Ontological Approach: Knowledge Representation and Knowledge Extraction

The application of artificial intelligence algorithms for data analysis, characteristics, and metrics of scientific information resources are considered. In this paper, we discuss how metrics are related to assessment of scientific publication components and whether metrics are related to fundamenta...

Full description

Saved in:
Bibliographic Details
Published inLobachevskii journal of mathematics Vol. 41; no. 10; pp. 1938 - 1948
Main Authors Ataeva, O. M., Serebryakov, V. A., Tuchkova, N. P.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The application of artificial intelligence algorithms for data analysis, characteristics, and metrics of scientific information resources are considered. In this paper, we discuss how metrics are related to assessment of scientific publication components and whether metrics are related to fundamental knowledge. It was noted that the characteristics of professional scientific activity are evaluated on the basis of metrics that are not related to the knowledge characteristics. The problem of knowledge extraction was studied on the basis of data verification by means of logical evidence–based schemes specified in the knowledge ontology. Properties of the modern stage of development of the knowledge space as a resource of artificial intelligence were noted. The transformation of artificial intelligence tasks into a new digital age was also analyzed. The insufficient use of artificial intelligence and machine learning methods in scientific bibliographic databases was emphasized, where quantitative scientometric indicators prevailed. Examples of ontological presentation of data and knowledge extraction are discussed and the special role of ontological approach to data structuring and knowledge extraction is highlighted.
AbstractList The application of artificial intelligence algorithms for data analysis, characteristics, and metrics of scientific information resources are considered. In this paper, we discuss how metrics are related to assessment of scientific publication components and whether metrics are related to fundamental knowledge. It was noted that the characteristics of professional scientific activity are evaluated on the basis of metrics that are not related to the knowledge characteristics. The problem of knowledge extraction was studied on the basis of data verification by means of logical evidence–based schemes specified in the knowledge ontology. Properties of the modern stage of development of the knowledge space as a resource of artificial intelligence were noted. The transformation of artificial intelligence tasks into a new digital age was also analyzed. The insufficient use of artificial intelligence and machine learning methods in scientific bibliographic databases was emphasized, where quantitative scientometric indicators prevailed. Examples of ontological presentation of data and knowledge extraction are discussed and the special role of ontological approach to data structuring and knowledge extraction is highlighted.
Author Serebryakov, V. A.
Tuchkova, N. P.
Ataeva, O. M.
Author_xml – sequence: 1
  givenname: O. M.
  surname: Ataeva
  fullname: Ataeva, O. M.
  email: oli@ultimeta.ru
  organization: Federal Research Center ’’Computer Sciences and Control’’, Russian Academy of Sciences
– sequence: 2
  givenname: V. A.
  surname: Serebryakov
  fullname: Serebryakov, V. A.
  email: serebr@ultimeta.ru
  organization: Federal Research Center ’’Computer Sciences and Control’’, Russian Academy of Sciences
– sequence: 3
  givenname: N. P.
  surname: Tuchkova
  fullname: Tuchkova, N. P.
  email: natalia_tuchkova@mail.ru
  organization: Federal Research Center ’’Computer Sciences and Control’’, Russian Academy of Sciences
BookMark eNp9kM9KAzEQh4NUsK0-gLd9gdVMskkTb6XUViwU_HNeYjZZt6zJkqyob2-W9SAKPc3AN9_wm5mhifPOIHQJ-AqAFtePICXDAhOCAWNM8QmaggCRS8nJJPUJ5wM_Q7MYDzgNcs6naLN3vW993WjVZsuuC17p15vs3vmP1lS1yR5MF0w0rld9412mXPULrj_7oPQAztGpVW00Fz91jp5v10-rbb7bb-5Wy12uiRB9zqhm2OKF0Nwyy0hKp3hRcauA0YKQBLmumOYvnGugihpprQVGCkqlVZbO0WLcq4OPMRhb6maMlpI0bQm4HP5R_vtHMuGP2YXmTYWvow4ZnZhmXW1CefDvwaUDj0jfqYxy7A
CitedBy_id crossref_primary_10_1007_s00170_023_12885_x
crossref_primary_10_1134_S1995080222100043
crossref_primary_10_1134_S1995080221080059
crossref_primary_10_3390_heritage7110300
Cites_doi 10.1007/s11192-017-2304-3
10.1016/S0004-3702(98)00055-1
10.1093/ije/dyl189
10.1016/j.artint.2019.02.003
10.26615/978-954-452-056-4_031
10.1134/S1054661819040114
10.2200/S00602ED1V01Y201410ICR035
10.20948/abrau-2017-39
10.1134/S1064562416020174
10.1007/BF02478112
10.1108/00242530910961792
10.1134/S1995080219070047
10.1007/978-3-642-31374-5_36
10.1073/pnas.0507655102
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2020
Copyright_xml – notice: Pleiades Publishing, Ltd. 2020
DBID AAYXX
CITATION
DOI 10.1134/S1995080220100030
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1818-9962
EndPage 1948
ExternalDocumentID 10_1134_S1995080220100030
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~9
-~C
.VR
06D
0R~
0VY
1N0
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
408
40D
40E
5GY
5IG
5VS
642
6NX
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIPV
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E4X
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
J9A
JBSCW
JZLTJ
KOV
LLZTM
LO0
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9R
PF0
PT4
QOS
R89
R9I
REM
RIG
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TR2
TSG
TUC
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
XSB
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
OVT
ID FETCH-LOGICAL-c288t-53c50f078c6f5f52996a64d6fa15342250f6cd5c6b66c13a3e9fff1524339faf3
IEDL.DBID AGYKE
ISSN 1995-0802
IngestDate Thu Apr 24 22:53:08 EDT 2025
Tue Jul 01 03:34:16 EDT 2025
Fri Feb 21 02:37:25 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords knowledge base
knowledge space
knowledge extraction
knowledge metrics
ontology of subject domain
artificial intelligence methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-53c50f078c6f5f52996a64d6fa15342250f6cd5c6b66c13a3e9fff1524339faf3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1134_S1995080220100030
crossref_primary_10_1134_S1995080220100030
springer_journals_10_1134_S1995080220100030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201000
2020-10-00
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 20201000
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
PublicationTitle Lobachevskii journal of mathematics
PublicationTitleAbbrev Lobachevskii J Math
PublicationYear 2020
Publisher Pleiades Publishing
Publisher_xml – name: Pleiades Publishing
References SHOE. http://www.cs.umd.edu/projects/plus/SHOE. Accessed 2020.
How Google Search Algorithms Work. https://www.google.com/search/howsearchworks/algorithms. Accessed 2020.
V. A. Shuster, ‘‘Subjective assessments of verbal and frame descriptions of actions,’’ in Cybernetics. Reasoning Logic and Its Modeling (Nauch. Sovet. Kompl. Probl. Kibernetika AN SSSR, Moscow, 1983), pp. 103–136 [in Russian].
C. Lange et al., ‘‘Reimplementing the mathematics subject classification (MSC) as a linked open dataset,’’ in Proceedings of the International Conference on Intelligent Computer Mathematics, 2012, pp. 458–462.
V. L. Obukhov, philosophy and Methodology of Knowledge, The School-Book (SPBGU, St. Petersburg, 2003) [in Russian].
Tetra: A Powerful, Easy-to-Use Multi-Criteria Decision and Evaluation Tool. http://scientificmetrics.com. Accessed 2020.
VinogradovI. M.Mathematical Encyclopedy1979MoscowSov. Entsiklopediya
SlashchevaN. A.Scientometric research in the library (on the example of the Central Library of the PSC RAS)Naukovedenie20023147154
My Reports, My Page. https://istina.msu.ru/home/reports. Accessed 2020.
Scimago Journal and Country Rank. https://www.scimagojr.com. Accessed 2020.
AtaevaO. M.LibMeta Semantic Library Information ModelProgram. Produkty Sist.201643644
Research-Management in Management-Research, RMIMR. https://rmimr.wordpress.com/2011/01/02. Accessed 2020.
BoyackK. W.Thesaurus–based methods for mapping contents of publication setsScientometrics20171111141115510.1007/s11192-017-2304-3
DB-Engines. https://db-engines.com/en/ranking. Accessed 2020.
GavrilovaT. A.HoroshevskijV. F.Knowledge Bases of Intelligent Systems2000St. PetersburgPiter
ZagoruikoN. G.Cognitive Data Mining2012NovosibirskGEO
PospelovD. A.Knowledge representation. Systems analysis experienceSist. Issled. Metodol. Probl.19851783102
Machine Learning and Knowledge Extraction, Proceedings, Vol. 11015 of Lecture Notes in Computer Science (Springer, Berlin, 2018). https://publications.sba-research.org/publications/201808-Aholzinger-Machine-Learning-and-Knowledge-Extraction.pdf.
M. M. K. Hlava, ‘‘The taxobook: History, theories, and concepts of knowledge organization, part 1 of a 3-part series,’’ in Synthesis Lectures on Information Concepts, Retrieval, and Services (Morgan Claypool, 2014), Vol. 6, no. 3, pp. 1–80.
ShrejderYu. A.“Thesaurus-based methods for mapping contents of publication sets,” Nauch.-Tekh. Inform.197122124
BishopC. M.Pattern Recognition and Machine Learning2006New YorkSpringer1107.68072
V. V. Pislyakov, ‘‘Evaluation of scientific knowledge based on citation indexes,’’ Sotsiol. Zh., No. 1, 128–140 (2007). http://www.socjournal.ru/article/682?print=yes.
A. Yu. Ahlyostin, N. A. Lavrent’ev, and A. Z. Fazliev, ‘‘Systematization of scientific graphic resources on molecular spectroscopy,’’ in Scientific service on the Internet: Proceedings of the 19th All-Russia Conference6 (3), 34–42 (2017). http://keldysh.ru/abrau/2017/39.pdf. https://doi.org/10.20948/abrau-2017-39
R. Goebel et al., ‘‘Explainable AI: The new 42?,’’ Lect. Notes Comput. Sci. 11015 (2), 2–4 (2008) https://link.springer.com/chapter/10.1007/978-3-319-99740-7_21. Accessed 2020.
J. McCarthy, ‘‘Artificial intelligence, logic and formalizing common sense,’’ (1990). http://jmc.stanford.edu/articles/ailogic. Accessed 2020.
MikhaylovD. V.EmelyanovG. M.Estimation of the closeness to a semantic pattern of a topical text without construction of periphrasesPattern Recogn. Image Anal.20192964765310.1134/S1054661819040114
The Search We Do Together. https://yandex.ru/blog/company/korolev. Accessed 2020.
NikolaouC.Foundations of ontology-based data access under bag semanticsArtif. Intell.201927491132392085110.1016/j.artint.2019.02.003
LavryonovaO. A.PavlovV. V.Library and bibliographic classification as a traditional system of organizing knowledge in the environment of open connected dataNauch. Tekh. Bibliot.201744460
AtaevaO. M.SerebryakovV. A.TuchkovaN. P.Mathematical physics branches: Identifying mixed type equationsCEUR Workshop Proc.20202543384807122464
Indicators for each Publication are Calculated: Research Interest, Citations, Recommendations, Reads. https://www.researchgate.net. Accessed 2020.
M. R. Kogalovskij, ‘‘Metadata, their properties, functions, classification and presentation means,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the All-Russia Conference RCDL-2012 (2012). http://elib.ict.nsc.ru/jspui/bitstream/ICT/1175/1/kogalovsky-meta.pdf. Accessed 2020.
FedotovA. M.ShokinYu. I.“Electronic library of Siberian Branch of RAS,” InformOb-vo200022231
Scopus Statistics and Graphics. https://www.scopus.com. Accessed 2020.
Web of Science, Statistics and Graphics. https://publons.com/researcher. Accessed 2020.
Wikipedia. http://www.wikipedia.org. Accessed 2020.
Encyclopedy World. http://www.encyclopedia.ru. Accessed 2020.
R. Singh and K. Singh, ‘‘A descriptive classification of causes of data quality problems in data warehousing,’’ Int. J.Comput. Sci. Issues 7 (3) (2), 41–50 (2010).
GarfieldE.Citation indexes for science. A new dimension in documentation through association of ideasInt. J. Epidemiol.2006351123112710.1093/ije/dyl189
AhlyostinA. Yu.Lavrent’evN. A.FazlievA. Z.Integration of knowledge management process into digital library system: A theoretical perspectiveLibrary Rev.20095837238610.1108/00242530910961792
Section Personalities, Statistics Publications and Views in MathSciNet, in zbMATH, in Web of Science, in Scopus. http://www.mathnet. ru. Accessed 2020.
N. A. Slashcheva and Yu. V. Mokhnacheva, ‘‘Electronic information in scientometric research,’’ NTI, Ser. 1: Org. Metodika Inform. raboty 5, 21–27 (2003).
Semantic Web. https://www.w3.org/standards/semanticweb. Accessed 2020.
HendlerJ.Avoiding another AI winterIEEE Intell. Syst.20082324
ElizarovA. M.Mathematical knowledge ontologies and recommender systems for collections of documents in physics and mathematicsDokl. Math.201693231233352566810.1134/S1064562416020174
M. Eremeev and K. Vorontsov, ‘‘Lexical quantile-based text complexity measure,’’ in RANLP-2019 Proceedings of Recent Advances in Natural Language Processing, Varna, Bulgaria, 2019, pp. 270–275.
Cross-National Comparisons of R&D Performance. https://nsf.gov/statistics/2018/nsb20181/report/sections/research-and-development-u-s-trends-and-international-comparisons/cross-national-comparisons-of-r-d-performance. Accessed 2020.
MargaretA.Boden creativity and artificial intelligenceArtif. Intell.199810334735610.1016/S0004-3702(98)00055-1
V. V. Kostin, ‘‘An overview of semantic models describing scientific publications and research activities,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the 16th All-Russia Conference RCDL-2014, Dubna, October 13–16, 2014 (2014), pp. 131–136.
Social Sciences Citation Index. https://en.wikipedia.org/wiki/Social_Sciences_Citation_Index. Accessed 2020.
HirschJ. E.An index to quantify an individuals scientific research outputProc. Nat. Acad. Sci. U. S. A.2005102165691657310.1073/pnas.05076551021355.01034
For Candidates for Elections to RAS 2019 the Indicators are Calculated: The Number of Publications, Citations Included in the Core of RSCI, Hirsch Index on the Core of RSCI. https://www.elibrary.ru/kand_ras_2019.asp. Accessed 2020.
PittsW.The linear theory of neuron networks: The static problemBull. Math. Biophys.1942416975784610.1007/BF02478112
Scientific Visualization: The Visual Extraction of Knowledge from Data, Ed. by G.-P. Bonneau, Th. Ertl, and G. M. Nielson, Series Mathematics and Visualization (Springer, Berlin, Heidelberg, 2006).
D. A. Pospelov, ‘‘About ’human’ reasoning in intelligent systems,’’ in Cybernetics. Reasoning Logic and its Modeling (Nauch. Sovet. Kompl. Probl. Kibernetika AN SSSR, Moscow, 1983), pp. 5–37 [in Russian].
M. V. Kulagin and A. S. Lopatenko, ‘‘Scientific information systems and electronic libraries. Need for integration,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the All-Russia Conference RCDL-2001 (2001), pp. 14–19.
AllegroGraph. https://allegrograph.com/the-enterprise-knowledge-graph. Accessed 2020.
AtaevaO. M.SerebryakovV. A.TuchkovaN. P.Query expansion method application for searching in mathematical subject domainsLobachevskii J. Math.20194087688610.1134/S1995080219070047
PospelovD. A.Situational Control: Theory and Practice1986MoscowNauka
ScannapiecoM.MissierP.BatiniC.Data quality at a glanceDatenbank-Spektrum200514614
6209_CR7
E. Garfield (6209_CR13) 2006; 35
6209_CR6
6209_CR5
6209_CR29
6209_CR4
6209_CR3
6209_CR2
6209_CR1
Yu. A. Shrejder (6209_CR21) 1971; 2
J. E. Hirsch (6209_CR33) 2005; 102
N. G. Zagoruiko (6209_CR23) 2012
M. Scannapieco (6209_CR58) 2005; 14
6209_CR22
6209_CR28
6209_CR9
6209_CR19
C. M. Bishop (6209_CR24) 2006
6209_CR18
N. A. Slashcheva (6209_CR34) 2002; 3
A. Yu. Ahlyostin (6209_CR55) 2009; 58
6209_CR53
D. V. Mikhaylov (6209_CR25) 2019; 29
6209_CR52
6209_CR51
6209_CR57
6209_CR12
6209_CR11
6209_CR10
O. M. Ataeva (6209_CR46) 2020; 2543
6209_CR54
6209_CR16
6209_CR15
6209_CR59
O. M. Ataeva (6209_CR60) 2016; 4
6209_CR14
O. M. Ataeva (6209_CR45) 2019; 40
D. A. Pospelov (6209_CR27) 1986
T. A. Gavrilova (6209_CR8) 2000
6209_CR42
O. A. Lavryonova (6209_CR56) 2017; 4
J. Hendler (6209_CR31) 2008; 23
6209_CR40
A. M. Fedotov (6209_CR50) 2000; 2
D. A. Pospelov (6209_CR17) 1985; 17
6209_CR43
6209_CR49
6209_CR48
A. M. Elizarov (6209_CR44) 2016; 93
W. Pitts (6209_CR26) 1942; 4
K. W. Boyack (6209_CR20) 2017; 111
A. Margaret (6209_CR47) 1998; 103
6209_CR30
6209_CR35
C. Nikolaou (6209_CR37) 2019; 274
(6209_CR41) 1979
6209_CR32
6209_CR39
6209_CR38
6209_CR36
References_xml – reference: LavryonovaO. A.PavlovV. V.Library and bibliographic classification as a traditional system of organizing knowledge in the environment of open connected dataNauch. Tekh. Bibliot.201744460
– reference: M. Eremeev and K. Vorontsov, ‘‘Lexical quantile-based text complexity measure,’’ in RANLP-2019 Proceedings of Recent Advances in Natural Language Processing, Varna, Bulgaria, 2019, pp. 270–275.
– reference: M. V. Kulagin and A. S. Lopatenko, ‘‘Scientific information systems and electronic libraries. Need for integration,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the All-Russia Conference RCDL-2001 (2001), pp. 14–19.
– reference: ScannapiecoM.MissierP.BatiniC.Data quality at a glanceDatenbank-Spektrum200514614
– reference: ZagoruikoN. G.Cognitive Data Mining2012NovosibirskGEO
– reference: V. A. Shuster, ‘‘Subjective assessments of verbal and frame descriptions of actions,’’ in Cybernetics. Reasoning Logic and Its Modeling (Nauch. Sovet. Kompl. Probl. Kibernetika AN SSSR, Moscow, 1983), pp. 103–136 [in Russian].
– reference: AtaevaO. M.SerebryakovV. A.TuchkovaN. P.Mathematical physics branches: Identifying mixed type equationsCEUR Workshop Proc.20202543384807122464
– reference: AtaevaO. M.LibMeta Semantic Library Information ModelProgram. Produkty Sist.201643644
– reference: HendlerJ.Avoiding another AI winterIEEE Intell. Syst.20082324
– reference: V. L. Obukhov, philosophy and Methodology of Knowledge, The School-Book (SPBGU, St. Petersburg, 2003) [in Russian].
– reference: Tetra: A Powerful, Easy-to-Use Multi-Criteria Decision and Evaluation Tool. http://scientificmetrics.com. Accessed 2020.
– reference: Cross-National Comparisons of R&D Performance. https://nsf.gov/statistics/2018/nsb20181/report/sections/research-and-development-u-s-trends-and-international-comparisons/cross-national-comparisons-of-r-d-performance. Accessed 2020.
– reference: HirschJ. E.An index to quantify an individuals scientific research outputProc. Nat. Acad. Sci. U. S. A.2005102165691657310.1073/pnas.05076551021355.01034
– reference: GavrilovaT. A.HoroshevskijV. F.Knowledge Bases of Intelligent Systems2000St. PetersburgPiter
– reference: Scopus Statistics and Graphics. https://www.scopus.com. Accessed 2020.
– reference: SlashchevaN. A.Scientometric research in the library (on the example of the Central Library of the PSC RAS)Naukovedenie20023147154
– reference: DB-Engines. https://db-engines.com/en/ranking. Accessed 2020.
– reference: PittsW.The linear theory of neuron networks: The static problemBull. Math. Biophys.1942416975784610.1007/BF02478112
– reference: Wikipedia. http://www.wikipedia.org. Accessed 2020.
– reference: R. Goebel et al., ‘‘Explainable AI: The new 42?,’’ Lect. Notes Comput. Sci. 11015 (2), 2–4 (2008) https://link.springer.com/chapter/10.1007/978-3-319-99740-7_21. Accessed 2020.
– reference: V. V. Kostin, ‘‘An overview of semantic models describing scientific publications and research activities,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the 16th All-Russia Conference RCDL-2014, Dubna, October 13–16, 2014 (2014), pp. 131–136.
– reference: GarfieldE.Citation indexes for science. A new dimension in documentation through association of ideasInt. J. Epidemiol.2006351123112710.1093/ije/dyl189
– reference: ShrejderYu. A.“Thesaurus-based methods for mapping contents of publication sets,” Nauch.-Tekh. Inform.197122124
– reference: Social Sciences Citation Index. https://en.wikipedia.org/wiki/Social_Sciences_Citation_Index. Accessed 2020.
– reference: A. Yu. Ahlyostin, N. A. Lavrent’ev, and A. Z. Fazliev, ‘‘Systematization of scientific graphic resources on molecular spectroscopy,’’ in Scientific service on the Internet: Proceedings of the 19th All-Russia Conference6 (3), 34–42 (2017). http://keldysh.ru/abrau/2017/39.pdf. https://doi.org/10.20948/abrau-2017-39
– reference: R. Singh and K. Singh, ‘‘A descriptive classification of causes of data quality problems in data warehousing,’’ Int. J.Comput. Sci. Issues 7 (3) (2), 41–50 (2010).
– reference: SHOE. http://www.cs.umd.edu/projects/plus/SHOE. Accessed 2020.
– reference: The Search We Do Together. https://yandex.ru/blog/company/korolev. Accessed 2020.
– reference: AhlyostinA. Yu.Lavrent’evN. A.FazlievA. Z.Integration of knowledge management process into digital library system: A theoretical perspectiveLibrary Rev.20095837238610.1108/00242530910961792
– reference: Section Personalities, Statistics Publications and Views in MathSciNet, in zbMATH, in Web of Science, in Scopus. http://www.mathnet. ru. Accessed 2020.
– reference: How Google Search Algorithms Work. https://www.google.com/search/howsearchworks/algorithms. Accessed 2020.
– reference: PospelovD. A.Situational Control: Theory and Practice1986MoscowNauka
– reference: AllegroGraph. https://allegrograph.com/the-enterprise-knowledge-graph. Accessed 2020.
– reference: C. Lange et al., ‘‘Reimplementing the mathematics subject classification (MSC) as a linked open dataset,’’ in Proceedings of the International Conference on Intelligent Computer Mathematics, 2012, pp. 458–462.
– reference: MikhaylovD. V.EmelyanovG. M.Estimation of the closeness to a semantic pattern of a topical text without construction of periphrasesPattern Recogn. Image Anal.20192964765310.1134/S1054661819040114
– reference: J. McCarthy, ‘‘Artificial intelligence, logic and formalizing common sense,’’ (1990). http://jmc.stanford.edu/articles/ailogic. Accessed 2020.
– reference: Encyclopedy World. http://www.encyclopedia.ru. Accessed 2020.
– reference: Semantic Web. https://www.w3.org/standards/semanticweb. Accessed 2020.
– reference: Indicators for each Publication are Calculated: Research Interest, Citations, Recommendations, Reads. https://www.researchgate.net. Accessed 2020.
– reference: Research-Management in Management-Research, RMIMR. https://rmimr.wordpress.com/2011/01/02. Accessed 2020.
– reference: V. V. Pislyakov, ‘‘Evaluation of scientific knowledge based on citation indexes,’’ Sotsiol. Zh., No. 1, 128–140 (2007). http://www.socjournal.ru/article/682?print=yes.
– reference: PospelovD. A.Knowledge representation. Systems analysis experienceSist. Issled. Metodol. Probl.19851783102
– reference: Scientific Visualization: The Visual Extraction of Knowledge from Data, Ed. by G.-P. Bonneau, Th. Ertl, and G. M. Nielson, Series Mathematics and Visualization (Springer, Berlin, Heidelberg, 2006).
– reference: AtaevaO. M.SerebryakovV. A.TuchkovaN. P.Query expansion method application for searching in mathematical subject domainsLobachevskii J. Math.20194087688610.1134/S1995080219070047
– reference: FedotovA. M.ShokinYu. I.“Electronic library of Siberian Branch of RAS,” InformOb-vo200022231
– reference: Machine Learning and Knowledge Extraction, Proceedings, Vol. 11015 of Lecture Notes in Computer Science (Springer, Berlin, 2018). https://publications.sba-research.org/publications/201808-Aholzinger-Machine-Learning-and-Knowledge-Extraction.pdf.
– reference: For Candidates for Elections to RAS 2019 the Indicators are Calculated: The Number of Publications, Citations Included in the Core of RSCI, Hirsch Index on the Core of RSCI. https://www.elibrary.ru/kand_ras_2019.asp. Accessed 2020.
– reference: N. A. Slashcheva and Yu. V. Mokhnacheva, ‘‘Electronic information in scientometric research,’’ NTI, Ser. 1: Org. Metodika Inform. raboty 5, 21–27 (2003).
– reference: Scimago Journal and Country Rank. https://www.scimagojr.com. Accessed 2020.
– reference: NikolaouC.Foundations of ontology-based data access under bag semanticsArtif. Intell.201927491132392085110.1016/j.artint.2019.02.003
– reference: VinogradovI. M.Mathematical Encyclopedy1979MoscowSov. Entsiklopediya
– reference: ElizarovA. M.Mathematical knowledge ontologies and recommender systems for collections of documents in physics and mathematicsDokl. Math.201693231233352566810.1134/S1064562416020174
– reference: MargaretA.Boden creativity and artificial intelligenceArtif. Intell.199810334735610.1016/S0004-3702(98)00055-1
– reference: M. R. Kogalovskij, ‘‘Metadata, their properties, functions, classification and presentation means,’’ in Digital Libraries: Advanced Methods and Technologies, Digital Collections, Proceedings of the All-Russia Conference RCDL-2012 (2012). http://elib.ict.nsc.ru/jspui/bitstream/ICT/1175/1/kogalovsky-meta.pdf. Accessed 2020.
– reference: BishopC. M.Pattern Recognition and Machine Learning2006New YorkSpringer1107.68072
– reference: My Reports, My Page. https://istina.msu.ru/home/reports. Accessed 2020.
– reference: M. M. K. Hlava, ‘‘The taxobook: History, theories, and concepts of knowledge organization, part 1 of a 3-part series,’’ in Synthesis Lectures on Information Concepts, Retrieval, and Services (Morgan Claypool, 2014), Vol. 6, no. 3, pp. 1–80.
– reference: Web of Science, Statistics and Graphics. https://publons.com/researcher. Accessed 2020.
– reference: BoyackK. W.Thesaurus–based methods for mapping contents of publication setsScientometrics20171111141115510.1007/s11192-017-2304-3
– reference: D. A. Pospelov, ‘‘About ’human’ reasoning in intelligent systems,’’ in Cybernetics. Reasoning Logic and its Modeling (Nauch. Sovet. Kompl. Probl. Kibernetika AN SSSR, Moscow, 1983), pp. 5–37 [in Russian].
– ident: 6209_CR29
– volume-title: Cognitive Data Mining
  year: 2012
  ident: 6209_CR23
– ident: 6209_CR7
– volume: 111
  start-page: 1141
  year: 2017
  ident: 6209_CR20
  publication-title: Scientometrics
  doi: 10.1007/s11192-017-2304-3
– volume: 103
  start-page: 347
  year: 1998
  ident: 6209_CR47
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(98)00055-1
– volume: 4
  start-page: 44
  year: 2017
  ident: 6209_CR56
  publication-title: Nauch. Tekh. Bibliot.
– ident: 6209_CR48
– volume: 2
  start-page: 21
  year: 1971
  ident: 6209_CR21
  publication-title: Tekh. Inform.
– volume: 14
  start-page: 6
  year: 2005
  ident: 6209_CR58
  publication-title: Datenbank-Spektrum
– ident: 6209_CR16
– volume: 17
  start-page: 83
  year: 1985
  ident: 6209_CR17
  publication-title: Sist. Issled. Metodol. Probl.
– ident: 6209_CR39
– volume: 35
  start-page: 1123
  year: 2006
  ident: 6209_CR13
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyl189
– ident: 6209_CR12
– ident: 6209_CR4
– ident: 6209_CR35
– volume-title: Knowledge Bases of Intelligent Systems
  year: 2000
  ident: 6209_CR8
– volume-title: Situational Control: Theory and Practice
  year: 1986
  ident: 6209_CR27
– ident: 6209_CR30
– volume: 274
  start-page: 91
  year: 2019
  ident: 6209_CR37
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2019.02.003
– ident: 6209_CR28
– ident: 6209_CR59
– ident: 6209_CR49
– ident: 6209_CR40
– ident: 6209_CR19
  doi: 10.26615/978-954-452-056-4_031
– volume: 2543
  start-page: 38
  year: 2020
  ident: 6209_CR46
  publication-title: CEUR Workshop Proc.
– ident: 6209_CR1
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: 6209_CR24
– ident: 6209_CR38
– ident: 6209_CR5
– volume-title: Mathematical Encyclopedy
  year: 1979
  ident: 6209_CR41
– ident: 6209_CR51
– volume: 4
  start-page: 36
  year: 2016
  ident: 6209_CR60
  publication-title: Program. Produkty Sist.
– volume: 3
  start-page: 147
  year: 2002
  ident: 6209_CR34
  publication-title: Naukovedenie
– volume: 2
  start-page: 22
  year: 2000
  ident: 6209_CR50
  publication-title: Ob-vo
– ident: 6209_CR9
– volume: 29
  start-page: 647
  year: 2019
  ident: 6209_CR25
  publication-title: Pattern Recogn. Image Anal.
  doi: 10.1134/S1054661819040114
– ident: 6209_CR18
– ident: 6209_CR43
– ident: 6209_CR2
– ident: 6209_CR6
– ident: 6209_CR14
– ident: 6209_CR10
– ident: 6209_CR32
– ident: 6209_CR53
– ident: 6209_CR52
  doi: 10.2200/S00602ED1V01Y201410ICR035
– ident: 6209_CR54
  doi: 10.20948/abrau-2017-39
– volume: 93
  start-page: 231
  year: 2016
  ident: 6209_CR44
  publication-title: Dokl. Math.
  doi: 10.1134/S1064562416020174
– ident: 6209_CR22
– volume: 4
  start-page: 169
  year: 1942
  ident: 6209_CR26
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478112
– volume: 58
  start-page: 372
  year: 2009
  ident: 6209_CR55
  publication-title: Library Rev.
  doi: 10.1108/00242530910961792
– ident: 6209_CR42
– volume: 23
  start-page: 2
  year: 2008
  ident: 6209_CR31
  publication-title: IEEE Intell. Syst.
– volume: 40
  start-page: 876
  year: 2019
  ident: 6209_CR45
  publication-title: Lobachevskii J. Math.
  doi: 10.1134/S1995080219070047
– ident: 6209_CR36
– ident: 6209_CR3
– ident: 6209_CR57
  doi: 10.1007/978-3-642-31374-5_36
– ident: 6209_CR15
– ident: 6209_CR11
– volume: 102
  start-page: 16569
  year: 2005
  ident: 6209_CR33
  publication-title: Proc. Nat. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0507655102
SSID ssj0022666
Score 2.185684
Snippet The application of artificial intelligence algorithms for data analysis, characteristics, and metrics of scientific information resources are considered. In...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 1938
SubjectTerms Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Title Ontological Approach: Knowledge Representation and Knowledge Extraction
URI https://link.springer.com/article/10.1134/S1995080220100030
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vejBt1gfJQdPSmqSfSTx1kofWFpBW6insNnsXipR2hTEX-9msynWF_ScSViG2Zn5MvPNAFwy4as8xE1sxxfIxiom2YGrwApPsM8pE5KInCg8GNLeGN9PyMTwuOdlt3tZktSeutg7gm-ecjJxwQx1dSa_CVWVfji4AtVm97nfXuIsFXM0qUiTjwPHM8XMXz-yGo5Wa6E6xHR2YVQerugsmTYWWdzgH9_mNq55-j3YMSmn1SxsZB82RHoA24PlvNb5IXQf0qz0glbTjBm_tfrlDzfrUTfMGp5SarE0-fKw_Z7NCn7EEYw77dFdzzYrFmzuBUFmE8SJI1WawKkkkqjYRBnFCZVMeUKs7rojKU8IpzGl3EUMiVBKqWI-RiiUTKJjqKSvqTgBCye-JxlXeI4LLBmJFVBScqEIXRJzGdbAKTUdcTN_PF-D8RJpHIJw9ENHNbhavvJWDN_4T_i61Hxk7uH8b-nTtaTPYMvLcbZu4juHSjZbiAuVjGRxXRlfp9Ua1o0RfgLSo9LV
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3ojx7IETqKNtHm25TWgP2AMJNmmcqjRNLqCCtk5C_HrSNJ0YL4lz3SqyHNtf7c8GOGPCV3mIm9iOL5CNVUyyA1eBFZ5gn1MmJBE5Ubg_oJ0Rvh2TseFxT8tu97IkqT11sXcEXz7kZOKCGerqTH4ZqlhBcGXW1Ub7sduc4ywVczSpSJOPA8czxcwfP7IYjhZroTrEtDZgWB6u6Cx5qs-yuM7fv8xt_OfpN2HdpJxWo7CRLVgS6Tas9efzWqc70L5Ls9ILWg0zZvzK6pY_3Kx73TBreEqpxdLk08PmWzYp-BG7MGo1h9cd26xYsLkXBJlNECeOVGkCp5JIomITZRQnVDLlCbG6646kPCGcxpRyFzEkQimlivkYoVAyifagkr6kYh8snPieZFzhOS6wZCRWQEnJhSJ0ScxlWAOn1HTEzfzxfA3Gc6RxCMLRNx3V4Hz-ymsxfOMv4YtS85G5h9PfpQ_-JX0KK51hvxf1bgbdQ1j1csytG_qOoJJNZuJYJSZZfGIM8QNA5NRI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5omxg9-DbWJwdPGlpgH4C3RvvQ2mrUJvWEy7J70WDT0sT4611gaayvxHhmILAsM98w830DcMSEq3CIHZmWK5CJVUwyPVslKzzCLqdMSCJSonC3R9t9fDkgAz3ndFx0uxclyZzTkKo0xUltGEk9gwTX7lJicc4StTNUPw9lnErblaBcbz10GtOcS8WfjGCUEZE9y9GFzW8vMhuaZuuiWbhprsBjcaN5l8lTdZKEVf72ScPxH0-yCssaihr1fO-swZyI12GpO9VxHW9A6zpOCu9o1LX8-KnRKX7EGbdZI63mL8UGi6MPBxuvySjnTWxCv9m4P2ubevSCyR3PS0yCOLGkgg-cSiKJilmUURxRyZSHxMoHWJLyiHAaUsptxJDwpZQKC2CEfMkk2oJS_BKLbTBw5DqScZXncYElI6FKoJSdL3ybhFz6FbCKVQ-41iVPx2M8B1l-gnDwZY0qcDw9ZZiLcvxmfFK8hUB_n-OfrXf-ZH0ICzfnzeDqotfZhUUnTcWzPr89KCWjidhXeCUJD_SefAetG90s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ontological+Approach%3A+Knowledge+Representation+and+Knowledge+Extraction&rft.jtitle=Lobachevskii+journal+of+mathematics&rft.au=Ataeva%2C+O.+M.&rft.au=Serebryakov%2C+V.+A.&rft.au=Tuchkova%2C+N.+P.&rft.date=2020-10-01&rft.issn=1995-0802&rft.eissn=1818-9962&rft.volume=41&rft.issue=10&rft.spage=1938&rft.epage=1948&rft_id=info:doi/10.1134%2FS1995080220100030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1134_S1995080220100030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-0802&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-0802&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-0802&client=summon