A Sim-Learnheuristic for the Team Orienteering Problem: Applications to Unmanned Aerial Vehicles
In this paper, we introduce a novel sim-learnheuristic method designed to address the team orienteering problem (TOP) with a particular focus on its application in the context of unmanned aerial vehicles (UAVs). Unlike most prior research, which primarily focuses on the deterministic and stochastic...
Saved in:
Published in | Algorithms Vol. 17; no. 5; p. 200 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a17050200 |
Cover
Loading…
Abstract | In this paper, we introduce a novel sim-learnheuristic method designed to address the team orienteering problem (TOP) with a particular focus on its application in the context of unmanned aerial vehicles (UAVs). Unlike most prior research, which primarily focuses on the deterministic and stochastic versions of the TOP, our approach considers a hybrid scenario, which combines deterministic, stochastic, and dynamic characteristics. The TOP involves visiting a set of customers using a team of vehicles to maximize the total collected reward. However, this hybrid version becomes notably complex due to the presence of uncertain travel times with dynamically changing factors. Some travel times are stochastic, while others are subject to dynamic factors such as weather conditions and traffic congestion. Our novel approach combines a savings-based heuristic algorithm, Monte Carlo simulations, and a multiple regression model. This integration incorporates the stochastic and dynamic nature of travel times, considering various dynamic conditions, and generates high-quality solutions in short computational times for the presented problem. |
---|---|
AbstractList | In this paper, we introduce a novel sim-learnheuristic method designed to address the team orienteering problem (TOP) with a particular focus on its application in the context of unmanned aerial vehicles (UAVs). Unlike most prior research, which primarily focuses on the deterministic and stochastic versions of the TOP, our approach considers a hybrid scenario, which combines deterministic, stochastic, and dynamic characteristics. The TOP involves visiting a set of customers using a team of vehicles to maximize the total collected reward. However, this hybrid version becomes notably complex due to the presence of uncertain travel times with dynamically changing factors. Some travel times are stochastic, while others are subject to dynamic factors such as weather conditions and traffic congestion. Our novel approach combines a savings-based heuristic algorithm, Monte Carlo simulations, and a multiple regression model. This integration incorporates the stochastic and dynamic nature of travel times, considering various dynamic conditions, and generates high-quality solutions in short computational times for the presented problem. |
Author | Juan, Angel A. Martin, Xabier A. Peyman, Mohammad Panadero, Javier |
Author_xml | – sequence: 1 givenname: Mohammad orcidid: 0000-0003-4734-2414 surname: Peyman fullname: Peyman, Mohammad – sequence: 2 givenname: Xabier A. orcidid: 0000-0003-4182-0120 surname: Martin fullname: Martin, Xabier A. – sequence: 3 givenname: Javier orcidid: 0000-0002-3793-3328 surname: Panadero fullname: Panadero, Javier – sequence: 4 givenname: Angel A. orcidid: 0000-0003-1392-1776 surname: Juan fullname: Juan, Angel A. |
BookMark | eNplkUtrHDEQhIdgQ_zIIf9AkFMOE0uj0UjKbTF5GBYc8OOq9Egtr5YZaSNpD_73mfUmISSnbpqviqLrvDmJKWLTvGX0A-eaXgGTVNCO0lfNGdNat73S_OSv_XVzXsqW0kHogZ0131fkLsztGiHHDe5zKDVY4lMmdYPkHmEmtzlgrIg5xCfyLadxwvkjWe12U7BQQ4qF1EQe4gwxoiOrBYSJPOIm2AnLZXPqYSr45te8aB4-f7q__tqub7_cXK_Wre2Uqm1vYewG7LTr_AB6QKuR9x1Q6Sw4IdWI4L11HpR3arC95iB4L8bljl5yftHcHH1dgq3Z5TBDfjYJgnk5pPxkINdDJKOQCT5yRyXwfqSD6mgvJTA7CCacPni9O3rtcvqxx1LNNu1zXOIbToXuBJNKLtTVkbI5lZLRGxvqy0NqhjAZRs2hEvOnkkXx_h_F75z_sz8Bpy6NbA |
CitedBy_id | crossref_primary_10_3390_math12111758 |
Cites_doi | 10.1287/ijoc.2022.1240 10.3390/batteries9080416 10.1007/978-3-030-72904-2_5 10.1504/IJOR.2023.128542 10.1016/j.cie.2017.10.020 10.1016/j.cor.2012.02.010 10.1007/978-3-031-24866-5_8 10.1016/0377-2217(94)00289-4 10.1016/j.asoc.2020.106700 10.1016/j.ejtl.2021.100070 10.1371/journal.pone.0271751 10.1016/j.ejor.2013.02.049 10.1177/0037549720968891 10.1016/j.tre.2023.103172 10.1016/j.cor.2003.11.008 10.1504/EJIE.2020.108581 10.1109/INFOCOM41043.2020.9155343 10.3390/math9161839 10.1016/j.ejor.2012.10.012 10.3390/a14070210 10.3390/futuretransp1020019 10.1016/j.ejor.2016.04.059 10.1016/j.cor.2013.09.011 10.1016/j.jclepro.2020.124138 10.1080/0305215X.2017.1417398 10.1016/j.cie.2007.10.001 10.1145/3596947.3596965 10.1007/s10732-022-09507-2 10.3390/a16120532 10.1007/s10489-024-05367-4 10.1016/j.asoc.2020.106280 10.1016/j.cor.2009.05.012 10.3390/s21082839 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/a17050200 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_8e153b3d07a34b06820477a1c6515d93 10_3390_a17050200 |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c288t-4cab26e29d2f6a96ec9e342a07dcad578beaffcdfa8fd86c493a5345bbeaef733 |
IEDL.DBID | DOA |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:28:58 EDT 2025 Fri Jul 25 12:05:15 EDT 2025 Tue Jul 01 03:23:18 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-4cab26e29d2f6a96ec9e342a07dcad578beaffcdfa8fd86c493a5345bbeaef733 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4734-2414 0000-0003-1392-1776 0000-0002-3793-3328 0000-0003-4182-0120 |
OpenAccessLink | https://doaj.org/article/8e153b3d07a34b06820477a1c6515d93 |
PQID | 3059251787 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8e153b3d07a34b06820477a1c6515d93 proquest_journals_3059251787 crossref_citationtrail_10_3390_a17050200 crossref_primary_10_3390_a17050200 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_13 Fang (ref_29) 2023; 175 Chao (ref_1) 1996; 88 Panadero (ref_12) 2023; 31 Tricoire (ref_19) 2010; 37 ref_30 Yu (ref_7) 2022; 34 Lin (ref_10) 2017; 114 Wang (ref_26) 2023; 29 ref_18 Lee (ref_23) 2024; 54 ref_17 Sundar (ref_25) 2022; 11 ref_16 Resende (ref_31) 2013; 226 Evers (ref_6) 2014; 43 Dang (ref_34) 2013; 229 Gunawan (ref_5) 2016; 255 Yazdani (ref_15) 2021; 280 ref_24 ref_22 Bayliss (ref_3) 2020; 92 Panadero (ref_8) 2020; 14 Mufalli (ref_20) 2012; 39 ref_28 Saeedvand (ref_21) 2020; 96 ref_27 Gupta (ref_2) 2021; 1 Caldeira (ref_14) 2021; 97 Tang (ref_32) 2005; 32 Gunawan (ref_11) 2018; 50 ref_4 Kirac (ref_9) 2023; 46 Ke (ref_33) 2008; 54 |
References_xml | – volume: 34 start-page: 3215 year: 2022 ident: ref_7 article-title: Robust team orienteering problem with decreasing profits publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2022.1240 – ident: ref_30 doi: 10.3390/batteries9080416 – ident: ref_28 doi: 10.1007/978-3-030-72904-2_5 – volume: 46 start-page: 20 year: 2023 ident: ref_9 article-title: Solving the team orienteering problem with time windows and mandatory visits using a constraint programming approach publication-title: Int. J. Oper. Res. doi: 10.1504/IJOR.2023.128542 – volume: 114 start-page: 195 year: 2017 ident: ref_10 article-title: Solving the team orienteering problem with time windows and mandatory visits by multi-start simulated annealing publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.10.020 – volume: 39 start-page: 2787 year: 2012 ident: ref_20 article-title: Simultaneous sensor selection and routing of unmanned aerial vehicles for complex mission plans publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.02.010 – ident: ref_22 doi: 10.1007/978-3-031-24866-5_8 – volume: 88 start-page: 464 year: 1996 ident: ref_1 article-title: The team orienteering problem publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(94)00289-4 – volume: 96 start-page: 106700 year: 2020 ident: ref_21 article-title: Novel hybrid algorithm for Team Orienteering Problem with Time Windows for rescue applications publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106700 – volume: 11 start-page: 100070 year: 2022 ident: ref_25 article-title: A branch-and-price algorithm for a team orienteering problem with fixed-wing drones publication-title: EURO J. Transp. Logist. doi: 10.1016/j.ejtl.2021.100070 – ident: ref_27 doi: 10.1371/journal.pone.0271751 – volume: 229 start-page: 332 year: 2013 ident: ref_34 article-title: An effective PSO-inspired algorithm for the team orienteering problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2013.02.049 – volume: 97 start-page: 215 year: 2021 ident: ref_14 article-title: A simheuristic approach for the flexible job shop scheduling problem with stochastic processing times publication-title: Simulation doi: 10.1177/0037549720968891 – volume: 175 start-page: 103172 year: 2023 ident: ref_29 article-title: Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits publication-title: Transp. Res. Part E Logist. Transp. Rev. doi: 10.1016/j.tre.2023.103172 – volume: 32 start-page: 1379 year: 2005 ident: ref_32 article-title: A tabu search heuristic for the team orienteering problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2003.11.008 – volume: 14 start-page: 485 year: 2020 ident: ref_8 article-title: Maximising reward from a team of surveillance drones: A simheuristic approach to the stochastic team orienteering problem publication-title: Eur. J. Ind. Eng. doi: 10.1504/EJIE.2020.108581 – ident: ref_24 doi: 10.1109/INFOCOM41043.2020.9155343 – ident: ref_16 doi: 10.3390/math9161839 – volume: 226 start-page: 1 year: 2013 ident: ref_31 article-title: Multi-start methods for combinatorial optimization publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2012.10.012 – ident: ref_13 doi: 10.3390/a14070210 – volume: 31 start-page: 3039 year: 2023 ident: ref_12 article-title: Solving the stochastic team orienteering problem: Comparing simheuristics with the sample average approximation method publication-title: Int. Trans. Oper. Res. – volume: 1 start-page: 326 year: 2021 ident: ref_2 article-title: Advances of UAVs toward future transportation: The state-of-the-art, challenges, and opportunities publication-title: Future Transp. doi: 10.3390/futuretransp1020019 – volume: 255 start-page: 315 year: 2016 ident: ref_5 article-title: Orienteering problem: A survey of recent variants, solution approaches and applications publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.04.059 – volume: 43 start-page: 248 year: 2014 ident: ref_6 article-title: A two-stage approach to the orienteering problem with stochastic weights publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2013.09.011 – volume: 280 start-page: 124138 year: 2021 ident: ref_15 article-title: Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124138 – volume: 50 start-page: 1148 year: 2018 ident: ref_11 article-title: An iterated local search algorithm for the team orienteering problem with variable profits publication-title: Eng. Optim. doi: 10.1080/0305215X.2017.1417398 – volume: 54 start-page: 648 year: 2008 ident: ref_33 article-title: Ants can solve the team orienteering problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2007.10.001 – ident: ref_18 doi: 10.1145/3596947.3596965 – volume: 29 start-page: 77 year: 2023 ident: ref_26 article-title: Self-adaptive heuristic algorithms for the dynamic and stochastic orienteering problem in autonomous transportation system publication-title: J. Heuristics doi: 10.1007/s10732-022-09507-2 – ident: ref_17 doi: 10.3390/a16120532 – volume: 54 start-page: 4467 year: 2024 ident: ref_23 article-title: Multi-start team orienteering problem for UAS mission re-planning with data-efficient deep reinforcement learning publication-title: Appl. Intell. doi: 10.1007/s10489-024-05367-4 – volume: 92 start-page: 106280 year: 2020 ident: ref_3 article-title: A learnheuristic approach for the team orienteering problem with aerial drone motion constraints publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106280 – volume: 37 start-page: 351 year: 2010 ident: ref_19 article-title: Heuristics for the multi-period orienteering problem with multiple time windows publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.05.012 – ident: ref_4 doi: 10.3390/s21082839 |
SSID | ssj0065961 |
Score | 2.3170607 |
Snippet | In this paper, we introduce a novel sim-learnheuristic method designed to address the team orienteering problem (TOP) with a particular focus on its... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 200 |
SubjectTerms | Algorithms biased randomization Decision making Dynamic characteristics Evacuations & rescues Heuristic methods Job shops learnheuristic Machine learning Monte Carlo simulation Multiple regression models Optimization Orienteering Random variables simheuristic Simulation team orienteering problem Traffic congestion Travel time Unmanned aerial vehicles Vehicles Weather |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LTtwwFLUK3bAB2oIYXrIqFt1EJLFjO91UA2IYdVEqdaZiF27sawaJeTCE_8d2nCmIiq19V_d5_NA5hJygsJmEkicILgzcFr6kBCSQS0hBaasxsH3-EsMx_3ldXMcLt8f4rbLriaFRm7n2d-SnLi9LT6-l5I_FQ-JVo_zrapTQWCMfMzdpfJ6rwWXXiUVRiqxlE2LuaH8KnjrGwaP01QwKVP1vOnEYL4NtshlxIe23gfxEPuDsM9nqNBdoLMEv5KZP_9xNk0CLOsGnlmeZOuRJHZKjI4QpvfLUxU3LMUh_t4Ix32n_xUs1beZ0PJuC77G0H3KQ_sVJ-CG3Q8aDi9H5MIkqCYnOlWoSrqHOBealya2AUqAukfEcUmk0GFeQNYK12lhQ1iihecmgYLyo3TpaydguWZ_NZ7hHKFqHXkCwtIacF4WopdSZVRy5tcik6ZFvnd8qHSnEvZLFfeWOEt7F1crFPfJ1ZbpoeTP-Z3Tmnb8y8FTXYWG-vK1i5VQKXVOumUklMF6nwkEWLiVk2ou4m5L1yGEXuirW32P1L1v2398-IBu5gyntF8ZDst4sn_DIwYymPg659AzuftO0 priority: 102 providerName: ProQuest |
Title | A Sim-Learnheuristic for the Team Orienteering Problem: Applications to Unmanned Aerial Vehicles |
URI | https://www.proquest.com/docview/3059251787 https://doaj.org/article/8e153b3d07a34b06820477a1c6515d93 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSwMxEMeD1osX32K1liAevCxuN9k8vFWxigcVteJtnc1OqGCr6Pr9zWNbFAUvXkNgw0xm8h92-A0h-yhsT4LmCYJzA7e5DykBCWQSUlDGGgy0z0txPuQXD_nDl1Ffvics4oGj4Q4VupgsWZVKYLxMhXuxuJTQM36Gd6UD5zPV6bSYijlY5Fr0IkeIuaL-EDw0xgmj9NvrEyD9P3JweFgGK2SpUYS0H0-ySuZwskaWp9MWaBN86-SxT2-fxkkAoo7wIxKWqdOc1Gk4eocwplceWlxHuiC9jqNijmj_yz9qWr_Q4WQMPrvSfrh99B5HoTdugwwHp3cn50kzHyExmVJ1wg2UmcBMV5kVoAUajYxnkMrKQOVCsUSw1lQWlK2UMFwzyBnPS7eOVjK2SVqTlwluEYrW6RYQLC0h43kuSilNzyqO3FpksmqTg6ndCtPAw_0Mi-fCFRHexMXMxG2yN9v6GokZv2069safbfCQ67DgXF80ri_-cn2bdKauK5rIey9c_tIew6bk9n98Y4csZk7GxBbHDmnVbx-462RIXXbJvBqcdcnC8enl9U033L9P4ObdMg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxEB1V6QEu5VtNKWAhkLisurG99hoJoRRapbSEiiaot-2sPaZIJCntVog_xW_E3o8AouLWq-3T-M34-es9gGek_ECjkQlhmAbps5hSChPkGlPMrbdUq32O1Wgq3x1nxyvws_sLE59VdjWxLtRuYeMZ-VbApYnyWrl-ffYtia5R8Xa1s9BoYLFPP76HLdvFq723YX6fc767M3kzSlpXgcTyPK8SabHkirhx3Cs0iqwhITmm2ll0AcAloffWecy9y5WVRmAmZFaGdvI6HoCGkr8q44_WHqxu74wPP3a1X2VGDRr9IiFMuoVRrCYQsvSvVa82B_in9tcL2u5tWGuZKBs20LkDKzS_C7c6lwfWJv09OBmyoy-zpBZiPaXLRtmZBa7LAndkE8IZ-xDFkqtG1ZAdNhY1L9nwj7txVi3YdD7DWNXZsEY9-0Sn9Zu8-zC9lgg-gN58Mad1YOQDX0Il0hK5zDJVam0HPpckvSehXR9edHErbCtaHr0zvhZh8xJDXCxD3Ieny6FnjVLHVYO2Y_CXA6K4dt2wOP9ctLla5BSWgVK4VKOQZaoCSZJa48BG23hnRB82u6kr2oy_KH7jc-P_3U_gxmjy_qA42BvvP4SbPJCk5gHlJvSq80t6FEhOVT5ukcXg5LrB_Au6lBXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFA2lgvhitVXc2moQBV-GnU0y-RBEth9rP6QW7ErfpneSm1Zwd2s7pfjX-uuaZGZWRfGtr5k83Zzce5LcOYeQ1yj9QIERGUJYBuGLuKUkZMAU5KCtt5jUPg_kzljsHRfHC-Sm-xcmtlV2OTElajez8Y68H3BporyWVn3ftkUcbo0-nP_IooNUfGnt7DQaiOzjz-twfLt8v7sV1voNY6Pto82drHUYyCzTus6EhYpJZMYxL8FItAa5YJArZ8EFMFcI3lvnQXunpRWGQ8FFUYVx9Cpehob0f09xZeLBT48-dlVAFkYOGiUjzk3ehyhbE6hZ_kf9SzYBf1WBVNpGj8jDlpPSYQOix2QBp8tkqfN7oO32XyEnQ_rl2yRLkqxneNVoPNPAemlgkfQIYUI_R9nkutE3pIeNWc07OvztlZzWMzqeTiDmdzpM-Kdf8Sx15z0h4zuJ31OyOJ1N8Rmh6ANzAsnzCpgoClkpZQdeCxTeI1euR952cSttK18eXTS-l-EYE0NczkPcI6_mU88bzY5_TdqIwZ9PiDLbaWB2cVq2u7bUGApCxV2ugIsql4EuCaVgYKOBvDO8R9a6pSvbvX9Z_kLq6v8_vyT3A4TLT7sH-8_JAxbYUtNJuUYW64srXA9sp65eJFhRcnLXOL4FaE0YkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sim-Learnheuristic+for+the+Team+Orienteering+Problem%3A+Applications+to+Unmanned+Aerial+Vehicles&rft.jtitle=Algorithms&rft.au=Peyman%2C+Mohammad&rft.au=Martin%2C+Xabier+A.&rft.au=Panadero%2C+Javier&rft.au=Juan%2C+Angel+A.&rft.date=2024-05-01&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=17&rft.issue=5&rft.spage=200&rft_id=info:doi/10.3390%2Fa17050200&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_a17050200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |