Global minimization of difference of quadratic and convex functions over box or binary constraints

In this paper, we present necessary as well as sufficient conditions for a given feasible point to be a global minimizer of the difference of quadratic and convex functions subject to bounds on the variables. We show that the necessary conditions become necessary and sufficient for global minimizers...

Full description

Saved in:
Bibliographic Details
Published inOptimization letters Vol. 2; no. 2; pp. 223 - 238
Main Authors Jeyakumar, V., Huy, N. Q.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.03.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present necessary as well as sufficient conditions for a given feasible point to be a global minimizer of the difference of quadratic and convex functions subject to bounds on the variables. We show that the necessary conditions become necessary and sufficient for global minimizers in the case of a weighted sum of squares minimization problems. We obtain sufficient conditions for global optimality by first constructing quadratic underestimators and then by characterizing global minimizers of the underestimators. We also derive global optimality conditions for the minimization of the difference of quadratic and convex functions over binary constraints. We discuss several numerical examples to illustrate the significance of the optimality conditions.
AbstractList In this paper, we present necessary as well as sufficient conditions for a given feasible point to be a global minimizer of the difference of quadratic and convex functions subject to bounds on the variables. We show that the necessary conditions become necessary and sufficient for global minimizers in the case of a weighted sum of squares minimization problems. We obtain sufficient conditions for global optimality by first constructing quadratic underestimators and then by characterizing global minimizers of the underestimators. We also derive global optimality conditions for the minimization of the difference of quadratic and convex functions over binary constraints. We discuss several numerical examples to illustrate the significance of the optimality conditions.
Author Jeyakumar, V.
Huy, N. Q.
Author_xml – sequence: 1
  givenname: V.
  surname: Jeyakumar
  fullname: Jeyakumar, V.
  organization: Department of Applied Mathematics, University of New South Wales
– sequence: 2
  givenname: N. Q.
  surname: Huy
  fullname: Huy, N. Q.
  email: huyngq@yahoo.com
  organization: Department of Applied Mathematics, University of New South Wales, Department of Mathematics, Hanoi Pedagogical University No. 2
BookMark eNp9kM1OAyEUhYmpiW31AdzxAqNcGGZgaRqtJk3c6HpC-TE0U1CYNtWnl7HGhYsuyD2E85F7zgxNQgwWoWsgN0BIe5sBuCRVkeVwVjVnaAqioVVdCzL50y29QLOcN4Q0AFJO0XrZx7Xq8dYHv_VfavAx4Oiw8c7ZZIO24-1jp0wqbxqrYLCOYW8P2O2CHu0Zx71NeB0POJbhg0qfoycPSfkw5Et07lSf7dXvnKPXh_uXxWO1el4-Le5WlaZCDJWAWktwwlDNLWuo0ZJJI8qezlJQRsmaG14zJYUgFHirwdSMWamcBaU5m6P2-K9OMedkXaf98BNoXKTvgHRjVd2xqm6UY1VdU0j4R74nvy0xTjL0yOTiDW82dZu4S6EEPAF9A9Hsfzs
CitedBy_id crossref_primary_10_1007_s11590_018_1265_7
crossref_primary_10_1051_ro_2008019
crossref_primary_10_1007_s10898_009_9416_0
crossref_primary_10_1007_s00186_015_0511_3
crossref_primary_10_1016_j_jmaa_2007_02_013
crossref_primary_10_1186_s13660_015_0776_3
crossref_primary_10_1007_s40305_014_0046_y
crossref_primary_10_1137_140968409
Cites_doi 10.1007/s10898-004-6455-4
10.1017/S1446181100010063
10.1007/BF01582072
10.1023/A:1012752110010
10.1137/S1052623498336930
10.1023/B:JOTA.0000042530.24671.80
10.1006/jmaa.1997.5745
10.1080/02331930108844555
10.1007/s10898-006-9022-3
10.1023/B:JOGO.0000044768.75992.10
10.1007/BF02247879
10.1016/S0024-3795(00)00178-6
10.1007/s10898-005-3845-1
10.1007/s10589-005-4799-4
10.1007/s10107-006-0012-5
10.1007/978-1-4757-3218-4
10.1142/S021759590700119X
10.1007/978-1-4757-2787-6
10.1007/978-1-4615-2025-2_5
ContentType Journal Article
Copyright Springer-Verlag 2007
Copyright_xml – notice: Springer-Verlag 2007
DBID AAYXX
CITATION
DOI 10.1007/s11590-007-0053-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 238
ExternalDocumentID 10_1007_s11590_007_0053_6
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c288t-814c91f8d2c5e362dc939d8611fe21ada945d543a98802157c1d433e9afe1ac53
IEDL.DBID U2A
ISSN 1862-4472
IngestDate Thu Apr 24 23:08:56 EDT 2025
Tue Jul 01 01:27:32 EDT 2025
Fri Feb 21 02:36:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Sufficient conditions
Quadratic non-convex minimization
0/1 Constraints
Necessary optimality conditions
Box constraints
Concave minimization
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-814c91f8d2c5e362dc939d8611fe21ada945d543a98802157c1d433e9afe1ac53
PageCount 16
ParticipantIDs crossref_citationtrail_10_1007_s11590_007_0053_6
crossref_primary_10_1007_s11590_007_0053_6
springer_journals_10_1007_s11590_007_0053_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20080300
2008-3-00
PublicationDateYYYYMMDD 2008-03-01
PublicationDate_xml – month: 3
  year: 2008
  text: 20080300
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optimization Letters
PublicationYear 2008
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References Jeyakumar, Rubinov, Wu (CR14) 2006; 36
Ben-Tal, Nemirovski (CR5) 2000
Floudas, Visweswaran, Horst, Pardalos (CR10) 1995
Huy, Jeyakumar, Lee (CR12) 2006; 47
Floudas, Pardalos (CR9) 2000
CR15
CR13
Pardalos, Rodgers (CR19) 1990; 45
Dür, Horst, Locatelli (CR8) 1998; 217
Junger, Martin, Reinelt, Weismantel (CR16) 1994; 63
Dahl (CR7) 2000; 317
Marcia, Mitchell, Rosen (CR18) 2005; 32
Pınar (CR20) 2004; 122
Beck, Teboulle (CR4) 2000; 11
Akrotirianakis, Floudas (CR1) 2004; 30
Akrotirianakis, Floudas (CR2) 2004; 29
Cela (CR6) 1998
An, Tao (CR3) 2001; 50
Hiriart-Urruty (CR11) 2001; 21
Mangasarian, Rosen, Thompson (CR17) 2006; 34
M. Junger (53_CR16) 1994; 63
P.M. Pardalos (53_CR19) 1990; 45
R.F. Marcia (53_CR18) 2005; 32
N.Q. Huy (53_CR12) 2006; 47
A. Beck (53_CR4) 2000; 11
A. Ben-Tal (53_CR5) 2000
G. Dahl (53_CR7) 2000; 317
I.G. Akrotirianakis (53_CR1) 2004; 30
V. Jeyakumar (53_CR14) 2006; 36
M.C. Pınar (53_CR20) 2004; 122
L. An (53_CR3) 2001; 50
E. Cela (53_CR6) 1998
I.G. Akrotirianakis (53_CR2) 2004; 29
C.A. Floudas (53_CR10) 1995
53_CR13
C.A. Floudas (53_CR9) 2000
J.B. Hiriart-Urruty (53_CR11) 2001; 21
O.L. Mangasarian (53_CR17) 2006; 34
M. Dür (53_CR8) 1998; 217
53_CR15
References_xml – volume: 30
  start-page: 367
  year: 2004
  end-page: 390
  ident: CR1
  article-title: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-6455-4
– volume: 47
  start-page: 439
  year: 2006
  end-page: 450
  ident: CR12
  article-title: Sufficient global optimality conditions for multi-extremal smooth minimization problems with bounds and linear matrix inequality constraints
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181100010063
– volume: 63
  start-page: 257
  year: 1994
  end-page: 279
  ident: CR16
  article-title: 0/1 optimization and a decomposition approach for the placement of electronic circuits
  publication-title: Math. Program.
  doi: 10.1007/BF01582072
– volume: 21
  start-page: 445
  year: 2001
  end-page: 455
  ident: CR11
  article-title: Global optimality conditions in maximizing a convex quadratic function under convex quadratic constraints
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1012752110010
– volume: 11
  start-page: 179
  year: 2000
  end-page: 188
  ident: CR4
  article-title: Global optimality conditions for quadratic optimization problems with binary constraints
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623498336930
– ident: CR15
– volume: 122
  start-page: 433
  year: 2004
  end-page: 440
  ident: CR20
  article-title: Sufficient global optimality conditions for bivalent quadratic optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000042530.24671.80
– volume: 217
  start-page: 637
  year: 1998
  end-page: 649
  ident: CR8
  article-title: Necessary and sufficient global optimality conditions for convex maximization revisited
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1997.5745
– volume: 50
  start-page: 93
  year: 2001
  end-page: 120
  ident: CR3
  article-title: A continuous approach for globally solving linearly constrained quadratic zero-one programming problems
  publication-title: Optimization
  doi: 10.1080/02331930108844555
– year: 2000
  ident: CR9
  publication-title: Optimization in computational chemistry and molecular biology: Local and global approaches
– ident: CR13
– volume: 36
  start-page: 471
  year: 2006
  end-page: 481
  ident: CR14
  article-title: Sufficient global optimality conditions for non-convex quadratic minimization problems with box constraints
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9022-3
– volume: 29
  start-page: 249
  year: 2004
  end-page: 264
  ident: CR2
  article-title: Computational experience with a new class of convex underestimators: box constrained NLP problems
  publication-title: J. Glob. Optim.
  doi: 10.1023/B:JOGO.0000044768.75992.10
– volume: 45
  start-page: 131
  year: 1990
  end-page: 144
  ident: CR19
  article-title: Computational aspects of quadratic zero-one programming
  publication-title: Computing
  doi: 10.1007/BF02247879
– year: 1998
  ident: CR6
  publication-title: The Quadratic Assignment Problem: Theory and Algorithms
– volume: 317
  start-page: 217
  year: 2000
  end-page: 224
  ident: CR7
  article-title: A note on diagonally dominant matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(00)00178-6
– volume: 34
  start-page: 475
  year: 2006
  end-page: 488
  ident: CR17
  article-title: Nonconvex piecewise-quadratic underestimation for global optimization
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-005-3845-1
– volume: 32
  start-page: 285
  year: 2005
  end-page: 297
  ident: CR18
  article-title: Iterative convex quadratic approximation for global optimization in protein docking
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-005-4799-4
– year: 2000
  ident: CR5
  publication-title: Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications
– start-page: 217
  year: 1995
  end-page: 269
  ident: CR10
  article-title: Quadratic optimization
  publication-title: Handbook of Global Optimization
– volume: 47
  start-page: 439
  year: 2006
  ident: 53_CR12
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181100010063
– volume: 36
  start-page: 471
  year: 2006
  ident: 53_CR14
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-006-9022-3
– ident: 53_CR15
  doi: 10.1007/s10107-006-0012-5
– volume: 50
  start-page: 93
  year: 2001
  ident: 53_CR3
  publication-title: Optimization
  doi: 10.1080/02331930108844555
– volume-title: Optimization in computational chemistry and molecular biology: Local and global approaches
  year: 2000
  ident: 53_CR9
  doi: 10.1007/978-1-4757-3218-4
– volume: 30
  start-page: 367
  year: 2004
  ident: 53_CR1
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-004-6455-4
– ident: 53_CR13
  doi: 10.1142/S021759590700119X
– volume-title: Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications
  year: 2000
  ident: 53_CR5
– volume: 32
  start-page: 285
  year: 2005
  ident: 53_CR18
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-005-4799-4
– volume: 34
  start-page: 475
  year: 2006
  ident: 53_CR17
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-005-3845-1
– volume: 317
  start-page: 217
  year: 2000
  ident: 53_CR7
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(00)00178-6
– volume: 21
  start-page: 445
  year: 2001
  ident: 53_CR11
  publication-title: J. Glob. Optim.
– volume-title: The Quadratic Assignment Problem: Theory and Algorithms
  year: 1998
  ident: 53_CR6
  doi: 10.1007/978-1-4757-2787-6
– volume: 45
  start-page: 131
  year: 1990
  ident: 53_CR19
  publication-title: Computing
  doi: 10.1007/BF02247879
– volume: 29
  start-page: 249
  year: 2004
  ident: 53_CR2
  publication-title: J. Glob. Optim.
  doi: 10.1023/B:JOGO.0000044768.75992.10
– volume: 63
  start-page: 257
  year: 1994
  ident: 53_CR16
  publication-title: Math. Program.
  doi: 10.1007/BF01582072
– volume: 122
  start-page: 433
  year: 2004
  ident: 53_CR20
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/B:JOTA.0000042530.24671.80
– volume: 217
  start-page: 637
  year: 1998
  ident: 53_CR8
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1997.5745
– volume: 11
  start-page: 179
  year: 2000
  ident: 53_CR4
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623498336930
– start-page: 217
  volume-title: Handbook of Global Optimization
  year: 1995
  ident: 53_CR10
  doi: 10.1007/978-1-4615-2025-2_5
SSID ssj0061199
Score 1.7852695
Snippet In this paper, we present necessary as well as sufficient conditions for a given feasible point to be a global minimizer of the difference of quadratic and...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 223
SubjectTerms Computational Intelligence
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title Global minimization of difference of quadratic and convex functions over box or binary constraints
URI https://link.springer.com/article/10.1007/s11590-007-0053-6
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8AB8RTjpRw4gSr1kbbJcUMbE4idmDROVeqkJ-iAdtJ-PnEfG5MAiVMaya0qx8mXxPZngGt7BLCwauzqhxl3uN3gOkLFykm5Eq5xI-R1lO8kGk_5wyycNXncRRvt3rokq5V6nexmkZeyoGOHLMeJtqEb0tHdGvHU77fLb-TVRSM9QelAPPZbV-ZPn9gEo01PaAUwo33Ya3aGrF8P5QFsmfwQdr_xBdre04pktTiCtObrZ8QO8takU7J5xtqaJ2io97FQmkYZmco1q4LMl4zQrDI4RhGcLJ0v2dw2VW4uyRRV5YiyOIbpaPh8N3aakgkO-kKUdKGH0suE9jE0Fps0ykBqYZWSGd9TWkke6pAHStp5a9E-Rk_zIDBSZcZTGAYn0MnnuTkFFqEU6LuhrwRyI6kmuZvqIJIZWi1i0AO31V2CDZ84_dxrsmZCJnUn9EjqTqIe3Kxeea_JNP4Svm0HJGnmVfG79Nm_pM9hp477oFiyC-iUnwtzaTcXZXoF3f5oMJhQe__yOLyqjOsLS1vISQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSD-MT63IMnJZDHJtk9FrFUbXtqobewmd2cNFWTQn--O3lYCyp4ShYmIcw-vsnuN98A3NhfAAurxq5-mHGH2wDXESpWTsqVcI0bIa9ZvuNoMOVPs3DW5HEXLdu9PZKsVupVsptFXsqCjh0aOU60CVs2FhDE45r6vXb5jby6aKQnKB2Ix357lPnTK9bBaP0ktAKY_j7sNZEh69VdeQAbJj-E3W96gbY1-hJZLY4grfX6GamDvDbplGyesbbmCRpqvS-Upl5GpnLNKpL5khGaVQOOEYOTpfMlm9tLlZtLNkVVOaIsjmHaf5jcD5ymZIKDvhAlbeih9DKhfQyNxSaNMpBaWKdkxveUVpKHOuSBknbeWrSP0dM8CIxUmfEUhsEJdPJ5bk6BRSgF-m7oK4HcSKpJ7qY6iGSG1osYdMFtfZdgoydOH_eSrJSQyd0J3ZK7k6gLt1-PvNViGn8Z37UdkjTzqvjd-uxf1tewPZiMhsnwcfx8Djs1B4R4ZRfQKT8W5tIGGmV6VQ2sT1OEyCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYzxw4gSr6SNvkOAHTeE0cmLRblTrJCdpBO2k_n7iPjUmAxKmN5FaV4_hzE_szIRf2F8DCqrbeDwxzmA1wHS5j6aRMcle7EbA6y3cYDUbsYRyOmz6nRZvt3h5J1jUNyNKUldcTZa4XhW8WhbEiOnbQipxolaxZb-yhWY_8XuuKI69uIOlxLA1isd8ea_70imVgWj4VrcCmv022miiR9upp3SErOtslm9-4A-3oeU64WuyRtObup8gU8t6UVtLc0Lb_CWgcfUylwhkHKjNFq4TzGUVkq4yPYjYnTfMZze2lqtNFmaLqIlEW-2TUv3u9GThN-wQHfM5L3NwD4RmufAi1xSkFIhCKW6UY7XtSScFCFbJACruGLfLH4CkWBFpIoz0JYXBAOlme6UNCIxAcfDf0JQemBfYnd1MVRMKA1SIEXeK2ukug4RbHj3tLFqzIqO4Eb1HdSdQll_NHJjWxxl_CV-2EJM0aK36XPvqX9DlZf7ntJ0_3w8djslGng2CK2QnplJ9TfWpjjjI9q-zqCyVezGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+minimization+of+difference+of+quadratic+and+convex+functions+over+box+or+binary+constraints&rft.jtitle=Optimization+letters&rft.au=Jeyakumar%2C+V.&rft.au=Huy%2C+N.+Q.&rft.date=2008-03-01&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=2&rft.issue=2&rft.spage=223&rft.epage=238&rft_id=info:doi/10.1007%2Fs11590-007-0053-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11590_007_0053_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon