Comparison of Spaces of Hardy Type for the Ornstein–Uhlenbeck Operator

Denote by γ the Gauss measure on ℝ n and by the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space of Goldberg type and show that for each u in ℝ ∖ {0} and r  > 0 the operator is unbounded from to L 1 γ. This result is in sharp contrast both with the fact that is bounded from H...

Full description

Saved in:
Bibliographic Details
Published inPotential analysis Vol. 33; no. 1; pp. 85 - 105
Main Authors Carbonaro, Andrea, Mauceri, Giancarlo, Meda, Stefano
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.07.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Denote by γ the Gauss measure on ℝ n and by the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space of Goldberg type and show that for each u in ℝ ∖ {0} and r  > 0 the operator is unbounded from to L 1 γ. This result is in sharp contrast both with the fact that is bounded from H 1 γ to L 1 γ, where H 1 γ denotes the Hardy type space introduced in Mauceri and Meda (J Funct Anal 252:278–313, 2007 ), and with the fact that in the Euclidean case is bounded from the Goldberg space to L 1 ℝ n . We consider also the case of Riemannian manifolds M with Riemannian measure μ . We prove that, under certain geometric assumptions on M , an operator , bounded on L 2 μ , and with a kernel satisfying certain analytic assumptions, is bounded from H 1 μ to L 1 μ if and only if it is bounded from to L 1 μ . Here H 1 μ denotes the Hardy space introduced in Carbonaro et al. (Ann Sc Norm Super Pisa, 2009 ), and is defined in Section 4, and is equivalent to a space recently introduced by M. Taylor (J Geom Anal 19(1):137–190, 2009 ). The case of translation invariant operators on homogeneous trees is also considered.
AbstractList Denote by γ the Gauss measure on ℝ n and by the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space of Goldberg type and show that for each u in ℝ ∖ {0} and r  > 0 the operator is unbounded from to L 1 γ. This result is in sharp contrast both with the fact that is bounded from H 1 γ to L 1 γ, where H 1 γ denotes the Hardy type space introduced in Mauceri and Meda (J Funct Anal 252:278–313, 2007 ), and with the fact that in the Euclidean case is bounded from the Goldberg space to L 1 ℝ n . We consider also the case of Riemannian manifolds M with Riemannian measure μ . We prove that, under certain geometric assumptions on M , an operator , bounded on L 2 μ , and with a kernel satisfying certain analytic assumptions, is bounded from H 1 μ to L 1 μ if and only if it is bounded from to L 1 μ . Here H 1 μ denotes the Hardy space introduced in Carbonaro et al. (Ann Sc Norm Super Pisa, 2009 ), and is defined in Section 4, and is equivalent to a space recently introduced by M. Taylor (J Geom Anal 19(1):137–190, 2009 ). The case of translation invariant operators on homogeneous trees is also considered.
Author Mauceri, Giancarlo
Carbonaro, Andrea
Meda, Stefano
Author_xml – sequence: 1
  givenname: Andrea
  surname: Carbonaro
  fullname: Carbonaro, Andrea
  organization: Dipartimento di Matematica, Università di Genova
– sequence: 2
  givenname: Giancarlo
  surname: Mauceri
  fullname: Mauceri, Giancarlo
  email: mauceri@dima.unige.it
  organization: Dipartimento di Matematica, Università di Genova
– sequence: 3
  givenname: Stefano
  surname: Meda
  fullname: Meda, Stefano
  organization: Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca
BookMark eNp9kEFOwzAQRS1UJNrCAdj5AoYZp0nsJaqAIlXqglZiZznJmLa0dmSHRXbcgRtyElKVNbOZWcz7-noTNvLBE2O3CHcIUN4nHEYJAC00FiCKCzbGvJRCS_02YmPQshCyALxik5T2ACDLUo3ZYh6OrY27FDwPjr-2tqZ0uhY2Nj1f9y1xFyLvtsRX0aeOdv7n63uzPZCvqP7gq5ai7UK8ZpfOHhLd_O0p2zw9rucLsVw9v8wflqKWSnUic3klpQSJZT5TUCmXkSpQ5apymFNd6RyRlNTU1Bk01LhZI7V1rqJGoaNsyvCcW8eQUiRn2rg72tgbBHNSYc4qzKDCnFSYYmDkmUnDr3-naPbhM_qh5j_QL0l1ZK4
CitedBy_id crossref_primary_10_1007_s12220_011_9240_x
crossref_primary_10_1007_s10231_016_0603_6
crossref_primary_10_1016_j_jfa_2018_11_014
crossref_primary_10_4213_rm9812
crossref_primary_10_1007_s00605_014_0683_6
crossref_primary_10_1007_s00526_018_1432_9
crossref_primary_10_1090_S0002_9939_2012_11443_1
Cites_doi 10.1112/S0024610700008723
10.1007/BFb0092772
10.1007/s000390050070
10.1006/jfan.2001.3757
10.1007/s12220-008-9054-7
10.1090/S0002-9904-1977-14325-5
10.1215/S0012-7094-79-04603-9
10.1023/A:1008685801945
10.1007/BFb0100043
10.1007/s00041-001-4044-1
10.1007/BF02791138
10.1007/BFb0084154
10.1112/S0024610700008917
10.1112/S0024610702003733
10.4171/RMI/152
10.1007/BF02922016
10.1090/S0002-9939-1991-1068123-9
10.1016/j.jfa.2007.06.017
10.1006/jfan.1994.1026
10.1090/S0002-9939-08-09365-9
10.1007/BFb0069151
10.1515/9781400881871
10.1090/S0002-9947-1969-0249918-0
ContentType Journal Article
Copyright Springer Science+Business Media B.V. 2009
Copyright_xml – notice: Springer Science+Business Media B.V. 2009
DBID AAYXX
CITATION
DOI 10.1007/s11118-009-9160-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1572-929X
EndPage 105
ExternalDocumentID 10_1007_s11118_009_9160_6
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFDYV
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c288t-3f5b22202175480b8f3e861858bf15ecb9511e829edc30dedf4d29affbed81fe3
IEDL.DBID AGYKE
ISSN 0926-2601
IngestDate Thu Sep 12 18:25:39 EDT 2024
Sat Dec 16 12:02:40 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gaussian measure
Homogeneous tree
42B30
58C99
42B20
Hardy spaces
Singular integrals
Imaginary powers
Riemannian manifold
Ornstein–Uhlenbeck operator
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-3f5b22202175480b8f3e861858bf15ecb9511e829edc30dedf4d29affbed81fe3
PageCount 21
ParticipantIDs crossref_primary_10_1007_s11118_009_9160_6
springer_journals_10_1007_s11118_009_9160_6
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry and Functional Analysis
PublicationTitle Potential analysis
PublicationTitleAbbrev Potential Anal
PublicationYear 2010
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References DragicevicOVolbergABellman functions and dimensionless estimates of Littlewood–Paley typeJ. Oper. Theory2006561671981114.420062261616
GutiérrezCEUrbinaWEstimates for the maximal operator of the Ornstein–Uhlenbeck semigroupProc. Am. Math. Soc.19911131991040737.4201910.2307/2048444
García-CuervaJMauceriGMedaSSjögrenPTorreaJLMaximal operators for the Ornstein–Uhlenbeck semigroupJ. Lond. Math. Soc.2003672192341058.4201210.1112/S0024610702003733
CoulhonTGrigoryanARandom walks on graphs wilth regular volume growthGeom. Funct. Anal.199886567010918.6005310.1007/s0003900500701633979
MedaSSjögrenPVallarinoMOn the H1–L1 boundedness of operatorsProc. Am. Math. Soc.2008136292129310530881410.1090/S0002-9939-08-09365-9
GutiérrezCESegoviaCTorreaJLOn higher order Riesz transforms for Gaussian measuresJ. Fourier Anal. Appl.199625835960893.4200710.1007/s00041-001-4044-11423529
PérezSSoriaFOperators associated with the Ornstein-Uhlenbeck semigroupJ. Lond. Math. Soc.2000618578710957.4201210.1112/S0024610700008917
Stein, E.M.: Harmonic analysis. Real variable methods, orthogonality and oscillatory integrals. In: Princeton Math. Series no. 43. Princeton N.J. (1993)
GundyRFSur les transformations de Riesz pour le semigroupe d’Ornstein–UhlenbeckC. R. Acad. Sci. Paris Sci., Ser. I Math.19863039679700606.60063877182
FabesEBGutiérrezCScottoRWeak type estimates for the Riesz transforms associated with the Gaussian measureRev. Mat. Iberoam.1994102292810810.42006
Sjögren, P.: On the maximal function for the Mehler kernel. In: Harmonic Analysis, Cortona, 1982. Springer Lecture Notes in Mathematics, vol. 992, pp. 73–82 (1983)
TaylorMEHardy spaces and bmo on manifolds with bounded geometryJ. Geom. Anal.20091911371900562062810.1007/s12220-008-9054-72465300
Carbonaro, A., Mauceri, G., Meda, S.: H1 and BMO for certain locally doubling metric measure spaces of finite measure. Colloq. Math. (2009). http://arxiv.org/pdf/0811.0100
Garcia-CuervaJMauceriGSjögrenPTorreaJLSpectral multipliers for the Ornstein–Uhlenbeck semigroupJ. Anal. Math.1999782813050939.4200710.1007/BF027911381714425
ChavelIDifferential geometric and analytic perspectivesCambridge Tract in Mathematics, vol. 1452001CambridgeCambridge University Press
MenárguezTPérezSSoriaFThe Mehler maximal function: a geometric proof of the weak type 1J. Lond. Math. Soc.20006128468560957.4201110.1112/S0024610700008723
PérezSThe local part and the strong type for operators related to the Gauss measureJ. Geom. Anal.20011134915071058.420151857854
ChavelIRiemannian Geometry: A Modern Introduction1993CambridgeCambridge University Press0810.53001
UrbinaWOn singular integrals with respect to the Gaussian measureAnn. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV1990XVIII45315671093708
GoldbergDA local version of real Hardy spacesDuke Math. J.19794627420409.4606010.1215/S0012-7094-79-04603-9523600
Figà-TalamancaANebbiaCHarmonic analysis and representation theory for groups acting on homogeneous treesLondon Math. Society Lecture Notes Series, vol. 1621991CambridgeCambridge University Press
MuckenhouptBHermite conjugate expansionsTrans. Am. Math. Soc.19691392432600175.1270110.2307/1995317249918
Garcia-CuervaJMauceriGSjögrenPTorreaJLHigher order Riesz operators for the Ornstein–Uhlenbeck semigroupPotential Anal.1999103794070954.4201010.1023/A:10086858019451698617
MauceriGMedaSBMO and H1 for the Ornstein–Uhlenbeck operatorJ. Funct. Anal.20072522783131136.4602710.1016/j.jfa.2007.06.0172357358
GutiérrezCOn the Riesz transforms for Gaussian measuresJ. Funct. Anal.19941201071340807.4603010.1006/jfan.1994.10261262249
MauceriGMedaSSjögrenPSharp estimates for the Ornstein–Uhlenbeck operatorAnn. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV200434474801116.47036
PisierGRiesz transforms: a simpler analytic proof of P.A. Meyer’s inequalitySpringer Lecture Notes in Mathematics1988132148550110.1007/BFb0084154960544
MeyerPANote sur le processus d’Ornstein–UhlenbeckSpringer Lecture Notes in Mathematics19829209513210.1007/BFb0092772
Stein, E.M.: Topics in harmonic analysis related to the Littlewood–Paley theory. In: Annals of Math. Studies, no. 63. Princeton N.J. (1970)
ForzaniLScottoRThe higher order Riesz transforms for Gaussian measure need not be weak type (1,1)Stud. Math.19981312052140954.420091644460
CoifmanRRWeissGExtensions of Hardy spaces and their use in analysisBull. Am. Math. Soc.1977835696450358.3002310.1090/S0002-9904-1977-14325-5447954
MeyerPATransformations de Riesz pour le lois GaussiennesSpringer Lecture Notes in Mathematics1984105917919310.1007/BFb0100043
Carbonaro, A., Mauceri, G., Meda, S.: H1 and BMO on certain measured metric spaces. Ann. Sc. Norm. Super. Pisa. (2009). http://arxiv.org/pdf/0808.0146
García-CuervaJMauceriGMedaSSjögrenPTorreaJLFunctional calculus for the Ornstein-Uhlenbeck operatorJ. Funct. Anal.200118324134500995.4701010.1006/jfan.2001.37571844213
PA Meyer (9160_CR20) 1984; 1059
B Muckenhoupt (9160_CR26) 1969; 139
J García-Cuerva (9160_CR13) 2001; 183
RR Coifman (9160_CR6) 1977; 83
J Garcia-Cuerva (9160_CR11) 1999; 10
PA Meyer (9160_CR25) 1982; 920
O Dragicevic (9160_CR7) 2006; 56
T Coulhon (9160_CR5) 1998; 8
EB Fabes (9160_CR8) 1994; 10
J García-Cuerva (9160_CR14) 2003; 67
T Menárguez (9160_CR24) 2000; 61
I Chavel (9160_CR3) 1993
S Pérez (9160_CR27) 2001; 11
A Figà-Talamanca (9160_CR10) 1991
9160_CR2
C Gutiérrez (9160_CR19) 1994; 120
9160_CR1
G Mauceri (9160_CR21) 2007; 252
S Meda (9160_CR23) 2008; 136
D Goldberg (9160_CR15) 1979; 46
L Forzani (9160_CR9) 1998; 131
J Garcia-Cuerva (9160_CR12) 1999; 78
S Pérez (9160_CR29) 2000; 61
G Mauceri (9160_CR22) 2004; 3
G Pisier (9160_CR28) 1988; 1321
CE Gutiérrez (9160_CR16) 1996; 2
W Urbina (9160_CR34) 1990; XVIII
RF Gundy (9160_CR18) 1986; 303
9160_CR30
9160_CR32
9160_CR31
CE Gutiérrez (9160_CR17) 1991; 113
I Chavel (9160_CR4) 2001
ME Taylor (9160_CR33) 2009; 19
References_xml – volume: 61
  start-page: 846
  issue: 2
  year: 2000
  ident: 9160_CR24
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/S0024610700008723
  contributor:
    fullname: T Menárguez
– volume: 920
  start-page: 95
  year: 1982
  ident: 9160_CR25
  publication-title: Springer Lecture Notes in Mathematics
  doi: 10.1007/BFb0092772
  contributor:
    fullname: PA Meyer
– volume: 8
  start-page: 656
  year: 1998
  ident: 9160_CR5
  publication-title: Geom. Funct. Anal.
  doi: 10.1007/s000390050070
  contributor:
    fullname: T Coulhon
– volume-title: Riemannian Geometry: A Modern Introduction
  year: 1993
  ident: 9160_CR3
  contributor:
    fullname: I Chavel
– volume: 183
  start-page: 413
  issue: 2
  year: 2001
  ident: 9160_CR13
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.2001.3757
  contributor:
    fullname: J García-Cuerva
– volume: 19
  start-page: 137
  issue: 1
  year: 2009
  ident: 9160_CR33
  publication-title: J. Geom. Anal.
  doi: 10.1007/s12220-008-9054-7
  contributor:
    fullname: ME Taylor
– volume: 83
  start-page: 569
  year: 1977
  ident: 9160_CR6
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1977-14325-5
  contributor:
    fullname: RR Coifman
– volume: 46
  start-page: 27
  year: 1979
  ident: 9160_CR15
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-79-04603-9
  contributor:
    fullname: D Goldberg
– volume: 10
  start-page: 379
  year: 1999
  ident: 9160_CR11
  publication-title: Potential Anal.
  doi: 10.1023/A:1008685801945
  contributor:
    fullname: J Garcia-Cuerva
– volume: 1059
  start-page: 179
  year: 1984
  ident: 9160_CR20
  publication-title: Springer Lecture Notes in Mathematics
  doi: 10.1007/BFb0100043
  contributor:
    fullname: PA Meyer
– volume: 2
  start-page: 583
  year: 1996
  ident: 9160_CR16
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-001-4044-1
  contributor:
    fullname: CE Gutiérrez
– volume: 3
  start-page: 447
  year: 2004
  ident: 9160_CR22
  publication-title: Ann. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV
  contributor:
    fullname: G Mauceri
– volume: 131
  start-page: 205
  year: 1998
  ident: 9160_CR9
  publication-title: Stud. Math.
  contributor:
    fullname: L Forzani
– ident: 9160_CR1
– volume: 56
  start-page: 167
  year: 2006
  ident: 9160_CR7
  publication-title: J. Oper. Theory
  contributor:
    fullname: O Dragicevic
– volume: 78
  start-page: 281
  year: 1999
  ident: 9160_CR12
  publication-title: J. Anal. Math.
  doi: 10.1007/BF02791138
  contributor:
    fullname: J Garcia-Cuerva
– volume: 1321
  start-page: 485
  year: 1988
  ident: 9160_CR28
  publication-title: Springer Lecture Notes in Mathematics
  doi: 10.1007/BFb0084154
  contributor:
    fullname: G Pisier
– volume: 61
  start-page: 857
  year: 2000
  ident: 9160_CR29
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/S0024610700008917
  contributor:
    fullname: S Pérez
– volume: 303
  start-page: 967
  year: 1986
  ident: 9160_CR18
  publication-title: C. R. Acad. Sci. Paris Sci., Ser. I Math.
  contributor:
    fullname: RF Gundy
– volume: 67
  start-page: 219
  year: 2003
  ident: 9160_CR14
  publication-title: J. Lond. Math. Soc.
  doi: 10.1112/S0024610702003733
  contributor:
    fullname: J García-Cuerva
– volume: 10
  start-page: 229
  year: 1994
  ident: 9160_CR8
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/RMI/152
  contributor:
    fullname: EB Fabes
– volume: 11
  start-page: 491
  issue: 3
  year: 2001
  ident: 9160_CR27
  publication-title: J. Geom. Anal.
  doi: 10.1007/BF02922016
  contributor:
    fullname: S Pérez
– volume: XVIII
  start-page: 531
  issue: 4
  year: 1990
  ident: 9160_CR34
  publication-title: Ann. Sc. Norm. Sup. Pisa, Classe di Scienze, Serie IV
  contributor:
    fullname: W Urbina
– volume: 113
  start-page: 99
  issue: 1
  year: 1991
  ident: 9160_CR17
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1991-1068123-9
  contributor:
    fullname: CE Gutiérrez
– ident: 9160_CR32
– volume: 252
  start-page: 278
  year: 2007
  ident: 9160_CR21
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2007.06.017
  contributor:
    fullname: G Mauceri
– volume-title: Cambridge Tract in Mathematics, vol. 145
  year: 2001
  ident: 9160_CR4
  contributor:
    fullname: I Chavel
– volume: 120
  start-page: 107
  year: 1994
  ident: 9160_CR19
  publication-title: J. Funct. Anal.
  doi: 10.1006/jfan.1994.1026
  contributor:
    fullname: C Gutiérrez
– volume-title: London Math. Society Lecture Notes Series, vol. 162
  year: 1991
  ident: 9160_CR10
  contributor:
    fullname: A Figà-Talamanca
– volume: 136
  start-page: 2921
  year: 2008
  ident: 9160_CR23
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-08-09365-9
  contributor:
    fullname: S Meda
– ident: 9160_CR30
  doi: 10.1007/BFb0069151
– ident: 9160_CR2
– ident: 9160_CR31
  doi: 10.1515/9781400881871
– volume: 139
  start-page: 243
  year: 1969
  ident: 9160_CR26
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1969-0249918-0
  contributor:
    fullname: B Muckenhoupt
SSID ssj0002778
Score 1.9542226
Snippet Denote by γ the Gauss measure on ℝ n and by the Ornstein–Uhlenbeck operator. In this paper we introduce a Hardy space of Goldberg type and show that for each u...
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 85
SubjectTerms Functional Analysis
Geometry
Mathematics
Mathematics and Statistics
Potential Theory
Probability Theory and Stochastic Processes
Title Comparison of Spaces of Hardy Type for the Ornstein–Uhlenbeck Operator
URI https://link.springer.com/article/10.1007/s11118-009-9160-6
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gXPTg24gPsgdPmiX0vT0CAYlGOGgTPDXddjcaTCFQLp78D_5Df4mzfSFRD_TUJtummW5nvtn55luAKyOIMA4ITrmhcWpaIqSMGZw6pisRT1h6kLF8h_bAM-_G1rgCerl0EU-aRUUyddSrXjc8GFVr-YhoMOXZgprqO7WqUGvfPt_3Sv-rO5n_dXWbKsGsopb510PWo9F6KTSNMP29rOtvkQoTKmLJpLlMeDN8_y3buMHL78NuDjhJO5shB1AR8SHs_JAhxKuHUrt1cQSDbrk1IZlK8jhTpC11lhb5iUpcCSJdgreQ0RzRpXiNvz4-vZc3RRYLJ2Q0E2nt_hi8fu-pO6D5fgs01BlLqCEtjnBBZSlKBY4zaQhmY0BnXGr4FTmiMU0w3RVRaLQiEUkz0t1ASi4ipklhnEA1nsbiFIgZhtwJmLSVur5tRxxxBGuZjhVxzjEnrcN1YXd_lslq-CsBZWUsH43lK2P5dh1uCqv6-R-2-H_02Uajz2E74wMoAu4FVJP5UlwizEh4A-dVv9MZNvL51YAtT29_AwgZyww
link.rule.ids 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BewAO7Iiy-sAJ5KrZnWNVtQS6HWilcorqxBaoKK3a9MKJf-AP-RLGWVqK4NCcEsmOrIk98ybz_AxwYwxDjAOCU25onJqWCChjBqeO6UrEE5Y-TFm-Hdvrm48Da5Dt457lbPe8JJl46uVmN7wYVT_zEdJgzrMJRVNHtF-AYvX-uVlfOGDdSR2wq9tUKWblxcy_XrIajlZroUmIaexBLx9cyiwZlecxLwfvv3Qb1xz9PuxmkJNU0zlyABsiOoSdH0KE-NReqLfOjsCrLQ4nJGNJniaKtqXukjI_UakrQaxLsAvpThFfitfo6-Oz__Km6GLBiHQnIqneH0O_Ue_VPJqduEADnbGYGtLiCBhUnqJ04DiThmA2hnTGpYbfkSMe0wTTXREGRiUUoTRD3R1KyUXINCmMEyhE40icAjGDgDtDJm2lr2_bIUckwSqmY4Wcc8xKS3CbG96fpMIa_lJCWRnLR2P5yli-XYK73Kp-tsZm_7c-W6v1NWx5vXbLbz10muewnbIDFB33AgrxdC4uEXTE_CqbZN_mJMx7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4oJEYPvo343IMnzQJ9L0eCIIqCiZLgqbLd3WgwhUC5ePI_-A_9Jc7SFsTowdhTm2ybdna7883Ot98AnFhdgX5Acsotg1PbkQFlzOLUs0sK8YRjdmOWb9Ott-2rjtNJ6pyOUrZ7mpKM9zRolaYwKgyEKsw2vuHBqF7YR3iD8c8iZG0D0UIGsuWLh0Z1OhmbXjwZl0yXavWsNLH500PmXdN8XnTibmpr8Ji-aMwy6eXHEc8Hr980HP_xJeuwmkBRUo7HzgYsyHATVr4IFOLVzVTVdbQF9cq0aCHpK3I30HQufTZJ_xMd0hLEwARvIa0h4k75HH68vbefXjSNLOiR1kBOsvrb0K5V7yt1mlRioIHJWEQt5XAEEjp-0fpwnClLMhddPePKwP7liNMMycySFIFVFFIoW5ilrlJcCmYoae1AJuyHcheIHQTc6zLlat191xUcEQYr2p4jOOcYrebgNO0EfxALbvgzaWVtLB-N5Wtj-W4OzlIL-8m_N_q99d6fWh_D0u15zb--bDb2YTkmDWiW7gFkouFYHiIWifhRMt4-AQmR1V8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Spaces+of+Hardy+Type+for+the+Ornstein%E2%80%93Uhlenbeck+Operator&rft.jtitle=Potential+analysis&rft.au=Carbonaro%2C+Andrea&rft.au=Mauceri%2C+Giancarlo&rft.au=Meda%2C+Stefano&rft.date=2010-07-01&rft.pub=Springer+Netherlands&rft.issn=0926-2601&rft.eissn=1572-929X&rft.volume=33&rft.issue=1&rft.spage=85&rft.epage=105&rft_id=info:doi/10.1007%2Fs11118-009-9160-6&rft.externalDocID=10_1007_s11118_009_9160_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-2601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-2601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-2601&client=summon