Ontological Approach: Knowledge Representation and Knowledge Extraction
The application of artificial intelligence algorithms for data analysis, characteristics, and metrics of scientific information resources are considered. In this paper, we discuss how metrics are related to assessment of scientific publication components and whether metrics are related to fundamenta...
Saved in:
Published in | Lobachevskii journal of mathematics Vol. 41; no. 10; pp. 1938 - 1948 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The application of artificial intelligence algorithms for data analysis, characteristics, and metrics of scientific information resources are considered. In this paper, we discuss how metrics are related to assessment of scientific publication components and whether metrics are related to fundamental knowledge. It was noted that the characteristics of professional scientific activity are evaluated on the basis of metrics that are not related to the knowledge characteristics. The problem of knowledge extraction was studied on the basis of data verification by means of logical evidence–based schemes specified in the knowledge ontology. Properties of the modern stage of development of the knowledge space as a resource of artificial intelligence were noted. The transformation of artificial intelligence tasks into a new digital age was also analyzed. The insufficient use of artificial intelligence and machine learning methods in scientific bibliographic databases was emphasized, where quantitative scientometric indicators prevailed. Examples of ontological presentation of data and knowledge extraction are discussed and the special role of ontological approach to data structuring and knowledge extraction is highlighted. |
---|---|
AbstractList | The application of artificial intelligence algorithms for data analysis, characteristics, and metrics of scientific information resources are considered. In this paper, we discuss how metrics are related to assessment of scientific publication components and whether metrics are related to fundamental knowledge. It was noted that the characteristics of professional scientific activity are evaluated on the basis of metrics that are not related to the knowledge characteristics. The problem of knowledge extraction was studied on the basis of data verification by means of logical evidence–based schemes specified in the knowledge ontology. Properties of the modern stage of development of the knowledge space as a resource of artificial intelligence were noted. The transformation of artificial intelligence tasks into a new digital age was also analyzed. The insufficient use of artificial intelligence and machine learning methods in scientific bibliographic databases was emphasized, where quantitative scientometric indicators prevailed. Examples of ontological presentation of data and knowledge extraction are discussed and the special role of ontological approach to data structuring and knowledge extraction is highlighted. |
Author | Serebryakov, V. A. Tuchkova, N. P. Ataeva, O. M. |
Author_xml | – sequence: 1 givenname: O. M. surname: Ataeva fullname: Ataeva, O. M. email: oli@ultimeta.ru organization: Federal Research Center ’’Computer Sciences and Control’’, Russian Academy of Sciences – sequence: 2 givenname: V. A. surname: Serebryakov fullname: Serebryakov, V. A. email: serebr@ultimeta.ru organization: Federal Research Center ’’Computer Sciences and Control’’, Russian Academy of Sciences – sequence: 3 givenname: N. P. surname: Tuchkova fullname: Tuchkova, N. P. email: natalia_tuchkova@mail.ru organization: Federal Research Center ’’Computer Sciences and Control’’, Russian Academy of Sciences |
BookMark | eNp9kM9KAzEQh4NUsK0-gLd9gdVMskkTb6XUViwU_HNeYjZZt6zJkqyob2-W9SAKPc3AN9_wm5mhifPOIHQJ-AqAFtePICXDAhOCAWNM8QmaggCRS8nJJPUJ5wM_Q7MYDzgNcs6naLN3vW993WjVZsuuC17p15vs3vmP1lS1yR5MF0w0rld9412mXPULrj_7oPQAztGpVW00Fz91jp5v10-rbb7bb-5Wy12uiRB9zqhm2OKF0Nwyy0hKp3hRcauA0YKQBLmumOYvnGugihpprQVGCkqlVZbO0WLcq4OPMRhb6maMlpI0bQm4HP5R_vtHMuGP2YXmTYWvow4ZnZhmXW1CefDvwaUDj0jfqYxy7A |
CitedBy_id | crossref_primary_10_1007_s00170_023_12885_x crossref_primary_10_1134_S1995080222100043 crossref_primary_10_1134_S1995080221080059 crossref_primary_10_3390_heritage7110300 |
Cites_doi | 10.1007/s11192-017-2304-3 10.1016/S0004-3702(98)00055-1 10.1093/ije/dyl189 10.1016/j.artint.2019.02.003 10.26615/978-954-452-056-4_031 10.1134/S1054661819040114 10.2200/S00602ED1V01Y201410ICR035 10.20948/abrau-2017-39 10.1134/S1064562416020174 10.1007/BF02478112 10.1108/00242530910961792 10.1134/S1995080219070047 10.1007/978-3-642-31374-5_36 10.1073/pnas.0507655102 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2020 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2020 |
DBID | AAYXX CITATION |
DOI | 10.1134/S1995080220100030 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1818-9962 |
EndPage | 1948 |
ExternalDocumentID | 10_1134_S1995080220100030 |
GroupedDBID | -5D -5G -BR -EM -Y2 -~9 -~C .VR 06D 0R~ 0VY 1N0 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 408 40D 40E 5GY 5IG 5VS 642 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIPV ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E4X EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J9A JBSCW JZLTJ KOV LLZTM LO0 M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9R PF0 PT4 QOS R89 R9I REM RIG ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TR2 TSG TUC UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 XSB XU3 YLTOR ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION OVT |
ID | FETCH-LOGICAL-c288t-53c50f078c6f5f52996a64d6fa15342250f6cd5c6b66c13a3e9fff1524339faf3 |
IEDL.DBID | AGYKE |
ISSN | 1995-0802 |
IngestDate | Thu Apr 24 22:53:08 EDT 2025 Tue Jul 01 03:34:16 EDT 2025 Fri Feb 21 02:37:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | knowledge base knowledge space knowledge extraction knowledge metrics ontology of subject domain artificial intelligence methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-53c50f078c6f5f52996a64d6fa15342250f6cd5c6b66c13a3e9fff1524339faf3 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1134_S1995080220100030 crossref_primary_10_1134_S1995080220100030 springer_journals_10_1134_S1995080220100030 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201000 2020-10-00 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201000 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow |
PublicationTitle | Lobachevskii journal of mathematics |
PublicationTitleAbbrev | Lobachevskii J Math |
PublicationYear | 2020 |
Publisher | Pleiades Publishing |
Publisher_xml | – name: Pleiades Publishing |
References | SHOE. http://www.cs.umd.edu/projects/plus/SHOE. Accessed 2020. How Google Search Algorithms Work. https://www.google.com/search/howsearchworks/algorithms. Accessed 2020. V. A. Shuster, ‘‘Subjective assessments of verbal and frame descriptions of actions,’’ in Cybernetics. Reasoning Logic and Its Modeling (Nauch. Sovet. Kompl. Probl. Kibernetika AN SSSR, Moscow, 1983), pp. 103–136 [in Russian]. C. Lange et al., ‘‘Reimplementing the mathematics subject classification (MSC) as a linked open dataset,’’ in Proceedings of the International Conference on Intelligent Computer Mathematics, 2012, pp. 458–462. V. L. Obukhov, philosophy and Methodology of Knowledge, The School-Book (SPBGU, St. Petersburg, 2003) [in Russian]. Tetra: A Powerful, Easy-to-Use Multi-Criteria Decision and Evaluation Tool. http://scientificmetrics.com. Accessed 2020. VinogradovI. M.Mathematical Encyclopedy1979MoscowSov. Entsiklopediya SlashchevaN. A.Scientometric research in the library (on the example of the Central Library of the PSC RAS)Naukovedenie20023147154 My Reports, My Page. https://istina.msu.ru/home/reports. Accessed 2020. Scimago Journal and Country Rank. https://www.scimagojr.com. Accessed 2020. AtaevaO. M.LibMeta Semantic Library Information ModelProgram. Produkty Sist.201643644 Research-Management in Management-Research, RMIMR. https://rmimr.wordpress.com/2011/01/02. Accessed 2020. BoyackK. W.Thesaurus–based methods for mapping contents of publication setsScientometrics20171111141115510.1007/s11192-017-2304-3 DB-Engines. https://db-engines.com/en/ranking. Accessed 2020. GavrilovaT. A.HoroshevskijV. F.Knowledge Bases of Intelligent Systems2000St. PetersburgPiter ZagoruikoN. G.Cognitive Data Mining2012NovosibirskGEO PospelovD. A.Knowledge representation. Systems analysis experienceSist. Issled. Metodol. Probl.19851783102 Machine Learning and Knowledge Extraction, Proceedings, Vol. 11015 of Lecture Notes in Computer Science (Springer, Berlin, 2018). https://publications.sba-research.org/publications/201808-Aholzinger-Machine-Learning-and-Knowledge-Extraction.pdf. M. M. K. Hlava, ‘‘The taxobook: History, theories, and concepts of knowledge organization, part 1 of a 3-part series,’’ in Synthesis Lectures on Information Concepts, Retrieval, and Services (Morgan Claypool, 2014), Vol. 6, no. 3, pp. 1–80. ShrejderYu. A.“Thesaurus-based methods for mapping contents of publication sets,” Nauch.-Tekh. Inform.197122124 BishopC. M.Pattern Recognition and Machine Learning2006New YorkSpringer1107.68072 V. V. Pislyakov, ‘‘Evaluation of scientific knowledge based on citation indexes,’’ Sotsiol. Zh., No. 1, 128–140 (2007). http://www.socjournal.ru/article/682?print=yes. A. Yu. Ahlyostin, N. A. Lavrent’ev, and A. Z. Fazliev, ‘‘Systematization of scientific graphic resources on molecular spectroscopy,’’ in Scientific service on the Internet: Proceedings of the 19th All-Russia Conference6 (3), 34–42 (2017). http://keldysh.ru/abrau/2017/39.pdf. https://doi.org/10.20948/abrau-2017-39 R. Goebel et al., ‘‘Explainable AI: The new 42?,’’ Lect. Notes Comput. Sci. 11015 (2), 2–4 (2008) https://link.springer.com/chapter/10.1007/978-3-319-99740-7_21. Accessed 2020. J. McCarthy, ‘‘Artificial intelligence, logic and formalizing common sense,’’ (1990). http://jmc.stanford.edu/articles/ailogic. Accessed 2020. MikhaylovD. V.EmelyanovG. M.Estimation of the closeness to a semantic pattern of a topical text without construction of periphrasesPattern Recogn. Image Anal.20192964765310.1134/S1054661819040114 The Search We Do Together. https://yandex.ru/blog/company/korolev. Accessed 2020. NikolaouC.Foundations of ontology-based data access under bag semanticsArtif. Intell.201927491132392085110.1016/j.artint.2019.02.003 LavryonovaO. A.PavlovV. V.Library and bibliographic classification as a traditional system of organizing knowledge in the environment of open connected dataNauch. Tekh. Bibliot.201744460 AtaevaO. M.SerebryakovV. A.TuchkovaN. P.Mathematical physics branches: Identifying mixed type equationsCEUR Workshop Proc.20202543384807122464 Indicators for each Publication are Calculated: Research Interest, Citations, Recommendations, Reads. https://www.researchgate.net. Accessed 2020. M. R. Kogalovskij, ‘‘Metadata, their properties, functions, classification and presentation means,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the All-Russia Conference RCDL-2012 (2012). http://elib.ict.nsc.ru/jspui/bitstream/ICT/1175/1/kogalovsky-meta.pdf. Accessed 2020. FedotovA. M.ShokinYu. I.“Electronic library of Siberian Branch of RAS,” InformOb-vo200022231 Scopus Statistics and Graphics. https://www.scopus.com. Accessed 2020. Web of Science, Statistics and Graphics. https://publons.com/researcher. Accessed 2020. Wikipedia. http://www.wikipedia.org. Accessed 2020. Encyclopedy World. http://www.encyclopedia.ru. Accessed 2020. R. Singh and K. Singh, ‘‘A descriptive classification of causes of data quality problems in data warehousing,’’ Int. J.Comput. Sci. Issues 7 (3) (2), 41–50 (2010). GarfieldE.Citation indexes for science. A new dimension in documentation through association of ideasInt. J. Epidemiol.2006351123112710.1093/ije/dyl189 AhlyostinA. Yu.Lavrent’evN. A.FazlievA. Z.Integration of knowledge management process into digital library system: A theoretical perspectiveLibrary Rev.20095837238610.1108/00242530910961792 Section Personalities, Statistics Publications and Views in MathSciNet, in zbMATH, in Web of Science, in Scopus. http://www.mathnet. ru. Accessed 2020. N. A. Slashcheva and Yu. V. Mokhnacheva, ‘‘Electronic information in scientometric research,’’ NTI, Ser. 1: Org. Metodika Inform. raboty 5, 21–27 (2003). Semantic Web. https://www.w3.org/standards/semanticweb. Accessed 2020. HendlerJ.Avoiding another AI winterIEEE Intell. Syst.20082324 ElizarovA. M.Mathematical knowledge ontologies and recommender systems for collections of documents in physics and mathematicsDokl. Math.201693231233352566810.1134/S1064562416020174 M. Eremeev and K. Vorontsov, ‘‘Lexical quantile-based text complexity measure,’’ in RANLP-2019 Proceedings of Recent Advances in Natural Language Processing, Varna, Bulgaria, 2019, pp. 270–275. Cross-National Comparisons of R&D Performance. https://nsf.gov/statistics/2018/nsb20181/report/sections/research-and-development-u-s-trends-and-international-comparisons/cross-national-comparisons-of-r-d-performance. Accessed 2020. MargaretA.Boden creativity and artificial intelligenceArtif. Intell.199810334735610.1016/S0004-3702(98)00055-1 V. V. Kostin, ‘‘An overview of semantic models describing scientific publications and research activities,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the 16th All-Russia Conference RCDL-2014, Dubna, October 13–16, 2014 (2014), pp. 131–136. Social Sciences Citation Index. https://en.wikipedia.org/wiki/Social_Sciences_Citation_Index. Accessed 2020. HirschJ. E.An index to quantify an individuals scientific research outputProc. Nat. Acad. Sci. U. S. A.2005102165691657310.1073/pnas.05076551021355.01034 For Candidates for Elections to RAS 2019 the Indicators are Calculated: The Number of Publications, Citations Included in the Core of RSCI, Hirsch Index on the Core of RSCI. https://www.elibrary.ru/kand_ras_2019.asp. Accessed 2020. PittsW.The linear theory of neuron networks: The static problemBull. Math. Biophys.1942416975784610.1007/BF02478112 Scientific Visualization: The Visual Extraction of Knowledge from Data, Ed. by G.-P. Bonneau, Th. Ertl, and G. M. Nielson, Series Mathematics and Visualization (Springer, Berlin, Heidelberg, 2006). D. A. Pospelov, ‘‘About ’human’ reasoning in intelligent systems,’’ in Cybernetics. Reasoning Logic and its Modeling (Nauch. Sovet. Kompl. Probl. Kibernetika AN SSSR, Moscow, 1983), pp. 5–37 [in Russian]. M. V. Kulagin and A. S. Lopatenko, ‘‘Scientific information systems and electronic libraries. Need for integration,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the All-Russia Conference RCDL-2001 (2001), pp. 14–19. AllegroGraph. https://allegrograph.com/the-enterprise-knowledge-graph. Accessed 2020. AtaevaO. M.SerebryakovV. A.TuchkovaN. P.Query expansion method application for searching in mathematical subject domainsLobachevskii J. Math.20194087688610.1134/S1995080219070047 PospelovD. A.Situational Control: Theory and Practice1986MoscowNauka ScannapiecoM.MissierP.BatiniC.Data quality at a glanceDatenbank-Spektrum200514614 6209_CR7 E. Garfield (6209_CR13) 2006; 35 6209_CR6 6209_CR5 6209_CR29 6209_CR4 6209_CR3 6209_CR2 6209_CR1 Yu. A. Shrejder (6209_CR21) 1971; 2 J. E. Hirsch (6209_CR33) 2005; 102 N. G. Zagoruiko (6209_CR23) 2012 M. Scannapieco (6209_CR58) 2005; 14 6209_CR22 6209_CR28 6209_CR9 6209_CR19 C. M. Bishop (6209_CR24) 2006 6209_CR18 N. A. Slashcheva (6209_CR34) 2002; 3 A. Yu. Ahlyostin (6209_CR55) 2009; 58 6209_CR53 D. V. Mikhaylov (6209_CR25) 2019; 29 6209_CR52 6209_CR51 6209_CR57 6209_CR12 6209_CR11 6209_CR10 O. M. Ataeva (6209_CR46) 2020; 2543 6209_CR54 6209_CR16 6209_CR15 6209_CR59 O. M. Ataeva (6209_CR60) 2016; 4 6209_CR14 O. M. Ataeva (6209_CR45) 2019; 40 D. A. Pospelov (6209_CR27) 1986 T. A. Gavrilova (6209_CR8) 2000 6209_CR42 O. A. Lavryonova (6209_CR56) 2017; 4 J. Hendler (6209_CR31) 2008; 23 6209_CR40 A. M. Fedotov (6209_CR50) 2000; 2 D. A. Pospelov (6209_CR17) 1985; 17 6209_CR43 6209_CR49 6209_CR48 A. M. Elizarov (6209_CR44) 2016; 93 W. Pitts (6209_CR26) 1942; 4 K. W. Boyack (6209_CR20) 2017; 111 A. Margaret (6209_CR47) 1998; 103 6209_CR30 6209_CR35 C. Nikolaou (6209_CR37) 2019; 274 (6209_CR41) 1979 6209_CR32 6209_CR39 6209_CR38 6209_CR36 |
References_xml | – reference: LavryonovaO. A.PavlovV. V.Library and bibliographic classification as a traditional system of organizing knowledge in the environment of open connected dataNauch. Tekh. Bibliot.201744460 – reference: M. Eremeev and K. Vorontsov, ‘‘Lexical quantile-based text complexity measure,’’ in RANLP-2019 Proceedings of Recent Advances in Natural Language Processing, Varna, Bulgaria, 2019, pp. 270–275. – reference: M. V. Kulagin and A. S. Lopatenko, ‘‘Scientific information systems and electronic libraries. Need for integration,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the All-Russia Conference RCDL-2001 (2001), pp. 14–19. – reference: ScannapiecoM.MissierP.BatiniC.Data quality at a glanceDatenbank-Spektrum200514614 – reference: ZagoruikoN. G.Cognitive Data Mining2012NovosibirskGEO – reference: V. A. Shuster, ‘‘Subjective assessments of verbal and frame descriptions of actions,’’ in Cybernetics. Reasoning Logic and Its Modeling (Nauch. Sovet. Kompl. Probl. Kibernetika AN SSSR, Moscow, 1983), pp. 103–136 [in Russian]. – reference: AtaevaO. M.SerebryakovV. A.TuchkovaN. P.Mathematical physics branches: Identifying mixed type equationsCEUR Workshop Proc.20202543384807122464 – reference: AtaevaO. M.LibMeta Semantic Library Information ModelProgram. Produkty Sist.201643644 – reference: HendlerJ.Avoiding another AI winterIEEE Intell. Syst.20082324 – reference: V. L. Obukhov, philosophy and Methodology of Knowledge, The School-Book (SPBGU, St. Petersburg, 2003) [in Russian]. – reference: Tetra: A Powerful, Easy-to-Use Multi-Criteria Decision and Evaluation Tool. http://scientificmetrics.com. Accessed 2020. – reference: Cross-National Comparisons of R&D Performance. https://nsf.gov/statistics/2018/nsb20181/report/sections/research-and-development-u-s-trends-and-international-comparisons/cross-national-comparisons-of-r-d-performance. Accessed 2020. – reference: HirschJ. E.An index to quantify an individuals scientific research outputProc. Nat. Acad. Sci. U. S. A.2005102165691657310.1073/pnas.05076551021355.01034 – reference: GavrilovaT. A.HoroshevskijV. F.Knowledge Bases of Intelligent Systems2000St. PetersburgPiter – reference: Scopus Statistics and Graphics. https://www.scopus.com. Accessed 2020. – reference: SlashchevaN. A.Scientometric research in the library (on the example of the Central Library of the PSC RAS)Naukovedenie20023147154 – reference: DB-Engines. https://db-engines.com/en/ranking. Accessed 2020. – reference: PittsW.The linear theory of neuron networks: The static problemBull. Math. Biophys.1942416975784610.1007/BF02478112 – reference: Wikipedia. http://www.wikipedia.org. Accessed 2020. – reference: R. Goebel et al., ‘‘Explainable AI: The new 42?,’’ Lect. Notes Comput. Sci. 11015 (2), 2–4 (2008) https://link.springer.com/chapter/10.1007/978-3-319-99740-7_21. Accessed 2020. – reference: V. V. Kostin, ‘‘An overview of semantic models describing scientific publications and research activities,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the 16th All-Russia Conference RCDL-2014, Dubna, October 13–16, 2014 (2014), pp. 131–136. – reference: GarfieldE.Citation indexes for science. A new dimension in documentation through association of ideasInt. J. Epidemiol.2006351123112710.1093/ije/dyl189 – reference: ShrejderYu. A.“Thesaurus-based methods for mapping contents of publication sets,” Nauch.-Tekh. Inform.197122124 – reference: Social Sciences Citation Index. https://en.wikipedia.org/wiki/Social_Sciences_Citation_Index. Accessed 2020. – reference: A. Yu. Ahlyostin, N. A. Lavrent’ev, and A. Z. Fazliev, ‘‘Systematization of scientific graphic resources on molecular spectroscopy,’’ in Scientific service on the Internet: Proceedings of the 19th All-Russia Conference6 (3), 34–42 (2017). http://keldysh.ru/abrau/2017/39.pdf. https://doi.org/10.20948/abrau-2017-39 – reference: R. Singh and K. Singh, ‘‘A descriptive classification of causes of data quality problems in data warehousing,’’ Int. J.Comput. Sci. Issues 7 (3) (2), 41–50 (2010). – reference: SHOE. http://www.cs.umd.edu/projects/plus/SHOE. Accessed 2020. – reference: The Search We Do Together. https://yandex.ru/blog/company/korolev. Accessed 2020. – reference: AhlyostinA. Yu.Lavrent’evN. A.FazlievA. Z.Integration of knowledge management process into digital library system: A theoretical perspectiveLibrary Rev.20095837238610.1108/00242530910961792 – reference: Section Personalities, Statistics Publications and Views in MathSciNet, in zbMATH, in Web of Science, in Scopus. http://www.mathnet. ru. Accessed 2020. – reference: How Google Search Algorithms Work. https://www.google.com/search/howsearchworks/algorithms. Accessed 2020. – reference: PospelovD. A.Situational Control: Theory and Practice1986MoscowNauka – reference: AllegroGraph. https://allegrograph.com/the-enterprise-knowledge-graph. Accessed 2020. – reference: C. Lange et al., ‘‘Reimplementing the mathematics subject classification (MSC) as a linked open dataset,’’ in Proceedings of the International Conference on Intelligent Computer Mathematics, 2012, pp. 458–462. – reference: MikhaylovD. V.EmelyanovG. M.Estimation of the closeness to a semantic pattern of a topical text without construction of periphrasesPattern Recogn. Image Anal.20192964765310.1134/S1054661819040114 – reference: J. McCarthy, ‘‘Artificial intelligence, logic and formalizing common sense,’’ (1990). http://jmc.stanford.edu/articles/ailogic. Accessed 2020. – reference: Encyclopedy World. http://www.encyclopedia.ru. Accessed 2020. – reference: Semantic Web. https://www.w3.org/standards/semanticweb. Accessed 2020. – reference: Indicators for each Publication are Calculated: Research Interest, Citations, Recommendations, Reads. https://www.researchgate.net. Accessed 2020. – reference: Research-Management in Management-Research, RMIMR. https://rmimr.wordpress.com/2011/01/02. Accessed 2020. – reference: V. V. Pislyakov, ‘‘Evaluation of scientific knowledge based on citation indexes,’’ Sotsiol. Zh., No. 1, 128–140 (2007). http://www.socjournal.ru/article/682?print=yes. – reference: PospelovD. A.Knowledge representation. Systems analysis experienceSist. Issled. Metodol. Probl.19851783102 – reference: Scientific Visualization: The Visual Extraction of Knowledge from Data, Ed. by G.-P. Bonneau, Th. Ertl, and G. M. Nielson, Series Mathematics and Visualization (Springer, Berlin, Heidelberg, 2006). – reference: AtaevaO. M.SerebryakovV. A.TuchkovaN. P.Query expansion method application for searching in mathematical subject domainsLobachevskii J. Math.20194087688610.1134/S1995080219070047 – reference: FedotovA. M.ShokinYu. I.“Electronic library of Siberian Branch of RAS,” InformOb-vo200022231 – reference: Machine Learning and Knowledge Extraction, Proceedings, Vol. 11015 of Lecture Notes in Computer Science (Springer, Berlin, 2018). https://publications.sba-research.org/publications/201808-Aholzinger-Machine-Learning-and-Knowledge-Extraction.pdf. – reference: For Candidates for Elections to RAS 2019 the Indicators are Calculated: The Number of Publications, Citations Included in the Core of RSCI, Hirsch Index on the Core of RSCI. https://www.elibrary.ru/kand_ras_2019.asp. Accessed 2020. – reference: N. A. Slashcheva and Yu. V. Mokhnacheva, ‘‘Electronic information in scientometric research,’’ NTI, Ser. 1: Org. Metodika Inform. raboty 5, 21–27 (2003). – reference: Scimago Journal and Country Rank. https://www.scimagojr.com. Accessed 2020. – reference: NikolaouC.Foundations of ontology-based data access under bag semanticsArtif. Intell.201927491132392085110.1016/j.artint.2019.02.003 – reference: VinogradovI. M.Mathematical Encyclopedy1979MoscowSov. Entsiklopediya – reference: ElizarovA. M.Mathematical knowledge ontologies and recommender systems for collections of documents in physics and mathematicsDokl. Math.201693231233352566810.1134/S1064562416020174 – reference: MargaretA.Boden creativity and artificial intelligenceArtif. Intell.199810334735610.1016/S0004-3702(98)00055-1 – reference: M. R. Kogalovskij, ‘‘Metadata, their properties, functions, classification and presentation means,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the All-Russia Conference RCDL-2012 (2012). http://elib.ict.nsc.ru/jspui/bitstream/ICT/1175/1/kogalovsky-meta.pdf. Accessed 2020. – reference: BishopC. M.Pattern Recognition and Machine Learning2006New YorkSpringer1107.68072 – reference: My Reports, My Page. https://istina.msu.ru/home/reports. Accessed 2020. – reference: M. M. K. Hlava, ‘‘The taxobook: History, theories, and concepts of knowledge organization, part 1 of a 3-part series,’’ in Synthesis Lectures on Information Concepts, Retrieval, and Services (Morgan Claypool, 2014), Vol. 6, no. 3, pp. 1–80. – reference: Web of Science, Statistics and Graphics. https://publons.com/researcher. Accessed 2020. – reference: BoyackK. W.Thesaurus–based methods for mapping contents of publication setsScientometrics20171111141115510.1007/s11192-017-2304-3 – reference: D. A. Pospelov, ‘‘About ’human’ reasoning in intelligent systems,’’ in Cybernetics. Reasoning Logic and its Modeling (Nauch. Sovet. Kompl. Probl. Kibernetika AN SSSR, Moscow, 1983), pp. 5–37 [in Russian]. – ident: 6209_CR29 – volume-title: Cognitive Data Mining year: 2012 ident: 6209_CR23 – ident: 6209_CR7 – volume: 111 start-page: 1141 year: 2017 ident: 6209_CR20 publication-title: Scientometrics doi: 10.1007/s11192-017-2304-3 – volume: 103 start-page: 347 year: 1998 ident: 6209_CR47 publication-title: Artif. Intell. doi: 10.1016/S0004-3702(98)00055-1 – volume: 4 start-page: 44 year: 2017 ident: 6209_CR56 publication-title: Nauch. Tekh. Bibliot. – ident: 6209_CR48 – volume: 2 start-page: 21 year: 1971 ident: 6209_CR21 publication-title: Tekh. Inform. – volume: 14 start-page: 6 year: 2005 ident: 6209_CR58 publication-title: Datenbank-Spektrum – ident: 6209_CR16 – volume: 17 start-page: 83 year: 1985 ident: 6209_CR17 publication-title: Sist. Issled. Metodol. Probl. – ident: 6209_CR39 – volume: 35 start-page: 1123 year: 2006 ident: 6209_CR13 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyl189 – ident: 6209_CR12 – ident: 6209_CR4 – ident: 6209_CR35 – volume-title: Knowledge Bases of Intelligent Systems year: 2000 ident: 6209_CR8 – volume-title: Situational Control: Theory and Practice year: 1986 ident: 6209_CR27 – ident: 6209_CR30 – volume: 274 start-page: 91 year: 2019 ident: 6209_CR37 publication-title: Artif. Intell. doi: 10.1016/j.artint.2019.02.003 – ident: 6209_CR28 – ident: 6209_CR59 – ident: 6209_CR49 – ident: 6209_CR40 – ident: 6209_CR19 doi: 10.26615/978-954-452-056-4_031 – volume: 2543 start-page: 38 year: 2020 ident: 6209_CR46 publication-title: CEUR Workshop Proc. – ident: 6209_CR1 – volume-title: Pattern Recognition and Machine Learning year: 2006 ident: 6209_CR24 – ident: 6209_CR38 – ident: 6209_CR5 – volume-title: Mathematical Encyclopedy year: 1979 ident: 6209_CR41 – ident: 6209_CR51 – volume: 4 start-page: 36 year: 2016 ident: 6209_CR60 publication-title: Program. Produkty Sist. – volume: 3 start-page: 147 year: 2002 ident: 6209_CR34 publication-title: Naukovedenie – volume: 2 start-page: 22 year: 2000 ident: 6209_CR50 publication-title: Ob-vo – ident: 6209_CR9 – volume: 29 start-page: 647 year: 2019 ident: 6209_CR25 publication-title: Pattern Recogn. Image Anal. doi: 10.1134/S1054661819040114 – ident: 6209_CR18 – ident: 6209_CR43 – ident: 6209_CR2 – ident: 6209_CR6 – ident: 6209_CR14 – ident: 6209_CR10 – ident: 6209_CR32 – ident: 6209_CR53 – ident: 6209_CR52 doi: 10.2200/S00602ED1V01Y201410ICR035 – ident: 6209_CR54 doi: 10.20948/abrau-2017-39 – volume: 93 start-page: 231 year: 2016 ident: 6209_CR44 publication-title: Dokl. Math. doi: 10.1134/S1064562416020174 – ident: 6209_CR22 – volume: 4 start-page: 169 year: 1942 ident: 6209_CR26 publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478112 – volume: 58 start-page: 372 year: 2009 ident: 6209_CR55 publication-title: Library Rev. doi: 10.1108/00242530910961792 – ident: 6209_CR42 – volume: 23 start-page: 2 year: 2008 ident: 6209_CR31 publication-title: IEEE Intell. Syst. – volume: 40 start-page: 876 year: 2019 ident: 6209_CR45 publication-title: Lobachevskii J. Math. doi: 10.1134/S1995080219070047 – ident: 6209_CR36 – ident: 6209_CR3 – ident: 6209_CR57 doi: 10.1007/978-3-642-31374-5_36 – ident: 6209_CR15 – ident: 6209_CR11 – volume: 102 start-page: 16569 year: 2005 ident: 6209_CR33 publication-title: Proc. Nat. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507655102 |
SSID | ssj0022666 |
Score | 2.185684 |
Snippet | The application of artificial intelligence algorithms for data analysis, characteristics, and metrics of scientific information resources are considered. In... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1938 |
SubjectTerms | Algebra Analysis Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes |
Title | Ontological Approach: Knowledge Representation and Knowledge Extraction |
URI | https://link.springer.com/article/10.1134/S1995080220100030 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vejBt1gfJQdPSmqSfSTx1kofWFpBW6insNnsXipR2hTEX-9msynWF_ScSViG2Zn5MvPNAFwy4as8xE1sxxfIxiom2YGrwApPsM8pE5KInCg8GNLeGN9PyMTwuOdlt3tZktSeutg7gm-ecjJxwQx1dSa_CVWVfji4AtVm97nfXuIsFXM0qUiTjwPHM8XMXz-yGo5Wa6E6xHR2YVQerugsmTYWWdzgH9_mNq55-j3YMSmn1SxsZB82RHoA24PlvNb5IXQf0qz0glbTjBm_tfrlDzfrUTfMGp5SarE0-fKw_Z7NCn7EEYw77dFdzzYrFmzuBUFmE8SJI1WawKkkkqjYRBnFCZVMeUKs7rojKU8IpzGl3EUMiVBKqWI-RiiUTKJjqKSvqTgBCye-JxlXeI4LLBmJFVBScqEIXRJzGdbAKTUdcTN_PF-D8RJpHIJw9ENHNbhavvJWDN_4T_i61Hxk7uH8b-nTtaTPYMvLcbZu4juHSjZbiAuVjGRxXRlfp9Ua1o0RfgLSo9LV |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3ojx7IETqKNtHm25TWgP2AMJNmmcqjRNLqCCtk5C_HrSNJ0YL4lz3SqyHNtf7c8GOGPCV3mIm9iOL5CNVUyyA1eBFZ5gn1MmJBE5Ubg_oJ0Rvh2TseFxT8tu97IkqT11sXcEXz7kZOKCGerqTH4ZqlhBcGXW1Ub7sduc4ywVczSpSJOPA8czxcwfP7IYjhZroTrEtDZgWB6u6Cx5qs-yuM7fv8xt_OfpN2HdpJxWo7CRLVgS6Tas9efzWqc70L5Ls9ILWg0zZvzK6pY_3Kx73TBreEqpxdLk08PmWzYp-BG7MGo1h9cd26xYsLkXBJlNECeOVGkCp5JIomITZRQnVDLlCbG6646kPCGcxpRyFzEkQimlivkYoVAyifagkr6kYh8snPieZFzhOS6wZCRWQEnJhSJ0ScxlWAOn1HTEzfzxfA3Gc6RxCMLRNx3V4Hz-ymsxfOMv4YtS85G5h9PfpQ_-JX0KK51hvxf1bgbdQ1j1csytG_qOoJJNZuJYJSZZfGIM8QNA5NRI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5omxg9-DbWJwdPGlpgH4C3RvvQ2mrUJvWEy7J70WDT0sT4611gaayvxHhmILAsM98w830DcMSEq3CIHZmWK5CJVUwyPVslKzzCLqdMSCJSonC3R9t9fDkgAz3ndFx0uxclyZzTkKo0xUltGEk9gwTX7lJicc4StTNUPw9lnErblaBcbz10GtOcS8WfjGCUEZE9y9GFzW8vMhuaZuuiWbhprsBjcaN5l8lTdZKEVf72ScPxH0-yCssaihr1fO-swZyI12GpO9VxHW9A6zpOCu9o1LX8-KnRKX7EGbdZI63mL8UGi6MPBxuvySjnTWxCv9m4P2ubevSCyR3PS0yCOLGkgg-cSiKJilmUURxRyZSHxMoHWJLyiHAaUsptxJDwpZQKC2CEfMkk2oJS_BKLbTBw5DqScZXncYElI6FKoJSdL3ybhFz6FbCKVQ-41iVPx2M8B1l-gnDwZY0qcDw9ZZiLcvxmfFK8hUB_n-OfrXf-ZH0ICzfnzeDqotfZhUUnTcWzPr89KCWjidhXeCUJD_SefAetG90s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ontological+Approach%3A+Knowledge+Representation+and+Knowledge+Extraction&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Ataeva%2C+O.+M.&rft.au=Serebryakov%2C+V.+A.&rft.au=Tuchkova%2C+N.+P.&rft.date=2020-10-01&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=41&rft.issue=10&rft.spage=1938&rft.epage=1948&rft_id=info:doi/10.1134%2FS1995080220100030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1995080220100030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon |