Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability
Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO 2 /NiO) nanocomposite via a facile hydrothermal method is reported....
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 30; no. 5; pp. 5222 - 5232 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO
2
/NiO) nanocomposite via a facile hydrothermal method is reported. The crystallographic and morphological features were studied by Powder XRD, FTIR, HRSEM, EDX and TEM analysis. Cyclic voltammetry, galvanostatic charge–discharge and impedance analysis are implemented in order to examine the applicability of the MnO
2
/NiO nanocomposite electrode material as a supercapacitor. The MnO
2
/NiO composites revealed good electrochemical performance by exhibiting a specific capacitance of 247 Fg
−1
at the discharge current density rate of 0.5 Ag
−1
using 1 M KOH as the electrolyte. Moreover, the composite electrode shows enhanced cycling stability. The improvement in specific capacitance of the MnO
2
/NiO composite is primarily due to its hybrid structure, which offers a better contact of surface of electrode and electrolyte, and active sites with large scale. These results expose the development of MnO
2
/NiO electrode material shown enhanced performance for supercapacitors. |
---|---|
AbstractList | Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO2/NiO) nanocomposite via a facile hydrothermal method is reported. The crystallographic and morphological features were studied by Powder XRD, FTIR, HRSEM, EDX and TEM analysis. Cyclic voltammetry, galvanostatic charge–discharge and impedance analysis are implemented in order to examine the applicability of the MnO2/NiO nanocomposite electrode material as a supercapacitor. The MnO2/NiO composites revealed good electrochemical performance by exhibiting a specific capacitance of 247 Fg−1 at the discharge current density rate of 0.5 Ag−1 using 1 M KOH as the electrolyte. Moreover, the composite electrode shows enhanced cycling stability. The improvement in specific capacitance of the MnO2/NiO composite is primarily due to its hybrid structure, which offers a better contact of surface of electrode and electrolyte, and active sites with large scale. These results expose the development of MnO2/NiO electrode material shown enhanced performance for supercapacitors. Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low cost. In this study, the preparation of manganese dioxide/nickel oxide (MnO 2 /NiO) nanocomposite via a facile hydrothermal method is reported. The crystallographic and morphological features were studied by Powder XRD, FTIR, HRSEM, EDX and TEM analysis. Cyclic voltammetry, galvanostatic charge–discharge and impedance analysis are implemented in order to examine the applicability of the MnO 2 /NiO nanocomposite electrode material as a supercapacitor. The MnO 2 /NiO composites revealed good electrochemical performance by exhibiting a specific capacitance of 247 Fg −1 at the discharge current density rate of 0.5 Ag −1 using 1 M KOH as the electrolyte. Moreover, the composite electrode shows enhanced cycling stability. The improvement in specific capacitance of the MnO 2 /NiO composite is primarily due to its hybrid structure, which offers a better contact of surface of electrode and electrolyte, and active sites with large scale. These results expose the development of MnO 2 /NiO electrode material shown enhanced performance for supercapacitors. |
Author | Raj, M. Victor Antony Guruprasad, K. Racik, K. Mohamed Mahendiran, M. Madhavan, J. Maiyalagan, T. |
Author_xml | – sequence: 1 givenname: K. Mohamed surname: Racik fullname: Racik, K. Mohamed organization: Department of Physics, Loyola College, Loyola Institute of Frontier Energy (LIFE), Loyola College – sequence: 2 givenname: K. surname: Guruprasad fullname: Guruprasad, K. organization: Department of Chemistry, SRM Institute of Science and Technology – sequence: 3 givenname: M. surname: Mahendiran fullname: Mahendiran, M. organization: Department of Physics, Loyola College, Loyola Institute of Frontier Energy (LIFE), Loyola College – sequence: 4 givenname: J. surname: Madhavan fullname: Madhavan, J. organization: Department of Physics, Loyola College – sequence: 5 givenname: T. surname: Maiyalagan fullname: Maiyalagan, T. organization: Department of Chemistry, SRM Institute of Science and Technology – sequence: 6 givenname: M. Victor Antony orcidid: 0000-0003-3259-8177 surname: Raj fullname: Raj, M. Victor Antony email: vicvad2003@yahoo.co.in organization: Department of Physics, Loyola College, Loyola Institute of Frontier Energy (LIFE), Loyola College |
BookMark | eNp9kN9rFDEQx4NU8Fr9B3wK-Lx28mNvZx-lVCtU70XBtxDnZnspe8ma5NAD_3hTryD4UAgMYb6fmeFzLs5iiizEawVvFcBwWRRgbztQYweAWnXmmVipfjCdRf3tTKxg7IfO9lq_EOel3APA2hpcid_Xcecj8VbyzFRzoh3vA_lZLpynlPcPTZkm-Slu9OXnsJHRx0Rpv6QSKssWkeXQsuQXT6G27-OgLcufoe4k_yKeZ45V0pHmEO9kqf57mEM9vhTPJz8XfvVYL8TX99dfrm66282Hj1fvbjvSiLVDMwChR94ybbWxbHV7loGmNfdGG7bIk8YRJw1KjehHJLC9VwOhtWtzId6c5i45_Thwqe4-HXJsK51WwxpGZRS2lD6lKKdSMk9uyWHv89EpcA-W3cmya5bdX8vONAj_g5oEX0OKNfswP42aE1rannjH-d9VT1B_AII8lZk |
CitedBy_id | crossref_primary_10_1016_j_diamond_2023_110383 crossref_primary_10_1016_j_surfin_2023_103321 crossref_primary_10_1016_j_cej_2023_141583 crossref_primary_10_1016_j_jpcs_2024_112310 crossref_primary_10_1016_j_physe_2024_116121 crossref_primary_10_1016_j_rechem_2024_101682 crossref_primary_10_1016_j_electacta_2021_138609 crossref_primary_10_1038_s41598_024_70111_4 crossref_primary_10_1016_j_jece_2024_112015 crossref_primary_10_1021_acsaem_4c02018 crossref_primary_10_1016_j_jpowsour_2024_235746 crossref_primary_10_1007_s11581_024_05617_y crossref_primary_10_1016_j_mtcomm_2022_104377 crossref_primary_10_1021_acsomega_2c00826 crossref_primary_10_1016_j_jiec_2023_03_031 crossref_primary_10_1016_j_jallcom_2021_158685 crossref_primary_10_1016_j_sna_2024_115995 crossref_primary_10_1016_j_jallcom_2020_156582 crossref_primary_10_1016_j_jcis_2023_11_086 crossref_primary_10_1007_s13369_024_08860_7 crossref_primary_10_1016_j_molstruc_2024_139859 crossref_primary_10_1002_celc_202100098 crossref_primary_10_1007_s00339_023_06938_x crossref_primary_10_1016_j_ceramint_2019_06_038 crossref_primary_10_1149_1945_7111_ab9b98 crossref_primary_10_1016_j_actbio_2022_10_014 crossref_primary_10_14233_ajchem_2022_23879 crossref_primary_10_15251_JOR_2022_181_93 crossref_primary_10_1016_j_ceramint_2025_01_244 crossref_primary_10_1016_j_jallcom_2020_157289 crossref_primary_10_3390_molecules29122854 crossref_primary_10_1139_cjc_2020_0283 crossref_primary_10_62638_ZasMat1120 crossref_primary_10_1016_j_apcatb_2023_123442 crossref_primary_10_1016_j_molstruc_2023_137375 crossref_primary_10_1080_16583655_2023_2221827 crossref_primary_10_1002_adfm_202408043 crossref_primary_10_1016_j_jiec_2025_01_035 crossref_primary_10_3390_app11010411 crossref_primary_10_1007_s11356_024_35856_5 crossref_primary_10_1021_acs_langmuir_4c02192 crossref_primary_10_1007_s10854_020_04830_5 crossref_primary_10_1007_s10904_020_01801_5 crossref_primary_10_1016_j_microc_2024_110998 crossref_primary_10_1088_2043_6262_abebd5 crossref_primary_10_1016_j_heliyon_2024_e26631 crossref_primary_10_1016_j_materresbull_2022_111745 crossref_primary_10_1016_j_talanta_2020_121715 crossref_primary_10_1016_j_electacta_2023_142937 crossref_primary_10_1021_acs_langmuir_4c00723 crossref_primary_10_1016_j_biortech_2022_127529 crossref_primary_10_1007_s11581_023_04998_w crossref_primary_10_3390_w15203679 crossref_primary_10_1016_j_inoche_2025_114336 crossref_primary_10_1007_s11356_024_35747_9 crossref_primary_10_1016_j_est_2022_105403 crossref_primary_10_1016_j_solidstatesciences_2025_107831 crossref_primary_10_1016_j_jcis_2024_08_047 crossref_primary_10_1016_j_inoche_2024_112089 crossref_primary_10_1016_j_surfin_2023_103015 crossref_primary_10_1002_er_8380 crossref_primary_10_1007_s44371_024_00006_w crossref_primary_10_1016_j_jallcom_2020_157939 crossref_primary_10_3390_ma17163976 crossref_primary_10_1016_j_jpcs_2021_110467 crossref_primary_10_1016_j_physe_2020_114033 crossref_primary_10_1002_aesr_202300164 crossref_primary_10_1007_s10854_024_12755_6 crossref_primary_10_1016_j_chemosphere_2023_140657 crossref_primary_10_1016_j_optmat_2024_115029 crossref_primary_10_1016_j_inoche_2025_114402 crossref_primary_10_1111_ijac_14377 crossref_primary_10_1002_er_5860 crossref_primary_10_1016_j_ceramint_2025_01_181 |
Cites_doi | 10.1016/j.electacta.2012.10.106 10.1016/j.ceramint.2016.06.140 10.1016/j.electacta.2016.11.028 10.1016/j.cej.2017.10.169 10.1039/C1JM14804D 10.1016/j.electacta.2014.10.117 10.1016/j.jpowsour.2015.03.177 10.1186/s11671-017-1939-6 10.1021/nl104205s 10.1016/j.nanoen.2013.12.008 10.1038/ncomms12647 10.1039/C5RA15684J 10.1039/C1CS15060J 10.1039/c5cc03976b 10.1002/celc.201400006 10.1007/s10854-018-9639-2 10.1016/j.electacta.2017.05.152 10.1002/celc.201600836 10.1021/jp512795g 10.1039/C7RA02932B 10.1016/j.apsusc.2015.10.187 10.1021/am3021894 10.1149/1.1541675 10.1002/ange.201208993 10.1039/C4TA00988F 10.1021/acsnano.7b03431 10.1002/adma.201204949 10.1021/nl102203s 10.1039/C5NH00023H 10.1515/pac-2013-1204 10.1088/0957-4484/25/30/305401 10.1016/S0927-7757(02)00305-9 10.1021/nn3012916 10.1039/c3ee44164d 10.1016/j.electacta.2017.12.074 10.1039/c1ee01338f 10.1016/j.jmmm.2018.07.058 10.1039/C5RA19271D 10.1179/174328406X84030 10.1002/adma.201100058 10.1039/b902221j 10.1149/1.1601373 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2019). All Rights Reserved. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-019-00821-3 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database ProQuest Materials Science Database Advanced Technologies Database with Aerospace ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 5232 |
ExternalDocumentID | 10_1007_s10854_019_00821_3 |
GroupedDBID | -4Y -58 -5G -BR -EM -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CCPQU CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- MK~ N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P62 P9N PDBOC PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S0W S16 S27 S3B SAP SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAIKT AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABDPE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGJBK AGQPQ AHPBZ AHWEU AIXLP AJBLW ATHPR AYFIA BBWZM CAG CITATION COF H13 KOW N2Q NDZJH O9- OVD P0- PHGZM PHGZT R4E RNI RZC RZE RZK S1Z S26 S28 SCG SCLPG T16 TEORI W4F 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c288t-8370c8a8edecd234e42e424e0cf6e5323e48ef2898f201198a98c045a17c84463 |
IEDL.DBID | BENPR |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 11:03:03 EDT 2025 Tue Jul 01 02:47:21 EDT 2025 Thu Apr 24 23:11:13 EDT 2025 Fri Feb 21 02:39:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-8370c8a8edecd234e42e424e0cf6e5323e48ef2898f201198a98c045a17c84463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3259-8177 |
PQID | 2176091318 |
PQPubID | 326250 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2176091318 crossref_primary_10_1007_s10854_019_00821_3 crossref_citationtrail_10_1007_s10854_019_00821_3 springer_journals_10_1007_s10854_019_00821_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | ZhaoLYuJLiWWangSDaiCWuJBaiXZhiCNano Energy20144394810.1016/j.nanoen.2013.12.008 TangC-LWeiXJiangY-MWuX-YHanLNWangK-XChenJ-SJ. Phys. Chem. C20151198465847110.1021/jp512795g ChenYHuCElectrochem. Solid-State Lett.2003621021310.1149/1.1601373 LiuJPJiangJChengCWLiHXZhangJXGongHFanHJAdv. Mater.2011232076208110.1002/adma.201100058 AugustynVSimonPDunnBEnergy Environ. Sci.201471597161410.1039/c3ee44164d MaMZhangYYuWShenHYZhangHQGuNColloids Surf. A200321221910.1016/S0927-7757(02)00305-9 LiuJJiangMBosmanHJFanJ. Mater. Chem.2012222419242610.1039/C1JM14804D LiYHPengHRZhangCChuMSXiaoPZhangYHRSC Adv.20155771157712110.1039/C5RA15684J LiuJPJiangJBosmanMFanHJJ. Mater. Chem.2012222419242610.1039/C1JM14804D LukatskayaMRDunnBGogotsiYNat. Commun.20167126471265910.1038/ncomms12647 KangJHirataAKangLZhangXHouYChenLLiCFujitaTAkagiKChenMAngew. Chem. Int. Ed.20131251708171110.1002/ange.201208993 LuXZhengDZhaiTLiuZHuangYXieSTongYEnergy Environ. Sci.201142915292110.1039/c1ee01338f XiaoKLiJ-WChenG-FLiuZ-QLiNSuY-ZElectrochim. Acta201414934134810.1016/j.electacta.2014.10.117 WangCZhanYWuLLiYLiuJNanotechnology20142530540110.1088/0957-4484/25/30/305401 YuanCZZhangXGSuLHGaoBShenLFJ. Mater. Chem.2009195772577710.1039/b902221j KimHPopovBNJ. Electrochem. Soc.2003150D5610.1149/1.1541675 QianYLiuRWangQFXuJChenDShenGZJ. Mater. Chem. A20142109171092210.1039/C4TA00988F ChenJHuangYLiCChenXZhangXAppl. Surf. Sci.201636053453910.1016/j.apsusc.2015.10.187 L.DengZHaoJWangElectrochim. Acta20138919119810.1016/j.electacta.2012.10.106 BiYNautiyalAZhangHLuoJZhangXElectrochim. Acta201826095295810.1016/j.electacta.2017.12.074 LiuYZhangBWangFWenZWuYPure Appl. Chem.201486593609 OyedotunKOMaditoMJMomoduDYMirghniAAMasikhwaTMManyalaNChem. Eng. J.201833541643310.1016/j.cej.2017.10.169 WangGPZhangLZhangJJChem. Soc. Rev.20124179782810.1039/C1CS15060J LiWXuKLiBSunJJiangFYuZZouRChenZHuJChemElectroChem201411003100810.1002/celc.201400006 A. Yu, V. Chabot, J. Zhang, Electrochemical supercapacitors for energy storage and delivery. CRC Press, Taylor & Francis Group (2013) ZhuSJJiaJQWangTZhaoDYangJDongFShangZGZhangYXChem. Commun.2015 KimJ-HZhuKYanYFPerkinsCLFrankANano Lett.201010409910.1021/nl102203s ZhangXWangQZhangJWangJGuoMChenSLiCHuCXieYRSC Adv.20155899768998410.1039/C5RA19271D ChenL-FHuangZ-HLiangH-WGuanQ-FYuS-HAdv. Mater.2013254746475210.1002/adma.201204949 ZhongJYiFGaoAShuDHuangYLiZZhuWHeCMengTZhaoSChemElectroChem201741088109410.1002/celc.201600836 BaoLHZangJFLiXDNano Lett.201111121510.1021/nl104205s WangHFanXZhangXHuangYWuQPanQLiQRSC Adv.201772332810.1039/C7RA02932B ZhuSLiLLiuJWangHWangTZhangYZhangLRuoffRSDongFACS Nano20181221033104210.1021/acsnano.7b03431 SoniaMMLAnandSVinoselVMJaniferMAPaulineSJ. Mater. Sci. Mater. Electron.20182917150061502110.1007/s10854-018-9639-2 ZhouJShenXJingMJ. Mater. Sci. Technol.20062280380610.1179/174328406X84030 KimSILeeJSAhnHJSongHKJangJHACS Appl. Mater. Interfaces201351596160310.1021/am3021894 HaldoraiYGiribabuKHwangSKKwakCHHuhYSHanYKElectrochim. Acta201622271772710.1016/j.electacta.2016.11.028 WeiHWangJYuLZhangYHouDLiTCeram. Int.20164213149631496910.1016/j.ceramint.2016.06.140 NooshabadiMSZahediFElectrochim. Acta201724557558610.1016/j.electacta.2017.05.152 ZhaoXZhangLMuraliSStollerMDZhangQZhuYRuoffRSACS Nano201265404541210.1021/nn3012916 HuYWangJJ. Power Sources201528639439910.1016/j.jpowsour.2015.03.177 WuHBZhangGYuLLouXWNanoscale Horiz.20161274010.1039/C5NH00023H AmaliyaAPAnandSPaulineSJ. Magn. Magn. Mater.2018467142810.1016/j.jmmm.2018.07.058 XiSZhuYYangYJiangSTangZNanoscale Res. Lett.20171217110.1186/s11671-017-1939-6 KO Oyedotun (821_CR42) 2018; 335 Y Liu (821_CR3) 2014; 86 Z L.Deng (821_CR8) 2013; 89 JP Liu (821_CR25) 2012; 22 C-L Tang (821_CR10) 2015; 119 W Li (821_CR13) 2014; 1 L Zhao (821_CR9) 2014; 4 SJ Zhu (821_CR11) 2015 X Lu (821_CR14) 2011; 4 C Wang (821_CR16) 2014; 25 AP Amaliya (821_CR35) 2018; 467 821_CR6 CZ Yuan (821_CR23) 2009; 19 X Zhang (821_CR33) 2015; 5 J Zhong (821_CR41) 2017; 4 J Zhou (821_CR44) 2006; 22 X Zhao (821_CR20) 2012; 6 S Zhu (821_CR31) 2018; 12 GP Wang (821_CR4) 2012; 41 J Chen (821_CR27) 2016; 360 J-H Kim (821_CR37) 2010; 10 HB Wu (821_CR5) 2016; 1 H Wei (821_CR39) 2016; 42 J Liu (821_CR18) 2012; 22 V Augustyn (821_CR1) 2014; 7 J Kang (821_CR22) 2013; 125 JP Liu (821_CR21) 2011; 23 Y Hu (821_CR12) 2015; 286 LH Bao (821_CR36) 2011; 11 YH Li (821_CR26) 2015; 5 MS Nooshabadi (821_CR7) 2017; 245 SI Kim (821_CR19) 2013; 5 S Xi (821_CR29) 2017; 12 L-F Chen (821_CR17) 2013; 25 MR Lukatskaya (821_CR2) 2016; 7 K Xiao (821_CR15) 2014; 149 Y Qian (821_CR24) 2014; 2 Y Bi (821_CR28) 2018; 260 Y Haldorai (821_CR40) 2016; 222 M Ma (821_CR32) 2003; 212 H Wang (821_CR30) 2017; 7 MML Sonia (821_CR34) 2018; 29 H Kim (821_CR38) 2003; 150 Y Chen (821_CR43) 2003; 6 |
References_xml | – reference: ZhouJShenXJingMJ. Mater. Sci. Technol.20062280380610.1179/174328406X84030 – reference: A. Yu, V. Chabot, J. Zhang, Electrochemical supercapacitors for energy storage and delivery. CRC Press, Taylor & Francis Group (2013) – reference: L.DengZHaoJWangElectrochim. Acta20138919119810.1016/j.electacta.2012.10.106 – reference: ZhaoLYuJLiWWangSDaiCWuJBaiXZhiCNano Energy20144394810.1016/j.nanoen.2013.12.008 – reference: LiWXuKLiBSunJJiangFYuZZouRChenZHuJChemElectroChem201411003100810.1002/celc.201400006 – reference: KimSILeeJSAhnHJSongHKJangJHACS Appl. Mater. Interfaces201351596160310.1021/am3021894 – reference: KimHPopovBNJ. Electrochem. Soc.2003150D5610.1149/1.1541675 – reference: LiuYZhangBWangFWenZWuYPure Appl. Chem.201486593609 – reference: KimJ-HZhuKYanYFPerkinsCLFrankANano Lett.201010409910.1021/nl102203s – reference: HaldoraiYGiribabuKHwangSKKwakCHHuhYSHanYKElectrochim. Acta201622271772710.1016/j.electacta.2016.11.028 – reference: HuYWangJJ. Power Sources201528639439910.1016/j.jpowsour.2015.03.177 – reference: WangCZhanYWuLLiYLiuJNanotechnology20142530540110.1088/0957-4484/25/30/305401 – reference: ChenJHuangYLiCChenXZhangXAppl. Surf. Sci.201636053453910.1016/j.apsusc.2015.10.187 – reference: AmaliyaAPAnandSPaulineSJ. Magn. Magn. Mater.2018467142810.1016/j.jmmm.2018.07.058 – reference: XiaoKLiJ-WChenG-FLiuZ-QLiNSuY-ZElectrochim. Acta201414934134810.1016/j.electacta.2014.10.117 – reference: BiYNautiyalAZhangHLuoJZhangXElectrochim. Acta201826095295810.1016/j.electacta.2017.12.074 – reference: ZhuSJJiaJQWangTZhaoDYangJDongFShangZGZhangYXChem. Commun.2015 – reference: YuanCZZhangXGSuLHGaoBShenLFJ. Mater. Chem.2009195772577710.1039/b902221j – reference: LiYHPengHRZhangCChuMSXiaoPZhangYHRSC Adv.20155771157712110.1039/C5RA15684J – reference: SoniaMMLAnandSVinoselVMJaniferMAPaulineSJ. Mater. Sci. Mater. Electron.20182917150061502110.1007/s10854-018-9639-2 – reference: MaMZhangYYuWShenHYZhangHQGuNColloids Surf. A200321221910.1016/S0927-7757(02)00305-9 – reference: ZhongJYiFGaoAShuDHuangYLiZZhuWHeCMengTZhaoSChemElectroChem201741088109410.1002/celc.201600836 – reference: ZhuSLiLLiuJWangHWangTZhangYZhangLRuoffRSDongFACS Nano20181221033104210.1021/acsnano.7b03431 – reference: TangC-LWeiXJiangY-MWuX-YHanLNWangK-XChenJ-SJ. Phys. Chem. C20151198465847110.1021/jp512795g – reference: WeiHWangJYuLZhangYHouDLiTCeram. Int.20164213149631496910.1016/j.ceramint.2016.06.140 – reference: ZhangXWangQZhangJWangJGuoMChenSLiCHuCXieYRSC Adv.20155899768998410.1039/C5RA19271D – reference: NooshabadiMSZahediFElectrochim. Acta201724557558610.1016/j.electacta.2017.05.152 – reference: ChenYHuCElectrochem. Solid-State Lett.2003621021310.1149/1.1601373 – reference: LiuJJiangMBosmanHJFanJ. Mater. Chem.2012222419242610.1039/C1JM14804D – reference: LukatskayaMRDunnBGogotsiYNat. Commun.20167126471265910.1038/ncomms12647 – reference: LiuJPJiangJChengCWLiHXZhangJXGongHFanHJAdv. Mater.2011232076208110.1002/adma.201100058 – reference: XiSZhuYYangYJiangSTangZNanoscale Res. Lett.20171217110.1186/s11671-017-1939-6 – reference: LuXZhengDZhaiTLiuZHuangYXieSTongYEnergy Environ. Sci.201142915292110.1039/c1ee01338f – reference: AugustynVSimonPDunnBEnergy Environ. Sci.201471597161410.1039/c3ee44164d – reference: QianYLiuRWangQFXuJChenDShenGZJ. Mater. Chem. A20142109171092210.1039/C4TA00988F – reference: ChenL-FHuangZ-HLiangH-WGuanQ-FYuS-HAdv. Mater.2013254746475210.1002/adma.201204949 – reference: KangJHirataAKangLZhangXHouYChenLLiCFujitaTAkagiKChenMAngew. Chem. Int. Ed.20131251708171110.1002/ange.201208993 – reference: BaoLHZangJFLiXDNano Lett.201111121510.1021/nl104205s – reference: WuHBZhangGYuLLouXWNanoscale Horiz.20161274010.1039/C5NH00023H – reference: OyedotunKOMaditoMJMomoduDYMirghniAAMasikhwaTMManyalaNChem. Eng. J.201833541643310.1016/j.cej.2017.10.169 – reference: LiuJPJiangJBosmanMFanHJJ. Mater. Chem.2012222419242610.1039/C1JM14804D – reference: WangHFanXZhangXHuangYWuQPanQLiQRSC Adv.201772332810.1039/C7RA02932B – reference: WangGPZhangLZhangJJChem. Soc. Rev.20124179782810.1039/C1CS15060J – reference: ZhaoXZhangLMuraliSStollerMDZhangQZhuYRuoffRSACS Nano201265404541210.1021/nn3012916 – volume: 89 start-page: 191 year: 2013 ident: 821_CR8 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.10.106 – volume: 42 start-page: 14963 issue: 13 year: 2016 ident: 821_CR39 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.06.140 – volume: 222 start-page: 717 year: 2016 ident: 821_CR40 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.11.028 – volume: 335 start-page: 416 year: 2018 ident: 821_CR42 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.169 – volume: 22 start-page: 2419 year: 2012 ident: 821_CR18 publication-title: J. Mater. Chem. doi: 10.1039/C1JM14804D – volume: 149 start-page: 341 year: 2014 ident: 821_CR15 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2014.10.117 – volume: 286 start-page: 394 year: 2015 ident: 821_CR12 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.177 – volume: 12 start-page: 171 year: 2017 ident: 821_CR29 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-1939-6 – volume: 11 start-page: 1215 year: 2011 ident: 821_CR36 publication-title: Nano Lett. doi: 10.1021/nl104205s – volume: 4 start-page: 39 year: 2014 ident: 821_CR9 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.12.008 – volume: 7 start-page: 12647 year: 2016 ident: 821_CR2 publication-title: Nat. Commun. doi: 10.1038/ncomms12647 – volume: 5 start-page: 77115 year: 2015 ident: 821_CR26 publication-title: RSC Adv. doi: 10.1039/C5RA15684J – volume: 41 start-page: 797 year: 2012 ident: 821_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15060J – year: 2015 ident: 821_CR11 publication-title: Chem. Commun. doi: 10.1039/c5cc03976b – volume: 1 start-page: 1003 year: 2014 ident: 821_CR13 publication-title: ChemElectroChem doi: 10.1002/celc.201400006 – volume: 29 start-page: 15006 issue: 17 year: 2018 ident: 821_CR34 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-018-9639-2 – volume: 245 start-page: 575 year: 2017 ident: 821_CR7 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.05.152 – volume: 4 start-page: 1088 year: 2017 ident: 821_CR41 publication-title: ChemElectroChem doi: 10.1002/celc.201600836 – volume: 119 start-page: 8465 year: 2015 ident: 821_CR10 publication-title: J. Phys. Chem. C doi: 10.1021/jp512795g – volume: 7 start-page: 23328 year: 2017 ident: 821_CR30 publication-title: RSC Adv. doi: 10.1039/C7RA02932B – volume: 360 start-page: 534 year: 2016 ident: 821_CR27 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.10.187 – volume: 5 start-page: 1596 year: 2013 ident: 821_CR19 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am3021894 – volume: 150 start-page: D56 year: 2003 ident: 821_CR38 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1541675 – volume: 125 start-page: 1708 year: 2013 ident: 821_CR22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201208993 – volume: 2 start-page: 10917 year: 2014 ident: 821_CR24 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00988F – volume: 12 start-page: 1033 issue: 2 year: 2018 ident: 821_CR31 publication-title: ACS Nano doi: 10.1021/acsnano.7b03431 – volume: 25 start-page: 4746 year: 2013 ident: 821_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201204949 – volume: 10 start-page: 4099 year: 2010 ident: 821_CR37 publication-title: Nano Lett. doi: 10.1021/nl102203s – volume: 1 start-page: 27 year: 2016 ident: 821_CR5 publication-title: Nanoscale Horiz. doi: 10.1039/C5NH00023H – volume: 86 start-page: 593 year: 2014 ident: 821_CR3 publication-title: Pure Appl. Chem. doi: 10.1515/pac-2013-1204 – volume: 25 start-page: 305401 year: 2014 ident: 821_CR16 publication-title: Nanotechnology doi: 10.1088/0957-4484/25/30/305401 – volume: 212 start-page: 219 year: 2003 ident: 821_CR32 publication-title: Colloids Surf. A doi: 10.1016/S0927-7757(02)00305-9 – volume: 6 start-page: 5404 year: 2012 ident: 821_CR20 publication-title: ACS Nano doi: 10.1021/nn3012916 – volume: 22 start-page: 2419 year: 2012 ident: 821_CR25 publication-title: J. Mater. Chem. doi: 10.1039/C1JM14804D – volume: 7 start-page: 1597 year: 2014 ident: 821_CR1 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44164d – volume: 260 start-page: 952 year: 2018 ident: 821_CR28 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.12.074 – volume: 4 start-page: 2915 year: 2011 ident: 821_CR14 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01338f – volume: 467 start-page: 14 year: 2018 ident: 821_CR35 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.07.058 – volume: 5 start-page: 89976 year: 2015 ident: 821_CR33 publication-title: RSC Adv. doi: 10.1039/C5RA19271D – volume: 22 start-page: 803 year: 2006 ident: 821_CR44 publication-title: J. Mater. Sci. Technol. doi: 10.1179/174328406X84030 – volume: 23 start-page: 2076 year: 2011 ident: 821_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.201100058 – ident: 821_CR6 – volume: 19 start-page: 5772 year: 2009 ident: 821_CR23 publication-title: J. Mater. Chem. doi: 10.1039/b902221j – volume: 6 start-page: 210 year: 2003 ident: 821_CR43 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1601373 |
SSID | ssj0006438 |
Score | 2.5019648 |
Snippet | Transition metal oxides with metallic composites have greater attention for hybrid supercapacitor due to their excellent electrochemical performance and low... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5222 |
SubjectTerms | Capacitance Characterization and Evaluation of Materials Chemistry and Materials Science Crystallography Cycles Discharge Electrochemical analysis Electrode materials Electrodes Electrolytes Electrons Hybrid structures Manganese dioxide Materials Science Nanocomposites Nickel oxides Optical and Electronic Materials Performance enhancement Stability Supercapacitors Transition metal oxides Transition metals |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46L3oQf-J0Sg7etLgm6ZYeh2wMYdvFwW4lTV5UkE62Dhz4x_uStesUFYTe-ppDvyTve8l73yPk2oZtrUCLgAPSN2FDG6QmVYGVRigtVBx6Bb7BsNUfi4dJNCmKwuZltnt5Jel36o1iNxm5jIk4cH4rDPg22YkwdneJXGPWWe-_6GPlSmHPKXozVpTK_DzGV3dUccxv16Le2_QOyH5BE2lnhesh2YLsiOxtiAcek49u9uyv72nRykYXtf_0rSoGoFNLB9mI3Q1fRjRT2dSlkLs8LaBoQucLtNXoLzUu7Fk5kAHqjmcpvPtj_SyneukqKJ8oUkmfTLs8IeNe9_G-HxS9FALNpMwDp3GjpZJgQBvGBQiGj4Cmti2IOOMgJFiMvqR1lCCWKpYa6Z5CLCWGjPyU1LJpBmeECm64isBgsJaKJm-nCgNyaDcj1xncpGGdhOUvTXQhNO76XbwmlUSygyFBGBIPQ8Lr5Gb9zdtKZuNP60aJVFIsuXmCsVXLiZyGsk5uS_Sq17-Pdv4_8wuyy_wEcnloDVLLZwu4RGKSp1d-Hn4CD37a2g priority: 102 providerName: Springer Nature |
Title | Enhanced electrochemical performance of MnO2/NiO nanocomposite for supercapacitor electrode with excellent cycling stability |
URI | https://link.springer.com/article/10.1007/s10854-019-00821-3 https://www.proquest.com/docview/2176091318 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swED6N9mV7mGA_tDKo_LC3zaKJndZ9QgW1IBBlQlRiT5FjXwAJpaUtEkj88dylDhlIIOUpcfzgs---O999B_Arj3rOotNSIcE3nUe5zHxmZW68tk7bflQy8J2Mu4cTfXSRXISA2yKkVVY6sVTUfuo4Rr5D0LnLHJaR2Z3dSu4axberoYXGGjRJBRvTgObecPz37FkXk701K7Y9ZveO41A2E4rnTMIZGH3JdjCS6qVpqvHmqyvS0vKM1uFzgIxisJLxBnzA4gt8-o9I8Cs8Dour8ipfhLY2LvAAiFldGCCmuTgpTuOd8fWpKGwx5XRyztlCQUPE4o7GOrKdjg75vJrIo-BQrcD7MsRfLIV74GrKS0GwskysffgGk9HwfP9Qhr4K0tEaLSXz3ThjDXp0PlYadUyPxo7Lu5ioWKE2mJMnZnKGB31j-8YR9LMkV0Puo_oOjWJa4A8QWnllE_TkuGW6o3qZJecce52Eu4T7LGpBVC1p6gLpOPe-uElrumQWQ0piSEsxpKoFv5__ma0oN94dvVVJKg3Hb5HWm6UFfyrp1Z_fnm3z_dl-wse43DCcg7YFjeX8DrcJlCyzNqyZ0UEbmoODf8fDdtiH9HYSD54Aj8Litg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5Remg5VH2qaSnsoT21K-LddbI5VFUFhFBIuIDEzV3vjgsSclISBJH6m_obO7OxMVSCG5JvXo9kz3geu998A_CxSLreoTdSI6VvpkgKmYfcycIG47xxvSQy8A1HncGR-XGcHi_B37oXhmGVtU-MjjqMPe-Rb1Dq3GEOy8R-m_yWPDWKT1frERoLs9jD-SWVbNOvu1uk309K9bcPNweymiogvbJ2JpntxVtnMaAPShs0ii6DbV90MNVKo7FYUB1iCw6OPet61lPi4-itLBVPmuQ-gsdGUyTnzvT-zrXnp-huF9x-zCWuVNWkU7Xq2ZTxHj3JUTeR-nYgbLLb_w5kY5zrP4dnVYIqvi8s6gUsYfkSVm7QFr6CP9vlSQQOiGqIjq9YB8SkaUMQ40IMywO1MTo9EKUrxwxeZ4QYCloiphe01lOk9uRSzmtBAQVvDAu8igcK5Uz4Ofdu_hKUxEYY7_w1HD3I934Dy-W4xLcgjA7apRioTMxNW3dzh7nGbjvlmeQhT1qQ1J808xXFOU_aOMsacmZWQ0ZqyKIaMt2Cz9fPTBYEH_euXq01lVU_-zRrTLMFX2rtNbfvlvbufmnr8GRwONzP9ndHe-_hqYrGw-i3VVienV_gB0qHZvlatEEBPx_a6P8BE5IZtg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB2VVEJwQHyqgQI-wAmsZG1v4hwQApqopTStEJV6W7z2GJDQJjSpIBK_jF_HzMbbBSR6q7S3tUdaz6xnxn7zBuBJzIbeoTdSI4VvJmZRlqF0MtpgnDdulNUMfAfTwe6xeXuSn2zAr6YWhmGVzZ5Yb9Rh5vmMvEeh84A5LDPbiwkWcbQzeTn_JrmDFN-0Nu001iayj6vvlL4tXuztkK6fKjUZf3izK1OHAemVtUvJzC_eOosBfVDaoFH0GOz7OMBcK43GYqScxEZ2lCPrRtZTEOToCy0lUprkXoHNIWdFHdh8PZ4evT_3A-Tr7Zrpj5nFlUolO6lwz-aM_hhJ9sGZ1H-7xTbW_ed6tvZ6k5twI4Wr4tXavm7BBla34fofJIZ34Oe4-lzDCERqqeMTB4GYt0UJYhbFQXWoetMvh6Jy1Yyh7IwXQ0FDxOKMxnry2542mNNGUEDBx8QCf9TXC9VS-BVXcn4SFNLWoN7VXTi-lBW_B51qVuEWCKODdjkGShpL09fD0mGpcdjPuUN5KLMuZM2SFj4RnnPfja9FS9XMaihIDUWthkJ34dn5nPma7uPC0duNpor06y-K1lC78LzRXvv6_9LuXyztMVwlgy_e7U33H8A1VdsOQ-G2obM8PcOHFBsty0fJCAV8vGy7_w0D0R9I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+electrochemical+performance+of+MnO2%2FNiO+nanocomposite+for+supercapacitor+electrode+with+excellent+cycling+stability&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=K+Mohamed+Racik&rft.au=Guruprasad%2C+K&rft.au=Mahendiran%2C+M&rft.au=Madhavan%2C+J&rft.date=2019-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=30&rft.issue=5&rft.spage=5222&rft.epage=5232&rft_id=info:doi/10.1007%2Fs10854-019-00821-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |