Comparison of Spaces of Hardy Type for the Ornstein–Uhlenbeck Operator
Denote by γ the Gauss measure on ℝ n and by the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space of Goldberg type and show that for each u in ℝ ∖ {0} and r > 0 the operator is unbounded from to L 1 γ. This result is in sharp contrast both with the fact that is bounded from H...
Saved in:
Published in | Potential analysis Vol. 33; no. 1; pp. 85 - 105 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.07.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Denote by γ the Gauss measure on ℝ
n
and by
the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space
of Goldberg type and show that for each
u
in ℝ ∖ {0} and
r
> 0 the operator
is unbounded from
to
L
1
γ. This result is in sharp contrast both with the fact that
is bounded from
H
1
γ to
L
1
γ, where
H
1
γ denotes the Hardy type space introduced in Mauceri and Meda (J Funct Anal 252:278–313,
2007
), and with the fact that in the Euclidean case
is bounded from the Goldberg space
to
L
1
ℝ
n
. We consider also the case of Riemannian manifolds
M
with Riemannian measure
μ
. We prove that, under certain geometric assumptions on
M
, an operator
, bounded on
L
2
μ
, and with a kernel satisfying certain analytic assumptions, is bounded from
H
1
μ
to
L
1
μ
if and only if it is bounded from
to
L
1
μ
. Here
H
1
μ
denotes the Hardy space introduced in Carbonaro et al. (Ann Sc Norm Super Pisa,
2009
), and
is defined in Section 4, and is equivalent to a space recently introduced by M. Taylor (J Geom Anal 19(1):137–190,
2009
). The case of translation invariant operators on homogeneous trees is also considered. |
---|---|
AbstractList | Denote by γ the Gauss measure on ℝ
n
and by
the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space
of Goldberg type and show that for each
u
in ℝ ∖ {0} and
r
> 0 the operator
is unbounded from
to
L
1
γ. This result is in sharp contrast both with the fact that
is bounded from
H
1
γ to
L
1
γ, where
H
1
γ denotes the Hardy type space introduced in Mauceri and Meda (J Funct Anal 252:278–313,
2007
), and with the fact that in the Euclidean case
is bounded from the Goldberg space
to
L
1
ℝ
n
. We consider also the case of Riemannian manifolds
M
with Riemannian measure
μ
. We prove that, under certain geometric assumptions on
M
, an operator
, bounded on
L
2
μ
, and with a kernel satisfying certain analytic assumptions, is bounded from
H
1
μ
to
L
1
μ
if and only if it is bounded from
to
L
1
μ
. Here
H
1
μ
denotes the Hardy space introduced in Carbonaro et al. (Ann Sc Norm Super Pisa,
2009
), and
is defined in Section 4, and is equivalent to a space recently introduced by M. Taylor (J Geom Anal 19(1):137–190,
2009
). The case of translation invariant operators on homogeneous trees is also considered. |
Author | Mauceri, Giancarlo Carbonaro, Andrea Meda, Stefano |
Author_xml | – sequence: 1 givenname: Andrea surname: Carbonaro fullname: Carbonaro, Andrea organization: Dipartimento di Matematica, Università di Genova – sequence: 2 givenname: Giancarlo surname: Mauceri fullname: Mauceri, Giancarlo email: mauceri@dima.unige.it organization: Dipartimento di Matematica, Università di Genova – sequence: 3 givenname: Stefano surname: Meda fullname: Meda, Stefano organization: Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca |
BookMark | eNp9kEFOwzAQRS1UJNrCAdj5AoYZp0nsJaqAIlXqglZiZznJmLa0dmSHRXbcgRtyElKVNbOZWcz7-noTNvLBE2O3CHcIUN4nHEYJAC00FiCKCzbGvJRCS_02YmPQshCyALxik5T2ACDLUo3ZYh6OrY27FDwPjr-2tqZ0uhY2Nj1f9y1xFyLvtsRX0aeOdv7n63uzPZCvqP7gq5ai7UK8ZpfOHhLd_O0p2zw9rucLsVw9v8wflqKWSnUic3klpQSJZT5TUCmXkSpQ5apymFNd6RyRlNTU1Bk01LhZI7V1rqJGoaNsyvCcW8eQUiRn2rg72tgbBHNSYc4qzKDCnFSYYmDkmUnDr3-naPbhM_qh5j_QL0l1ZK4 |
CitedBy_id | crossref_primary_10_1007_s12220_011_9240_x crossref_primary_10_1007_s10231_016_0603_6 crossref_primary_10_1016_j_jfa_2018_11_014 crossref_primary_10_4213_rm9812 crossref_primary_10_1007_s00605_014_0683_6 crossref_primary_10_1007_s00526_018_1432_9 crossref_primary_10_1090_S0002_9939_2012_11443_1 |
Cites_doi | 10.1112/S0024610700008723 10.1007/BFb0092772 10.1007/s000390050070 10.1006/jfan.2001.3757 10.1007/s12220-008-9054-7 10.1090/S0002-9904-1977-14325-5 10.1215/S0012-7094-79-04603-9 10.1023/A:1008685801945 10.1007/BFb0100043 10.1007/s00041-001-4044-1 10.1007/BF02791138 10.1007/BFb0084154 10.1112/S0024610700008917 10.1112/S0024610702003733 10.4171/RMI/152 10.1007/BF02922016 10.1090/S0002-9939-1991-1068123-9 10.1016/j.jfa.2007.06.017 10.1006/jfan.1994.1026 10.1090/S0002-9939-08-09365-9 10.1007/BFb0069151 10.1515/9781400881871 10.1090/S0002-9947-1969-0249918-0 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media B.V. 2009 |
Copyright_xml | – notice: Springer Science+Business Media B.V. 2009 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11118-009-9160-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1572-929X |
EndPage | 105 |
ExternalDocumentID | 10_1007_s11118_009_9160_6 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFDYV AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c288t-3f5b22202175480b8f3e861858bf15ecb9511e829edc30dedf4d29affbed81fe3 |
IEDL.DBID | AGYKE |
ISSN | 0926-2601 |
IngestDate | Thu Sep 12 18:25:39 EDT 2024 Sat Dec 16 12:02:40 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gaussian measure Homogeneous tree 42B30 58C99 42B20 Hardy spaces Singular integrals Imaginary powers Riemannian manifold Ornstein–Uhlenbeck operator |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-3f5b22202175480b8f3e861858bf15ecb9511e829edc30dedf4d29affbed81fe3 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1007_s11118_009_9160_6 springer_journals_10_1007_s11118_009_9160_6 |
PublicationCentury | 2000 |
PublicationDate | 2010-07-01 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry and Functional Analysis |
PublicationTitle | Potential analysis |
PublicationTitleAbbrev | Potential Anal |
PublicationYear | 2010 |
Publisher | Springer Netherlands |
Publisher_xml | – name: Springer Netherlands |
References | DragicevicOVolbergABellman functions and dimensionless estimates of Littlewood–Paley typeJ. Oper. Theory2006561671981114.420062261616 GutiérrezCEUrbinaWEstimates for the maximal operator of the Ornstein–Uhlenbeck semigroupProc. Am. Math. Soc.19911131991040737.4201910.2307/2048444 García-CuervaJMauceriGMedaSSjögrenPTorreaJLMaximal operators for the Ornstein–Uhlenbeck semigroupJ. Lond. Math. Soc.2003672192341058.4201210.1112/S0024610702003733 CoulhonTGrigoryanARandom walks on graphs wilth regular volume growthGeom. Funct. Anal.199886567010918.6005310.1007/s0003900500701633979 MedaSSjögrenPVallarinoMOn the H1–L1 boundedness of operatorsProc. Am. Math. Soc.2008136292129310530881410.1090/S0002-9939-08-09365-9 GutiérrezCESegoviaCTorreaJLOn higher order Riesz transforms for Gaussian measuresJ. Fourier Anal. Appl.199625835960893.4200710.1007/s00041-001-4044-11423529 PérezSSoriaFOperators associated with the Ornstein-Uhlenbeck semigroupJ. Lond. Math. Soc.2000618578710957.4201210.1112/S0024610700008917 Stein, E.M.: Harmonic analysis. Real variable methods, orthogonality and oscillatory integrals. In: Princeton Math. Series no. 43. Princeton N.J. (1993) GundyRFSur les transformations de Riesz pour le semigroupe d’Ornstein–UhlenbeckC. R. Acad. Sci. Paris Sci., Ser. I Math.19863039679700606.60063877182 FabesEBGutiérrezCScottoRWeak type estimates for the Riesz transforms associated with the Gaussian measureRev. Mat. Iberoam.1994102292810810.42006 Sjögren, P.: On the maximal function for the Mehler kernel. In: Harmonic Analysis, Cortona, 1982. Springer Lecture Notes in Mathematics, vol. 992, pp. 73–82 (1983) TaylorMEHardy spaces and bmo on manifolds with bounded geometryJ. Geom. Anal.20091911371900562062810.1007/s12220-008-9054-72465300 Carbonaro, A., Mauceri, G., Meda, S.: H1 and BMO for certain locally doubling metric measure spaces of finite measure. Colloq. Math. (2009). http://arxiv.org/pdf/0811.0100 Garcia-CuervaJMauceriGSjögrenPTorreaJLSpectral multipliers for the Ornstein–Uhlenbeck semigroupJ. Anal. Math.1999782813050939.4200710.1007/BF027911381714425 ChavelIDifferential geometric and analytic perspectivesCambridge Tract in Mathematics, vol. 1452001CambridgeCambridge University Press MenárguezTPérezSSoriaFThe Mehler maximal function: a geometric proof of the weak type 1J. Lond. Math. Soc.20006128468560957.4201110.1112/S0024610700008723 PérezSThe local part and the strong type for operators related to the Gauss measureJ. Geom. Anal.20011134915071058.420151857854 ChavelIRiemannian Geometry: A Modern Introduction1993CambridgeCambridge University Press0810.53001 UrbinaWOn singular integrals with respect to the Gaussian measureAnn. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV1990XVIII45315671093708 GoldbergDA local version of real Hardy spacesDuke Math. J.19794627420409.4606010.1215/S0012-7094-79-04603-9523600 Figà-TalamancaANebbiaCHarmonic analysis and representation theory for groups acting on homogeneous treesLondon Math. Society Lecture Notes Series, vol. 1621991CambridgeCambridge University Press MuckenhouptBHermite conjugate expansionsTrans. Am. Math. Soc.19691392432600175.1270110.2307/1995317249918 Garcia-CuervaJMauceriGSjögrenPTorreaJLHigher order Riesz operators for the Ornstein–Uhlenbeck semigroupPotential Anal.1999103794070954.4201010.1023/A:10086858019451698617 MauceriGMedaSBMO and H1 for the Ornstein–Uhlenbeck operatorJ. Funct. Anal.20072522783131136.4602710.1016/j.jfa.2007.06.0172357358 GutiérrezCOn the Riesz transforms for Gaussian measuresJ. Funct. Anal.19941201071340807.4603010.1006/jfan.1994.10261262249 MauceriGMedaSSjögrenPSharp estimates for the Ornstein–Uhlenbeck operatorAnn. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV200434474801116.47036 PisierGRiesz transforms: a simpler analytic proof of P.A. Meyer’s inequalitySpringer Lecture Notes in Mathematics1988132148550110.1007/BFb0084154960544 MeyerPANote sur le processus d’Ornstein–UhlenbeckSpringer Lecture Notes in Mathematics19829209513210.1007/BFb0092772 Stein, E.M.: Topics in harmonic analysis related to the Littlewood–Paley theory. In: Annals of Math. Studies, no. 63. Princeton N.J. (1970) ForzaniLScottoRThe higher order Riesz transforms for Gaussian measure need not be weak type (1,1)Stud. Math.19981312052140954.420091644460 CoifmanRRWeissGExtensions of Hardy spaces and their use in analysisBull. Am. Math. Soc.1977835696450358.3002310.1090/S0002-9904-1977-14325-5447954 MeyerPATransformations de Riesz pour le lois GaussiennesSpringer Lecture Notes in Mathematics1984105917919310.1007/BFb0100043 Carbonaro, A., Mauceri, G., Meda, S.: H1 and BMO on certain measured metric spaces. Ann. Sc. Norm. Super. Pisa. (2009). http://arxiv.org/pdf/0808.0146 García-CuervaJMauceriGMedaSSjögrenPTorreaJLFunctional calculus for the Ornstein-Uhlenbeck operatorJ. Funct. Anal.200118324134500995.4701010.1006/jfan.2001.37571844213 PA Meyer (9160_CR20) 1984; 1059 B Muckenhoupt (9160_CR26) 1969; 139 J García-Cuerva (9160_CR13) 2001; 183 RR Coifman (9160_CR6) 1977; 83 J Garcia-Cuerva (9160_CR11) 1999; 10 PA Meyer (9160_CR25) 1982; 920 O Dragicevic (9160_CR7) 2006; 56 T Coulhon (9160_CR5) 1998; 8 EB Fabes (9160_CR8) 1994; 10 J García-Cuerva (9160_CR14) 2003; 67 T Menárguez (9160_CR24) 2000; 61 I Chavel (9160_CR3) 1993 S Pérez (9160_CR27) 2001; 11 A Figà-Talamanca (9160_CR10) 1991 9160_CR2 C Gutiérrez (9160_CR19) 1994; 120 9160_CR1 G Mauceri (9160_CR21) 2007; 252 S Meda (9160_CR23) 2008; 136 D Goldberg (9160_CR15) 1979; 46 L Forzani (9160_CR9) 1998; 131 J Garcia-Cuerva (9160_CR12) 1999; 78 S Pérez (9160_CR29) 2000; 61 G Mauceri (9160_CR22) 2004; 3 G Pisier (9160_CR28) 1988; 1321 CE Gutiérrez (9160_CR16) 1996; 2 W Urbina (9160_CR34) 1990; XVIII RF Gundy (9160_CR18) 1986; 303 9160_CR30 9160_CR32 9160_CR31 CE Gutiérrez (9160_CR17) 1991; 113 I Chavel (9160_CR4) 2001 ME Taylor (9160_CR33) 2009; 19 |
References_xml | – volume: 61 start-page: 846 issue: 2 year: 2000 ident: 9160_CR24 publication-title: J. Lond. Math. Soc. doi: 10.1112/S0024610700008723 contributor: fullname: T Menárguez – volume: 920 start-page: 95 year: 1982 ident: 9160_CR25 publication-title: Springer Lecture Notes in Mathematics doi: 10.1007/BFb0092772 contributor: fullname: PA Meyer – volume: 8 start-page: 656 year: 1998 ident: 9160_CR5 publication-title: Geom. Funct. Anal. doi: 10.1007/s000390050070 contributor: fullname: T Coulhon – volume-title: Riemannian Geometry: A Modern Introduction year: 1993 ident: 9160_CR3 contributor: fullname: I Chavel – volume: 183 start-page: 413 issue: 2 year: 2001 ident: 9160_CR13 publication-title: J. Funct. Anal. doi: 10.1006/jfan.2001.3757 contributor: fullname: J García-Cuerva – volume: 19 start-page: 137 issue: 1 year: 2009 ident: 9160_CR33 publication-title: J. Geom. Anal. doi: 10.1007/s12220-008-9054-7 contributor: fullname: ME Taylor – volume: 83 start-page: 569 year: 1977 ident: 9160_CR6 publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1977-14325-5 contributor: fullname: RR Coifman – volume: 46 start-page: 27 year: 1979 ident: 9160_CR15 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-79-04603-9 contributor: fullname: D Goldberg – volume: 10 start-page: 379 year: 1999 ident: 9160_CR11 publication-title: Potential Anal. doi: 10.1023/A:1008685801945 contributor: fullname: J Garcia-Cuerva – volume: 1059 start-page: 179 year: 1984 ident: 9160_CR20 publication-title: Springer Lecture Notes in Mathematics doi: 10.1007/BFb0100043 contributor: fullname: PA Meyer – volume: 2 start-page: 583 year: 1996 ident: 9160_CR16 publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-001-4044-1 contributor: fullname: CE Gutiérrez – volume: 3 start-page: 447 year: 2004 ident: 9160_CR22 publication-title: Ann. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV contributor: fullname: G Mauceri – volume: 131 start-page: 205 year: 1998 ident: 9160_CR9 publication-title: Stud. Math. contributor: fullname: L Forzani – ident: 9160_CR1 – volume: 56 start-page: 167 year: 2006 ident: 9160_CR7 publication-title: J. Oper. Theory contributor: fullname: O Dragicevic – volume: 78 start-page: 281 year: 1999 ident: 9160_CR12 publication-title: J. Anal. Math. doi: 10.1007/BF02791138 contributor: fullname: J Garcia-Cuerva – volume: 1321 start-page: 485 year: 1988 ident: 9160_CR28 publication-title: Springer Lecture Notes in Mathematics doi: 10.1007/BFb0084154 contributor: fullname: G Pisier – volume: 61 start-page: 857 year: 2000 ident: 9160_CR29 publication-title: J. Lond. Math. Soc. doi: 10.1112/S0024610700008917 contributor: fullname: S Pérez – volume: 303 start-page: 967 year: 1986 ident: 9160_CR18 publication-title: C. R. Acad. Sci. Paris Sci., Ser. I Math. contributor: fullname: RF Gundy – volume: 67 start-page: 219 year: 2003 ident: 9160_CR14 publication-title: J. Lond. Math. Soc. doi: 10.1112/S0024610702003733 contributor: fullname: J García-Cuerva – volume: 10 start-page: 229 year: 1994 ident: 9160_CR8 publication-title: Rev. Mat. Iberoam. doi: 10.4171/RMI/152 contributor: fullname: EB Fabes – volume: 11 start-page: 491 issue: 3 year: 2001 ident: 9160_CR27 publication-title: J. Geom. Anal. doi: 10.1007/BF02922016 contributor: fullname: S Pérez – volume: XVIII start-page: 531 issue: 4 year: 1990 ident: 9160_CR34 publication-title: Ann. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV contributor: fullname: W Urbina – volume: 113 start-page: 99 issue: 1 year: 1991 ident: 9160_CR17 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-1991-1068123-9 contributor: fullname: CE Gutiérrez – ident: 9160_CR32 – volume: 252 start-page: 278 year: 2007 ident: 9160_CR21 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2007.06.017 contributor: fullname: G Mauceri – volume-title: Cambridge Tract in Mathematics, vol. 145 year: 2001 ident: 9160_CR4 contributor: fullname: I Chavel – volume: 120 start-page: 107 year: 1994 ident: 9160_CR19 publication-title: J. Funct. Anal. doi: 10.1006/jfan.1994.1026 contributor: fullname: C Gutiérrez – volume-title: London Math. Society Lecture Notes Series, vol. 162 year: 1991 ident: 9160_CR10 contributor: fullname: A Figà-Talamanca – volume: 136 start-page: 2921 year: 2008 ident: 9160_CR23 publication-title: Proc. Am. Math. Soc. doi: 10.1090/S0002-9939-08-09365-9 contributor: fullname: S Meda – ident: 9160_CR30 doi: 10.1007/BFb0069151 – ident: 9160_CR2 – ident: 9160_CR31 doi: 10.1515/9781400881871 – volume: 139 start-page: 243 year: 1969 ident: 9160_CR26 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1969-0249918-0 contributor: fullname: B Muckenhoupt |
SSID | ssj0002778 |
Score | 1.9542226 |
Snippet | Denote by γ the Gauss measure on ℝ
n
and by
the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space
of Goldberg type and show that for each
u... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 85 |
SubjectTerms | Functional Analysis Geometry Mathematics Mathematics and Statistics Potential Theory Probability Theory and Stochastic Processes |
Title | Comparison of Spaces of Hardy Type for the Ornstein–Uhlenbeck Operator |
URI | https://link.springer.com/article/10.1007/s11118-009-9160-6 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gXPTg24gPsgdPmiX0vT0CAYlGOGgTPDXddjcaTCFQLp78D_5Df4mzfSFRD_TUJtummW5nvtn55luAKyOIMA4ITrmhcWpaIqSMGZw6pisRT1h6kLF8h_bAM-_G1rgCerl0EU-aRUUyddSrXjc8GFVr-YhoMOXZgprqO7WqUGvfPt_3Sv-rO5n_dXWbKsGsopb510PWo9F6KTSNMP29rOtvkQoTKmLJpLlMeDN8_y3buMHL78NuDjhJO5shB1AR8SHs_JAhxKuHUrt1cQSDbrk1IZlK8jhTpC11lhb5iUpcCSJdgreQ0RzRpXiNvz4-vZc3RRYLJ2Q0E2nt_hi8fu-pO6D5fgs01BlLqCEtjnBBZSlKBY4zaQhmY0BnXGr4FTmiMU0w3RVRaLQiEUkz0t1ASi4ipklhnEA1nsbiFIgZhtwJmLSVur5tRxxxBGuZjhVxzjEnrcN1YXd_lslq-CsBZWUsH43lK2P5dh1uCqv6-R-2-H_02Uajz2E74wMoAu4FVJP5UlwizEh4A-dVv9MZNvL51YAtT29_AwgZyww |
link.rule.ids | 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BewAO7Iiy-sAJ5KrZnWNVtQS6HWilcorqxBaoKK3a9MKJf-AP-RLGWVqK4NCcEsmOrIk98ybz_AxwYwxDjAOCU25onJqWCChjBqeO6UrEE5Y-TFm-Hdvrm48Da5Dt457lbPe8JJl46uVmN7wYVT_zEdJgzrMJRVNHtF-AYvX-uVlfOGDdSR2wq9tUKWblxcy_XrIajlZroUmIaexBLx9cyiwZlecxLwfvv3Qb1xz9PuxmkJNU0zlyABsiOoSdH0KE-NReqLfOjsCrLQ4nJGNJniaKtqXukjI_UakrQaxLsAvpThFfitfo6-Oz__Km6GLBiHQnIqneH0O_Ue_VPJqduEADnbGYGtLiCBhUnqJ04DiThmA2hnTGpYbfkSMe0wTTXREGRiUUoTRD3R1KyUXINCmMEyhE40icAjGDgDtDJm2lr2_bIUckwSqmY4Wcc8xKS3CbG96fpMIa_lJCWRnLR2P5yli-XYK73Kp-tsZm_7c-W6v1NWx5vXbLbz10muewnbIDFB33AgrxdC4uEXTE_CqbZN_mJMx7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oJEYPvo343IMnzQJ9L0eCIIqCiZLgqbLd3WgwhUC5ePI_-A_9Jc7SFsTowdhTm2ybdna7883Ot98AnFhdgX5Acsotg1PbkQFlzOLUs0sK8YRjdmOWb9Ott-2rjtNJ6pyOUrZ7mpKM9zRolaYwKgyEKsw2vuHBqF7YR3iD8c8iZG0D0UIGsuWLh0Z1OhmbXjwZl0yXavWsNLH500PmXdN8XnTibmpr8Ji-aMwy6eXHEc8Hr980HP_xJeuwmkBRUo7HzgYsyHATVr4IFOLVzVTVdbQF9cq0aCHpK3I30HQufTZJ_xMd0hLEwARvIa0h4k75HH68vbefXjSNLOiR1kBOsvrb0K5V7yt1mlRioIHJWEQt5XAEEjp-0fpwnClLMhddPePKwP7liNMMycySFIFVFFIoW5ilrlJcCmYoae1AJuyHcheIHQTc6zLlat191xUcEQYr2p4jOOcYrebgNO0EfxALbvgzaWVtLB-N5Wtj-W4OzlIL-8m_N_q99d6fWh_D0u15zb--bDb2YTkmDWiW7gFkouFYHiIWifhRMt4-AQmR1V8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Spaces+of+Hardy+Type+for+the+Ornstein%E2%80%93Uhlenbeck+Operator&rft.jtitle=Potential+analysis&rft.au=Carbonaro%2C+Andrea&rft.au=Mauceri%2C+Giancarlo&rft.au=Meda%2C+Stefano&rft.date=2010-07-01&rft.pub=Springer+Netherlands&rft.issn=0926-2601&rft.eissn=1572-929X&rft.volume=33&rft.issue=1&rft.spage=85&rft.epage=105&rft_id=info:doi/10.1007%2Fs11118-009-9160-6&rft.externalDocID=10_1007_s11118_009_9160_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-2601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-2601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-2601&client=summon |