primary_10_1016_j_chemosphere_2023_140657
crossref_primary_10_1016_j_optmat_2024_115029
crossref_primary_10_1016_j_inoche_2025_114402
crossref_primary_10_1111_ijac_14377
crossref_primary_10_1002_er_5860
crossref_primary_10_1016_j_ceramint_2025_01_181
Cites_doi 10.1016/j.electacta.2012.10.106
10.1016/j.ceramint.2016.06.140
10.1016/j.electacta.2016.11.028
10.1016/j.cej.2017.10.169
10.1039/C1JM14804D
10.1016/j.electacta.2014.10.117
10.1016/j.jpowsour.2015.03.177
10.1186/s11671-017-1939-6
10.1021/nl104205s
10.1016/j.nanoen.2013.12.008
10.1038/ncomms12647
10.1039/C5RA15684J
10.1039/C1CS15060J
10.1039/c5cc03976b
10.1002/celc.201400006
10.1007/s10854-018-9639-2
10.1016/j.electacta.2017.05.152
10.1002/celc.201600836
10.1021/jp512795g
10.1039/C7RA02932B
10.1016/j.apsusc.2015.10.187
10.1021/am3021894
10.1149/1.1541675
10.1002/ange.201208993
10.1039/C4TA00988F
10.1021/acsnano.7b03431
10.1002/adma.201204949
10.1021/nl102203s
10.1039/C5NH00023H
10.1515/pac-2013-1204
10.1088/0957-4484/25/30/305401
10.1016/S0927-7757(02)00305-9
10.1021/nn3012916
10.1039/c3ee44164d
10.1016/j.electacta.2017.12.074
10.1039/c1ee01338f
10.1016/j.jmmm.2018.07.058
10.1039/C5RA19271D
10.1179/174328406X84030
10.1002/adma.201100058
10.1039/b902221j
10.1149/1.1601373
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-019-00821-3
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
ProQuest Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 5232
ExternalDocumentID 10_1007_s10854_019_00821_3
GroupedDBID -4Y
-58
-5G
-BR
-EM
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CCPQU
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
MK~
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9N
PDBOC
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S0W
S16
S27
S3B
SAP
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAIKT
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABDPE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGJBK
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
KOW
N2Q
NDZJH
O9-
OVD
P0-
PHGZM
PHGZT
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCG
SCLPG
T16
TEORI
W4F
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c288t-8370c8a8edecd234e42e424e0cf6e5323e48ef2898f201198a98c045a17c84463
IEDL.DBID BENPR
ISSN 0957-4522
IngestDate Fri Jul 25 11:03:03 EDT 2025
Tue Jul 01 02:47:21 EDT 2025
Thu Apr 24 23:11:13 EDT 2025
Fri Feb 21 02:39:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-8370c8a8edecd234e42e424e0cf6e5323e48ef2898f201198a98c045a17c84463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3259-8177
PQID 2176091318
PQPubID 326250
PageCount 11
ParticipantIDs proquest_journals_2176091318
crossref_primary_10_1007_s10854_019_00821_3
crossref_citationtrail_10_1007_s10854_019_00821_3
springer_journals_10_1007_s10854_019_00821_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ZhaoLYuJLiWWangSDaiCWuJBaiXZhiCNano Energy20144394810.1016/j.nanoen.2013.12.008
TangC-LWeiXJiangY-MWuX-YHanLNWangK-XChenJ-SJ. Phys. Chem. C20151198465847110.1021/jp512795g
ChenYHuCElectrochem. Solid-State Lett.2003621021310.1149/1.1601373
LiuJPJiangJChengCWLiHXZhangJXGongHFanHJAdv. Mater.2011232076208110.1002/adma.201100058
AugustynVSimonPDunnBEnergy Environ. Sci.201471597161410.1039/c3ee44164d
MaMZhangYYuWShenHYZhangHQGuNColloids Surf. A200321221910.1016/S0927-7757(02)00305-9
LiuJJiangMBosmanHJFanJ. Mater. Chem.2012222419242610.1039/C1JM14804D
LiYHPengHRZhangCChuMSXiaoPZhangYHRSC Adv.20155771157712110.1039/C5RA15684J
LiuJPJiangJBosmanMFanHJJ. Mater. Chem.2012222419242610.1039/C1JM14804D
LukatskayaMRDunnBGogotsiYNat. Commun.20167126471265910.1038/ncomms12647
KangJHirataAKangLZhangXHouYChenLLiCFujitaTAkagiKChenMAngew. Chem. Int. Ed.20131251708171110.1002/ange.201208993
LuXZhengDZhaiTLiuZHuangYXieSTongYEnergy Environ. Sci.201142915292110.1039/c1ee01338f
XiaoKLiJ-WChenG-FLiuZ-QLiNSuY-ZElectrochim. Acta201414934134810.1016/j.electacta.2014.10.117
WangCZhanYWuLLiYLiuJNanotechnology20142530540110.1088/0957-4484/25/30/305401
YuanCZZhangXGSuLHGaoBShenLFJ. Mater. Chem.2009195772577710.1039/b902221j
KimHPopovBNJ. Electrochem. Soc.2003150D5610.1149/1.1541675
QianYLiuRWangQFXuJChenDShenGZJ. Mater. Chem. A20142109171092210.1039/C4TA00988F
ChenJHuangYLiCChenXZhangXAppl. Surf. Sci.201636053453910.1016/j.apsusc.2015.10.187
L.DengZHaoJWangElectrochim. Acta20138919119810.1016/j.electacta.2012.10.106
BiYNautiyalAZhangHLuoJZhangXElectrochim. Acta201826095295810.1016/j.electacta.2017.12.074
LiuYZhangBWangFWenZWuYPure Appl. Chem.201486593609
OyedotunKOMaditoMJMomoduDYMirghniAAMasikhwaTMManyalaNChem. Eng. J.201833541643310.1016/j.cej.2017.10.169
WangGPZhangLZhangJJChem. Soc. Rev.20124179782810.1039/C1CS15060J
LiWXuKLiBSunJJiangFYuZZouRChenZHuJChemElectroChem201411003100810.1002/celc.201400006
A. Yu, V. Chabot, J. Zhang, Electrochemical supercapacitors for energy storage and delivery. CRC Press, Taylor & Francis Group (2013)
ZhuSJJiaJQWangTZhaoDYangJDongFShangZGZhangYXChem. Commun.2015
KimJ-HZhuKYanYFPerkinsCLFrankANano Lett.201010409910.1021/nl102203s
ZhangXWangQZhangJWangJGuoMChenSLiCHuCXieYRSC Adv.20155899768998410.1039/C5RA19271D
ChenL-FHuangZ-HLiangH-WGuanQ-FYuS-HAdv. Mater.2013254746475210.1002/adma.201204949
ZhongJYiFGaoAShuDHuangYLiZZhuWHeCMengTZhaoSChemElectroChem201741088109410.1002/celc.201600836
BaoLHZangJFLiXDNano Lett.201111121510.1021/nl104205s
WangHFanXZhangXHuangYWuQPanQLiQRSC Adv.201772332810.1039/C7RA02932B
ZhuSLiLLiuJWangHWangTZhangYZhangLRuoffRSDongFACS Nano20181221033104210.1021/acsnano.7b03431
SoniaMMLAnandSVinoselVMJaniferMAPaulineSJ. Mater. Sci. Mater. Electron.20182917150061502110.1007/s10854-018-9639-2
ZhouJShenXJingMJ. Mater. Sci. Technol.20062280380610.1179/174328406X84030
KimSILeeJSAhnHJSongHKJangJHACS Appl. Mater. Interfaces201351596160310.1021/am3021894
HaldoraiYGiribabuKHwangSKKwakCHHuhYSHanYKElectrochim. Acta201622271772710.1016/j.electacta.2016.11.028
WeiHWangJYuLZhangYHouDLiTCeram. Int.20164213149631496910.1016/j.ceramint.2016.06.140
NooshabadiMSZahediFElectrochim. Acta201724557558610.1016/j.electacta.2017.05.152
ZhaoXZhangLMuraliSStollerMDZhangQZhuYRuoffRSACS Nano201265404541210.1021/nn3012916
HuYWangJJ. Power Sources201528639439910.1016/j.jpowsour.2015.03.177
WuHBZhangGYuLLouXWNanoscale Horiz.20161274010.1039/C5NH00023H
AmaliyaAPAnandSPaulineSJ. Magn. Magn. Mater.2018467142810.1016/j.jmmm.2018.07.058
XiSZhuYYangYJiangSTangZNanoscale Res. Lett.20171217110.1186/s11671-017-1939-6
KO Oyedotun (821_CR42) 2018; 335
Y Liu (821_CR3) 2014; 86
Z L.Deng (821_CR8) 2013; 89
JP Liu (821_CR25) 2012; 22
C-L Tang (821_CR10) 2015; 119
W Li (821_CR13) 2014; 1
L Zhao (821_CR9) 2014; 4
SJ Zhu (821_CR11) 2015
X Lu (821_CR14) 2011; 4
C Wang (821_CR16) 2014; 25
AP Amaliya (821_CR35) 2018; 467
821_CR6
CZ Yuan (821_CR23) 2009; 19
X Zhang (821_CR33) 2015; 5
J Zhong (821_CR41) 2017; 4
J Zhou (821_CR44) 2006; 22
X Zhao (821_CR20) 2012; 6
S Zhu (821_CR31) 2018; 12
GP Wang (821_CR4) 2012; 41
J Chen (821_CR27) 2016; 360
J-H Kim (821_CR37) 2010; 10
HB Wu (821_CR5) 2016; 1
H Wei (821_CR39) 2016; 42
J Liu (821_CR18) 2012; 22
V Augustyn (821_CR1) 2014; 7
J Kang (821_CR22) 2013; 125
JP Liu (821_CR21) 2011; 23
Y Hu (821_CR12) 2015; 286
LH Bao (821_CR36) 2011; 11
YH Li (821_CR26) 2015; 5
MS Nooshabadi (821_CR7) 2017; 245
SI Kim (821_CR19) 2013; 5
S Xi (821_CR29) 2017; 12
L-F Chen (821_CR17) 2013; 25
MR Lukatskaya (821_CR2) 2016; 7
K Xiao (821_CR15) 2014; 149
Y Qian (821_CR24) 2014; 2
Y Bi (821_CR28) 2018; 260
Y Haldorai (821_CR40) 2016; 222
M Ma (821_CR32) 2003; 212
H Wang (821_CR30) 2017; 7
MML Sonia (821_CR34) 2018; 29
H Kim (821_CR38) 2003; 150
Y Chen (821_CR43) 2003; 6
References_xml – reference: ZhouJShenXJingMJ. Mater. Sci. Technol.20062280380610.1179/174328406X84030
– reference: A. Yu, V. Chabot, J. Zhang, Electrochemical supercapacitors for energy storage and delivery. CRC Press, Taylor & Francis Group (2013)
– reference: L.DengZHaoJWangElectrochim. Acta20138919119810.1016/j.electacta.2012.10.106
– reference: ZhaoLYuJLiWWangSDaiCWuJBaiXZhiCNano Energy20144394810.1016/j.nanoen.2013.12.008
– reference: LiWXuKLiBSunJJiangFYuZZouRChenZHuJChemElectroChem201411003100810.1002/celc.201400006
– reference: KimSILeeJSAhnHJSongHKJangJHACS Appl. Mater. Interfaces201351596160310.1021/am3021894
– reference: KimHPopovBNJ. Electrochem. Soc.2003150D5610.1149/1.1541675
– reference: LiuYZhangBWangFWenZWuYPure Appl. Chem.201486593609
– reference: KimJ-HZhuKYanYFPerkinsCLFrankANano Lett.201010409910.1021/nl102203s
– reference: HaldoraiYGiribabuKHwangSKKwakCHHuhYSHanYKElectrochim. Acta201622271772710.1016/j.electacta.2016.11.028
– reference: HuYWangJJ. Power Sources201528639439910.1016/j.jpowsour.2015.03.177
– reference: WangCZhanYWuLLiYLiuJNanotechnology20142530540110.1088/0957-4484/25/30/305401
– reference: ChenJHuangYLiCChenXZhangXAppl. Surf. Sci.201636053453910.1016/j.apsusc.2015.10.187
– reference: AmaliyaAPAnandSPaulineSJ. Magn. Magn. Mater.2018467142810.1016/j.jmmm.2018.07.058
– reference: XiaoKLiJ-WChenG-FLiuZ-QLiNSuY-ZElectrochim. Acta201414934134810.1016/j.electacta.2014.10.117
– reference: BiYNautiyalAZhangHLuoJZhangXElectrochim. Acta201826095295810.1016/j.electacta.2017.12.074
– reference: ZhuSJJiaJQWangTZhaoDYangJDongFShangZGZhangYXChem. Commun.2015
– reference: YuanCZZhangXGSuLHGaoBShenLFJ. Mater. Chem.2009195772577710.1039/b902221j
– reference: LiYHPengHRZhangCChuMSXiaoPZhangYHRSC Adv.20155771157712110.1039/C5RA15684J
– reference: SoniaMMLAnandSVinoselVMJaniferMAPaulineSJ. Mater. Sci. Mater. Electron.20182917150061502110.1007/s10854-018-9639-2
– reference: MaMZhangYYuWShenHYZhangHQGuNColloids Surf. A200321221910.1016/S0927-7757(02)00305-9
– reference: ZhongJYiFGaoAShuDHuangYLiZZhuWHeCMengTZhaoSChemElectroChem201741088109410.1002/celc.201600836
– reference: ZhuSLiLLiuJWangHWangTZhangYZhangLRuoffRSDongFACS Nano20181221033104210.1021/acsnano.7b03431
– reference: TangC-LWeiXJiangY-MWuX-YHanLNWangK-XChenJ-SJ. Phys. Chem. C20151198465847110.1021/jp512795g
– reference: WeiHWangJYuLZhangYHouDLiTCeram. Int.20164213149631496910.1016/j.ceramint.2016.06.140
– reference: ZhangXWangQZhangJWangJGuoMChenSLiCHuCXieYRSC Adv.20155899768998410.1039/C5RA19271D
– reference: NooshabadiMSZahediFElectrochim. Acta201724557558610.1016/j.electacta.2017.05.152
– reference: ChenYHuCElectrochem. Solid-State Lett.2003621021310.1149/1.1601373
– reference: LiuJJiangMBosmanHJFanJ. Mater. Chem.2012222419242610.1039/C1JM14804D
– reference: LukatskayaMRDunnBGogotsiYNat. Commun.20167126471265910.1038/ncomms12647
– reference: LiuJPJiangJChengCWLiHXZhangJXGongHFanHJAdv. Mater.2011232076208110.1002/adma.201100058
– reference: XiSZhuYYangYJiangSTangZNanoscale Res. Lett.20171217110.1186/s11671-017-1939-6
– reference: LuXZhengDZhaiTLiuZHuangYXieSTongYEnergy Environ. Sci.201142915292110.1039/c1ee01338f
– reference: AugustynVSimonPDunnBEnergy Environ. Sci.201471597161410.1039/c3ee44164d
– reference: QianYLiuRWangQFXuJChenDShenGZJ. Mater. Chem. A20142109171092210.1039/C4TA00988F
– reference: ChenL-FHuangZ-HLiangH-WGuanQ-FYuS-HAdv. Mater.2013254746475210.1002/adma.201204949
– reference: KangJHirataAKangLZhangXHouYChenLLiCFujitaTAkagiKChenMAngew. Chem. Int. Ed.20131251708171110.1002/ange.201208993
– reference: BaoLHZangJFLiXDNano Lett.201111121510.1021/nl104205s
– reference: WuHBZhangGYuLLouXWNanoscale Horiz.20161274010.1039/C5NH00023H
– reference: OyedotunKOMaditoMJMomoduDYMirghniAAMasikhwaTMManyalaNChem. Eng. J.201833541643310.1016/j.cej.2017.10.169
– reference: LiuJPJiangJBosmanMFanHJJ. Mater. Chem.2012222419242610.1039/C1JM14804D
– reference: WangHFanXZhangXHuangYWuQPanQLiQRSC Adv.201772332810.1039/C7RA02932B
– reference: WangGPZhangLZhangJJChem. Soc. Rev.20124179782810.1039/C1CS15060J
– reference: ZhaoXZhangLMuraliSStollerMDZhangQZhuYRuoffRSACS Nano201265404541210.1021/nn3012916
– volume: 89
  start-page: 191
  year: 2013
  ident: 821_CR8
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.10.106
– volume: 42
  start-page: 14963
  issue: 13
  year: 2016
  ident: 821_CR39
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.06.140
– volume: 222
  start-page: 717
  year: 2016
  ident: 821_CR40
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.11.028
– volume: 335
  start-page: 416
  year: 2018
  ident: 821_CR42
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.169
– volume: 22
  start-page: 2419
  year: 2012
  ident: 821_CR18
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14804D
– volume: 149
  start-page: 341
  year: 2014
  ident: 821_CR15
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.10.117
– volume: 286
  start-page: 394
  year: 2015
  ident: 821_CR12
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.177
– volume: 12
  start-page: 171
  year: 2017
  ident: 821_CR29
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-017-1939-6
– volume: 11
  start-page: 1215
  year: 2011
  ident: 821_CR36
  publication-title: Nano Lett.
  doi: 10.1021/nl104205s
– volume: 4
  start-page: 39
  year: 2014
  ident: 821_CR9
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.12.008
– volume: 7
  start-page: 12647
  year: 2016
  ident: 821_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12647
– volume: 5
  start-page: 77115
  year: 2015
  ident: 821_CR26
  publication-title: RSC Adv.
  doi: 10.1039/C5RA15684J
– volume: 41
  start-page: 797
  year: 2012
  ident: 821_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15060J
– year: 2015
  ident: 821_CR11
  publication-title: Chem. Commun.
  doi: 10.1039/c5cc03976b
– volume: 1
  start-page: 1003
  year: 2014
  ident: 821_CR13
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201400006
– volume: 29
  start-page: 15006
  issue: 17
  year: 2018
  ident: 821_CR34
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-018-9639-2
– volume: 245
  start-page: 575
  year: 2017
  ident: 821_CR7
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.05.152
– volume: 4
  start-page: 1088
  year: 2017
  ident: 821_CR41
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600836
– volume: 119
  start-page: 8465
  year: 2015
  ident: 821_CR10
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp512795g
– volume: 7
  start-page: 23328
  year: 2017
  ident: 821_CR30
  publication-title: RSC Adv.
  doi: 10.1039/C7RA02932B
– volume: 360
  start-page: 534
  year: 2016
  ident: 821_CR27
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.10.187
– volume: 5
  start-page: 1596
  year: 2013
  ident: 821_CR19
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am3021894
– volume: 150
  start-page: D56
  year: 2003
  ident: 821_CR38
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1541675
– volume: 125
  start-page: 1708
  year: 2013
  ident: 821_CR22
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201208993
– volume: 2
  start-page: 10917
  year: 2014
  ident: 821_CR24
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00988F
– volume: 12
  start-page: 1033
  issue: 2
  year: 2018
  ident: 821_CR31
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03431
– volume: 25
  start-page: 4746
  year: 2013
  ident: 821_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204949
– volume: 10
  start-page: 4099
  year: 2010
  ident: 821_CR37
  publication-title: Nano Lett.
  doi: 10.1021/nl102203s
– volume: 1
  start-page: 27
  year: 2016
  ident: 821_CR5
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C5NH00023H
– volume: 86
  start-page: 593
  year: 2014
  ident: 821_CR3
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2013-1204
– volume: 25
  start-page: 305401
  year: 2014
  ident: 821_CR16
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/30/305401
– volume: 212
  start-page: 219
  year: 2003
  ident: 821_CR32
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(02)00305-9
– volume: 6
  start-page: 5404
  year: 2012
  ident: 821_CR20
  publication-title: ACS Nano
  doi: 10.1021/nn3012916
– volume: 22
  start-page: 2419
  year: 2012
  ident: 821_CR25
  publication-title: J. Mater. Chem.
  doi: 10.1039/C1JM14804D
– volume: 7
  start-page: 1597
  year: 2014
  ident: 821_CR1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44164d
– volume: 260
  start-page: 952
  year: 2018
  ident: 821_CR28
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.12.074
– volume: 4
  start-page: 2915
  year: 2011
  ident: 821_CR14
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01338f
– volume: 467
  start-page: 14
  year: 2018
  ident: 821_CR35
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.07.058
– volume: 5
  start-page: 89976
  year: 2015
  ident: 821_CR33
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19271D
– volume: 22
  start-page: 803
  year: 2006
  ident: 821_CR44
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1179/174328406X84030
– volume: 23
  start-page: 2076
  year: 2011
  ident: 821_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100058
– ident: 821_CR6
– volume: 19
  start-page: 5772
  year: 2009
  ident: 821_CR23
  publication-title: J. Mater. Chem.
  doi: 10.1039/b902221j
– volume: 6
  start-page: 210
  year: 2003
  ident: 821_CR43
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1601373
SSID ssj0006438
Score 2.5019648
Snippet Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5222
SubjectTerms Capacitance
Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallography
Cycles
Discharge
Electrochemical analysis
Electrode materials
Electrodes
Electrolytes
Electrons
Hybrid structures
Manganese dioxide
Materials Science
Nanocomposites
Nickel oxides
Optical and Electronic Materials
Performance enhancement
Stability
Supercapacitors
Transition metal oxides
Transition metals
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L3oQf-J0Sg7etLgm6ZYeh2wMYdvFwW4lTV5UkE62Dhz4x_uStesUFYTe-ppDvyTve8l73yPk2oZtrUCLgAPSN2FDG6QmVYGVRigtVBx6Bb7BsNUfi4dJNCmKwuZltnt5Jel36o1iNxm5jIk4cH4rDPg22YkwdneJXGPWWe-_6GPlSmHPKXozVpTK_DzGV3dUccxv16Le2_QOyH5BE2lnhesh2YLsiOxtiAcek49u9uyv72nRykYXtf_0rSoGoFNLB9mI3Q1fRjRT2dSlkLs8LaBoQucLtNXoLzUu7Fk5kAHqjmcpvPtj_SyneukqKJ8oUkmfTLs8IeNe9_G-HxS9FALNpMwDp3GjpZJgQBvGBQiGj4Cmti2IOOMgJFiMvqR1lCCWKpYa6Z5CLCWGjPyU1LJpBmeECm64isBgsJaKJm-nCgNyaDcj1xncpGGdhOUvTXQhNO76XbwmlUSygyFBGBIPQ8Lr5Gb9zdtKZuNP60aJVFIsuXmCsVXLiZyGsk5uS_Sq17-Pdv4_8wuyy_wEcnloDVLLZwu4RGKSp1d-Hn4CD37a2g
  priority: 102
  providerName: Springer Nature
Title Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability
URI https://link.springer.com/article/10.1007/s10854-019-00821-3
https://www.proquest.com/docview/2176091318
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6N9mV7mGA_tDKo_LC3zaKJndZ9QgW1IBBlQlRiT5FjXwAJpaUtEkj88dylDhlIIOUpcfzgs---O999B_Arj3rOotNSIcE3nUe5zHxmZW68tk7bflQy8J2Mu4cTfXSRXISA2yKkVVY6sVTUfuo4Rr5D0LnLHJaR2Z3dSu4axberoYXGGjRJBRvTgObecPz37FkXk701K7Y9ZveO41A2E4rnTMIZGH3JdjCS6qVpqvHmqyvS0vKM1uFzgIxisJLxBnzA4gt8-o9I8Cs8Dour8ipfhLY2LvAAiFldGCCmuTgpTuOd8fWpKGwx5XRyztlCQUPE4o7GOrKdjg75vJrIo-BQrcD7MsRfLIV74GrKS0GwskysffgGk9HwfP9Qhr4K0tEaLSXz3ThjDXp0PlYadUyPxo7Lu5ioWKE2mJMnZnKGB31j-8YR9LMkV0Puo_oOjWJa4A8QWnllE_TkuGW6o3qZJecce52Eu4T7LGpBVC1p6gLpOPe-uElrumQWQ0piSEsxpKoFv5__ma0oN94dvVVJKg3Hb5HWm6UFfyrp1Z_fnm3z_dl-wse43DCcg7YFjeX8DrcJlCyzNqyZ0UEbmoODf8fDdtiH9HYSD54Aj8Litg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5Remg5VH2qaSnsoT21K-LddbI5VFUFhFBIuIDEzV3vjgsSclISBJH6m_obO7OxMVSCG5JvXo9kz3geu998A_CxSLreoTdSI6VvpkgKmYfcycIG47xxvSQy8A1HncGR-XGcHi_B37oXhmGVtU-MjjqMPe-Rb1Dq3GEOy8R-m_yWPDWKT1frERoLs9jD-SWVbNOvu1uk309K9bcPNweymiogvbJ2JpntxVtnMaAPShs0ii6DbV90MNVKo7FYUB1iCw6OPet61lPi4-itLBVPmuQ-gsdGUyTnzvT-zrXnp-huF9x-zCWuVNWkU7Xq2ZTxHj3JUTeR-nYgbLLb_w5kY5zrP4dnVYIqvi8s6gUsYfkSVm7QFr6CP9vlSQQOiGqIjq9YB8SkaUMQ40IMywO1MTo9EKUrxwxeZ4QYCloiphe01lOk9uRSzmtBAQVvDAu8igcK5Uz4Ofdu_hKUxEYY7_w1HD3I934Dy-W4xLcgjA7apRioTMxNW3dzh7nGbjvlmeQhT1qQ1J808xXFOU_aOMsacmZWQ0ZqyKIaMt2Cz9fPTBYEH_euXq01lVU_-zRrTLMFX2rtNbfvlvbufmnr8GRwONzP9ndHe-_hqYrGw-i3VVienV_gB0qHZvlatEEBPx_a6P8BE5IZtg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VVEJwQHyqgQI-wAmsZG1v4hwQApqopTStEJV6W7z2GJDQJjSpIBK_jF_HzMbbBSR6q7S3tUdaz6xnxn7zBuBJzIbeoTdSI4VvJmZRlqF0MtpgnDdulNUMfAfTwe6xeXuSn2zAr6YWhmGVzZ5Yb9Rh5vmMvEeh84A5LDPbiwkWcbQzeTn_JrmDFN-0Nu001iayj6vvlL4tXuztkK6fKjUZf3izK1OHAemVtUvJzC_eOosBfVDaoFH0GOz7OMBcK43GYqScxEZ2lCPrRtZTEOToCy0lUprkXoHNIWdFHdh8PZ4evT_3A-Tr7Zrpj5nFlUolO6lwz-aM_hhJ9sGZ1H-7xTbW_ed6tvZ6k5twI4Wr4tXavm7BBla34fofJIZ34Oe4-lzDCERqqeMTB4GYt0UJYhbFQXWoetMvh6Jy1Yyh7IwXQ0FDxOKMxnry2542mNNGUEDBx8QCf9TXC9VS-BVXcn4SFNLWoN7VXTi-lBW_B51qVuEWCKODdjkGShpL09fD0mGpcdjPuUN5KLMuZM2SFj4RnnPfja9FS9XMaihIDUWthkJ34dn5nPma7uPC0duNpor06y-K1lC78LzRXvv6_9LuXyztMVwlgy_e7U33H8A1VdsOQ-G2obM8PcOHFBsty0fJCAV8vGy7_w0D0R9I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+electrochemical+performance+of+MnO2%2FNiO+nanocomposite+for+supercapacitor+electrode+with+excellent+cycling+stability&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=K+Mohamed+Racik&rft.au=Guruprasad%2C+K&rft.au=Mahendiran%2C+M&rft.au=Madhavan%2C+J&rft.date=2019-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=30&rft.issue=5&rft.spage=5222&rft.epage=5232&rft_id=info:doi/10.1007%2Fs10854-019-00821-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon