Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning
In this paper, an artificial neural network (ANN) trained through a deep reinforcement learning (DRL) agent is used to perform flow control. The target is to look for the wake stabilization mechanism in an active way. The flow past a 2-D cylinder with a Reynolds number 240 is addressed with and with...
Saved in:
Published in | Journal of hydrodynamics. Series B Vol. 32; no. 2; pp. 254 - 258 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Singapore
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-6058 1878-0342 |
DOI | 10.1007/s42241-020-0027-z |
Cover
Loading…
Abstract | In this paper, an artificial neural network (ANN) trained through a deep reinforcement learning (DRL) agent is used to perform flow control. The target is to look for the wake stabilization mechanism in an active way. The flow past a 2-D cylinder with a Reynolds number 240 is addressed with and without a control strategy. The control strategy is based on using two small rotating cylinders which are located at two symmetrical positions back of the main cylinder. The rotating speed of the counter-rotating small cylinder pair is determined by the ANN and DRL approach. By performing the final test, the interaction of the counter-rotating small cylinder pair with the wake of the main cylinder is able to stabilize the periodic shedding of the main cylinder wake. This demonstrates that the way of establishing this control strategy is reliable and viable. In another way, the internal interaction mechanism in this control method can be explored by the ANN and DRL approach. |
---|---|
AbstractList | In this paper, an artificial neural network (ANN) trained through a deep reinforcement learning (DRL) agent is used to perform flow control. The target is to look for the wake stabilization mechanism in an active way. The flow past a 2-D cylinder with a Reynolds number 240 is addressed with and without a control strategy. The control strategy is based on using two small rotating cylinders which are located at two symmetrical positions back of the main cylinder. The rotating speed of the counter-rotating small cylinder pair is determined by the ANN and DRL approach. By performing the final test, the interaction of the counter-rotating small cylinder pair with the wake of the main cylinder is able to stabilize the periodic shedding of the main cylinder wake. This demonstrates that the way of establishing this control strategy is reliable and viable. In another way, the internal interaction mechanism in this control method can be explored by the ANN and DRL approach. |
Author | Rabault, Jean Deng, Jian Xu, Hui Zhang, Wei |
Author_xml | – sequence: 1 givenname: Hui surname: Xu fullname: Xu, Hui organization: School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Department of Aeronautics, Imperial College London – sequence: 2 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: Marine Design and Research Institute of China – sequence: 3 givenname: Jian surname: Deng fullname: Deng, Jian email: zjudengjian@zju.edu.cn organization: Department of Mechanics, Zhejiang University – sequence: 4 givenname: Jean surname: Rabault fullname: Rabault, Jean organization: Department of Mathematics, University of Oslo |
BookMark | eNp9kM9OAjEYxBuDiYA-gLe-QLXtlm05EuK_hMSLnjfd7rdYXFrytUjg6d0VTx48zRzmN8nMhIxCDEDIreB3gnN9n5SUSjAuOeNcana6IGNhtGG8UHLUe84FK_nMXJFJShvOi3LO1ZjgwmX_BbTt4oG6GDLGjh58_qAYs80-rKk7dj40gInWR2oDtZh96523HQ2wxx_Jh4ifNKP1AZoh1wDsKIIPbUQHWwiZdmAx9IXX5LK1XYKbX52S98eHt-UzW70-vSwXK-akMZlJZazUStuyETCfO-0KB67kwhbKgKlLU87rtimlbm0hW2WVcbWRxvXOzZQupkSfex3GlBDayvlh0jDS-q4SvBquq87XVf111XBddepJ8Yfcod9aPP7LyDOT-mxYA1abuMfQD_wH-gZVuYaH |
CitedBy_id | crossref_primary_10_1155_2022_4705272 crossref_primary_10_1016_j_jcp_2025_113893 crossref_primary_10_3390_fluids7020062 crossref_primary_10_1186_s10033_022_00791_4 crossref_primary_10_1016_j_jweia_2024_105662 crossref_primary_10_1088_1742_6596_2753_1_012022 crossref_primary_10_1063_5_0103113 crossref_primary_10_1038_s41598_023_34007_z crossref_primary_10_1007_s11012_024_01830_1 crossref_primary_10_1007_s42791_024_00067_z crossref_primary_10_1109_ACCESS_2022_3204968 crossref_primary_10_1007_s10494_024_00619_2 crossref_primary_10_2478_pomr_2024_0046 crossref_primary_10_1038_s41467_025_56408_6 crossref_primary_10_1063_5_0153181 crossref_primary_10_1103_PhysRevFluids_6_053902 crossref_primary_10_1017_jfm_2024_333 crossref_primary_10_3390_act11120359 crossref_primary_10_1063_5_0128446 crossref_primary_10_1063_5_0068454 crossref_primary_10_1088_1361_6501_ac93a4 crossref_primary_10_1063_5_0037334 crossref_primary_10_1007_s42241_020_0074_5 crossref_primary_10_1017_jfm_2023_147 crossref_primary_10_1016_j_awe_2024_100002 crossref_primary_10_1155_2022_6158067 crossref_primary_10_1007_s10494_024_00609_4 crossref_primary_10_3390_fluids9090216 crossref_primary_10_46300_9106_2022_16_73 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125561 crossref_primary_10_1063_5_0097241 crossref_primary_10_1016_j_physrep_2024_05_004 crossref_primary_10_1017_jfm_2022_1020 crossref_primary_10_1140_epje_s10189_023_00285_8 crossref_primary_10_1063_5_0152777 crossref_primary_10_1016_j_jcp_2021_110317 crossref_primary_10_1063_5_0241809 crossref_primary_10_1063_5_0099699 crossref_primary_10_1063_5_0204237 crossref_primary_10_1063_5_0143913 crossref_primary_10_1063_5_0170316 crossref_primary_10_1002_fld_5025 crossref_primary_10_1016_j_oceaneng_2025_120989 crossref_primary_10_1016_j_oceaneng_2023_114320 crossref_primary_10_1063_5_0087208 crossref_primary_10_1007_s10483_022_2940_9 crossref_primary_10_1063_5_0142949 crossref_primary_10_1016_j_oceaneng_2024_118531 crossref_primary_10_3389_arc_2023_11130 crossref_primary_10_1016_j_oceaneng_2021_110357 crossref_primary_10_1088_1873_7005_ac505d crossref_primary_10_1007_s00162_023_00641_6 crossref_primary_10_1063_5_0221845 crossref_primary_10_1007_s42241_021_0099_4 crossref_primary_10_1017_jfm_2021_1045 |
Cites_doi | 10.1017/S0022112099004309 10.1007/978-3-642-23099-8_21 10.1115/1.4031878 10.1007/s00348-003-0704-z 10.1146/annurev.fluid.39.050905.110149 10.1017/S0022112000002214 10.1017/jfm.2016.803 10.1016/0021-9991(79)90088-3 10.1002/fld.4416 10.1017/S0022112004000588 10.1007/s00348-014-1707-7 10.1007/s00348-019-2717-2 10.1146/annurev.fluid.36.050802.122128 10.1017/S0022112065000162 10.1088/1361-6501/aa8b87 10.1016/j.jfluidstructs.2015.05.011 10.1103/PhysRevE.100.053107 10.1103/PhysRevLett.109.154502 10.1063/1.1850151 10.1073/pnas.1800923115 10.1063/1.5116415 10.1006/jfls.1997.0128 10.1016/j.neunet.2014.09.003 10.1016/j.compfluid.2014.12.020 10.1017/jfm.2017.395 10.1017/jfm.2013.332 10.1006/jfls.2000.0337 10.1017/jfm.2019.62 |
ContentType | Journal Article |
Copyright | China Ship Scientific Research Center 2020 |
Copyright_xml | – notice: China Ship Scientific Research Center 2020 |
DBID | AAYXX CITATION |
DOI | 10.1007/s42241-020-0027-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-0342 |
EndPage | 258 |
ExternalDocumentID | 10_1007_s42241_020_0027_z |
GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C0 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 7-5 71M 8P~ 92H 92I 92M 9D9 9DA AABNK AACDK AACTN AAEDT AAEDW AAHNG AAIAL AAIKJ AAJBT AAKOC AALRI AAOAW AAQFI AASML AATNV AAUYE AAXDM AAXKI AAXUO ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMAC ABMQK ABTEG ABTKH ABWVN ABXDB ABXPI ACAOD ACDAQ ACDTI ACGFS ACHSB ACMLO ACNNM ACOKC ACPIV ACRLP ACRPL ACZOJ ADEZE ADHHG ADKNI ADMLS ADMUD ADNMO ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFQL AEIPS AEJRE AEKER AEMSY AENEX AEPYU AESKC AFBBN AFKWA AFQWF AFUIB AGDGC AGHFR AGJBK AGMZJ AGQEE AGRTI AGUBO AGYEJ AHJVU AIAKS AIEXJ AIGIU AIKHN AILAN AITGF AITUG AJOXV AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF ANKPU AXJTR AXYYD BGNMA BKOJK BLXMC CAJEA CCEZO CCVFK CHBEP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FEDTE FIGPU FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HVGLF HZ~ IHE IKXTQ IWAJR J-C J1W JJJVA JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O9- OAUVE OZT P-8 P-9 PC. PT4 Q-- Q-0 Q38 R-A REI RIG RLLFE ROL RPZ RSV RT1 S.. SDC SDF SDG SES SJYHP SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K T8Q TCJ TGT TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW ZMTXR ~LB AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AFXIZ AGCQF AGRNS AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION SSH |
ID | FETCH-LOGICAL-c288t-248a2747a6d1e99c7c3cec601a348e8b6869bfd627fa32f4a48cb828c4a4c5473 |
ISSN | 1001-6058 |
IngestDate | Tue Jul 01 02:16:52 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Fri Feb 21 02:30:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | rotating cylinders Artificial neural network (ANN) flow control deep reinforcement learning (DRL) |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c288t-248a2747a6d1e99c7c3cec601a348e8b6869bfd627fa32f4a48cb828c4a4c5473 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_1007_s42241_020_0027_z crossref_primary_10_1007_s42241_020_0027_z springer_journals_10_1007_s42241_020_0027_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200400 2020-04-00 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Journal of hydrodynamics. Series B |
PublicationTitleAbbrev | J Hydrodyn |
PublicationYear | 2020 |
Publisher | Springer Singapore |
Publisher_xml | – name: Springer Singapore |
References | Blackburn, Henderson (CR10) 1999; 385 Sohankar, Khodadadi, Rangraz (CR15) 2015; 109 Chen, Li, Hu (CR14) 2014; 55 Cetiner, Rockwell (CR8) 2001; 427 Goda (CR29) 1979; 30 Leontini, Jacono, Thompson (CR9) 2013; 730 Chauhan, Dutta, Gandhi (CR11) 2016; 138 Schulmeister, Dahl, Weymouth (CR18) 2017; 825 Verma, Novati, Koumoutsakos (CR23) 2018; 115 Bearman (CR2) 1965; 21 Kim, Choi (CR13) 2005; 17 Mittal (CR16) 2001; 15 Valen-Sendstad, Logg, Mardal (CR28) 2012 Rabault, Kuchta, Jensen (CR19) 2019; 865 Williamson, Govardhan (CR1) 2004; 36 Bagheri, A Mazzino, Bottaro (CR4) 2012; 109 Cai, Zhou, Xu (CR24) 2019; 60 Zhu, Yao, Ma (CR17) 2015; 57 Bearman, Owen (CR3) 1998; 12 Wang, Xiao, Fang (CR22) 2018; 86 CR26 Schmidhuber (CR20) 2015; 61 Rabault, Kuhnle (CR27) 2019; 31 Rabault, Kolaas, Jensen (CR25) 2017; 28 Choi, Jeon, Kim (CR6) 2008; 40 Deng, Mao, Xie (CR5) 2019; 100 Nathan (CR21) 2017; 814 Poncet (CR7) 2004; 517 Artana, Sosa, Moreau (CR12) 2003; 35 H Choi (27_CR6) 2008; 40 J Deng (27_CR5) 2019; 100 27_CR26 J Rabault (27_CR27) 2019; 31 H M Blackburn (27_CR10) 1999; 385 M K Chauhan (27_CR11) 2016; 138 S Cai (27_CR24) 2019; 60 C H K Williamson (27_CR1) 2004; 36 S Mittal (27_CR16) 2001; 15 J Rabault (27_CR25) 2017; 28 P W Bearman (27_CR3) 1998; 12 S Verma (27_CR23) 2018; 115 G Artana (27_CR12) 2003; 35 P Poncet (27_CR7) 2004; 517 S Bagheri (27_CR4) 2012; 109 J Schmidhuber (27_CR20) 2015; 61 W L Chen (27_CR14) 2014; 55 K Valen-Sendstad (27_CR28) 2012 K Goda (27_CR29) 1979; 30 P W Bearman (27_CR2) 1965; 21 Z Wang (27_CR22) 2018; 86 J C Schulmeister (27_CR18) 2017; 825 J S Leontini (27_CR9) 2013; 730 H Zhu (27_CR17) 2015; 57 J Kim (27_CR13) 2005; 17 K J Nathan (27_CR21) 2017; 814 O Cetiner (27_CR8) 2001; 427 J Rabault (27_CR19) 2019; 865 A Sohankar (27_CR15) 2015; 109 |
References_xml | – volume: 385 start-page: 255 year: 1999 end-page: 286 ident: CR10 article-title: A study of two-dimensional flow past an oscillating cylinder [J] publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112099004309 – start-page: 399 year: 2012 end-page: 420 ident: CR28 publication-title: A comparison of finite element schemes for the incompressible Navier-Stokes equations (Automated solution of differential equations by the finite element method [M] doi: 10.1007/978-3-642-23099-8_21 – volume: 138 start-page: 051105 issue: 5 year: 2016 ident: CR11 article-title: Experimental investigation of flow over a transversely oscillating square cylinder atintermediate Reynolds number [J] publication-title: Journal of Fluids Engineering doi: 10.1115/1.4031878 – volume: 35 start-page: 580 year: 2003 end-page: 588 ident: CR12 article-title: Control of the near-wake flow around a circular cylinder with electro hydrodynamic actuators [J] publication-title: Experiments in Fluids doi: 10.1007/s00348-003-0704-z – volume: 40 start-page: 113 year: 2008 end-page: 139 ident: CR6 article-title: Control of flow over a bluff body [J] publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.39.050905.110149 – volume: 427 start-page: 1 year: 2001 end-page: 28 ident: CR8 article-title: Streamwise oscillations of a cylinder in a steady current. Part 1. Locked-on states of vortex formation and loading [J] publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112000002214 – volume: 814 start-page: 1 year: 2017 end-page: 4 ident: CR21 article-title: Deep learning in fluid dynamics [J] publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2016.803 – volume: 30 start-page: 76 issue: 1 year: 1979 end-page: 95 ident: CR29 article-title: A multistep technique with implicit difference schemes for calculating two-or three-dimensional cavity flows [J] publication-title: Journal of Computational Physics doi: 10.1016/0021-9991(79)90088-3 – volume: 86 start-page: 255 issue: 4 year: 2018 end-page: 268 ident: CR22 article-title: Model identification of reduced order fluid dynamics systems using deep learning [J] publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.4416 – volume: 517 start-page: 27 year: 2004 end-page: 53 ident: CR7 article-title: Topological aspects of three-dimensional wakes behind rotary oscillating cylinders [J] publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112004000588 – volume: 55 start-page: 1707 year: 2014 ident: CR14 article-title: An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder [J] publication-title: Experiments in Fluids doi: 10.1007/s00348-014-1707-7 – volume: 60 start-page: 73 year: 2019 ident: CR24 article-title: Dense motion estimation of particle images via a convolutional neural network [J] publication-title: Experiments in Fluids doi: 10.1007/s00348-019-2717-2 – volume: 36 start-page: 413 year: 2004 end-page: 455 ident: CR1 article-title: Vortex-induced vibrations [J] publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.36.050802.122128 – volume: 21 start-page: 241 year: 1965 end-page: 255 ident: CR2 article-title: Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates [J] publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112065000162 – volume: 28 start-page: 125301 issue: 12 year: 2017 ident: CR25 article-title: Performing particle image velocimetry using artificial neural networks: a proof-of-concept [J] publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/aa8b87 – volume: 57 start-page: 66 year: 2015 end-page: 80 ident: CR17 article-title: Simultaneous CFD evaluation of VIV suppression using smaller control cylinders [J] publication-title: Journal of Fluids and Structures doi: 10.1016/j.jfluidstructs.2015.05.011 – volume: 100 start-page: 053107 year: 2019 ident: CR5 article-title: Dynamics of two-dimensional flow around a circular cylinder attached with flexible filaments [J] publication-title: Physical Review E doi: 10.1103/PhysRevE.100.053107 – volume: 109 start-page: 154502 issue: 15 year: 2012 ident: CR4 article-title: Spontaneous symmetry breaking of a hinged flapping filament generates lift [J] publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.109.154502 – volume: 17 start-page: 033103 issue: 3 year: 2005 ident: CR13 article-title: Distributed forcing of flow over a circular cylinder [J] publication-title: Physics of Fluids doi: 10.1063/1.1850151 – volume: 115 start-page: 5849 issue: 23 year: 2018 end-page: 5854 ident: CR23 article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning [J] publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1800923115 – volume: 31 start-page: 094105 issue: 9 year: 2019 ident: CR27 article-title: Accelerating deep reinforcement learning of active flowcontrol strategies through a multi-environment approach [J] publication-title: Physics of Fluids doi: 10.1063/1.5116415 – volume: 12 start-page: 123 issue: 1 year: 1998 end-page: 130 ident: CR3 article-title: Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines [J] publication-title: Journal of Fluids and Structures doi: 10.1006/jfls.1997.0128 – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: CR20 article-title: Deep learning in neural networks: An overview [J] publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – ident: CR26 – volume: 109 start-page: 155 year: 2015 end-page: 167 ident: CR15 article-title: Control of fluid flow and heat transfer around a square cylinder by uniform suction and blowing at low Reynolds numbers [J] publication-title: Computers and Fluids doi: 10.1016/j.compfluid.2014.12.020 – volume: 825 start-page: 743 year: 2017 end-page: 763 ident: CR18 article-title: Flow control with rotating cylinders [J] publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2017.395 – volume: 730 start-page: 162 year: 2013 end-page: 192 ident: CR9 article-title: Wake states and frequency selection of a streamwise oscillating cylinder [J] publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2013.332 – volume: 15 start-page: 291 issue: 2 year: 2001 end-page: 326 ident: CR16 article-title: Control of flow past bluff bodies using rotating control cylinders [J] publication-title: Journal of Fluids and Structures doi: 10.1006/jfls.2000.0337 – volume: 865 start-page: 281 year: 2019 end-page: 302 ident: CR19 article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control [J] publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2019.62 – volume: 15 start-page: 291 issue: 2 year: 2001 ident: 27_CR16 publication-title: Journal of Fluids and Structures doi: 10.1006/jfls.2000.0337 – volume: 385 start-page: 255 year: 1999 ident: 27_CR10 publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112099004309 – volume: 814 start-page: 1 year: 2017 ident: 27_CR21 publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2016.803 – volume: 100 start-page: 053107 year: 2019 ident: 27_CR5 publication-title: Physical Review E doi: 10.1103/PhysRevE.100.053107 – volume: 115 start-page: 5849 issue: 23 year: 2018 ident: 27_CR23 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1800923115 – volume: 86 start-page: 255 issue: 4 year: 2018 ident: 27_CR22 publication-title: International Journal for Numerical Methods in Fluids doi: 10.1002/fld.4416 – volume: 31 start-page: 094105 issue: 9 year: 2019 ident: 27_CR27 publication-title: Physics of Fluids doi: 10.1063/1.5116415 – start-page: 399 volume-title: A comparison of finite element schemes for the incompressible Navier-Stokes equations (Automated solution of differential equations by the finite element method [M] year: 2012 ident: 27_CR28 doi: 10.1007/978-3-642-23099-8_21 – volume: 35 start-page: 580 year: 2003 ident: 27_CR12 publication-title: Experiments in Fluids doi: 10.1007/s00348-003-0704-z – volume: 730 start-page: 162 year: 2013 ident: 27_CR9 publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2013.332 – volume: 825 start-page: 743 year: 2017 ident: 27_CR18 publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2017.395 – volume: 865 start-page: 281 year: 2019 ident: 27_CR19 publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2019.62 – volume: 517 start-page: 27 year: 2004 ident: 27_CR7 publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112004000588 – volume: 21 start-page: 241 year: 1965 ident: 27_CR2 publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112065000162 – ident: 27_CR26 – volume: 138 start-page: 051105 issue: 5 year: 2016 ident: 27_CR11 publication-title: Journal of Fluids Engineering doi: 10.1115/1.4031878 – volume: 40 start-page: 113 year: 2008 ident: 27_CR6 publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.39.050905.110149 – volume: 30 start-page: 76 issue: 1 year: 1979 ident: 27_CR29 publication-title: Journal of Computational Physics doi: 10.1016/0021-9991(79)90088-3 – volume: 55 start-page: 1707 year: 2014 ident: 27_CR14 publication-title: Experiments in Fluids doi: 10.1007/s00348-014-1707-7 – volume: 57 start-page: 66 year: 2015 ident: 27_CR17 publication-title: Journal of Fluids and Structures doi: 10.1016/j.jfluidstructs.2015.05.011 – volume: 17 start-page: 033103 issue: 3 year: 2005 ident: 27_CR13 publication-title: Physics of Fluids doi: 10.1063/1.1850151 – volume: 61 start-page: 85 year: 2015 ident: 27_CR20 publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – volume: 36 start-page: 413 year: 2004 ident: 27_CR1 publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.36.050802.122128 – volume: 427 start-page: 1 year: 2001 ident: 27_CR8 publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112000002214 – volume: 109 start-page: 155 year: 2015 ident: 27_CR15 publication-title: Computers and Fluids doi: 10.1016/j.compfluid.2014.12.020 – volume: 28 start-page: 125301 issue: 12 year: 2017 ident: 27_CR25 publication-title: Measurement Science and Technology doi: 10.1088/1361-6501/aa8b87 – volume: 12 start-page: 123 issue: 1 year: 1998 ident: 27_CR3 publication-title: Journal of Fluids and Structures doi: 10.1006/jfls.1997.0128 – volume: 60 start-page: 73 year: 2019 ident: 27_CR24 publication-title: Experiments in Fluids doi: 10.1007/s00348-019-2717-2 – volume: 109 start-page: 154502 issue: 15 year: 2012 ident: 27_CR4 publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.109.154502 |
SSID | ssj0036904 |
Score | 2.4791808 |
Snippet | In this paper, an artificial neural network (ANN) trained through a deep reinforcement learning (DRL) agent is used to perform flow control. The target is to... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 254 |
SubjectTerms | Engineering Engineering Fluid Dynamics Hydrology/Water Resources Numerical and Computational Physics Simulation Special Column on the International Symposium on High-Fidelity Computational Methods and Applications 2019 (Guest Editors Hui Xu Wei Zhang |
Title | Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning |
URI | https://link.springer.com/article/10.1007/s42241-020-0027-z |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeoEDojxEW0A-cCLaarHdXe8xKqCqFRxKq-a2sr1eqBQlVZIVSv5O_2hnbO-LEkS5bFajiXeT-ex5eDxDyHsttTQxF5HNjkwkbJlGmbYi4takvIx1oizGIb9-S04uxenkaDIY3HaylqqVPjSbP54r-R-pAg3kiqdkHyDZZlAgwD3IF64gYbj-k4zHxlftns5_9XPOF3PcYcfjtOvptTu-gmYmTGUcJNSMwEqW7sPlgfteEd4cLay9GS2sq6lqXPiwbi7xY4st-3NdwELsm9svD3EBAge8beg8qZyGq67vhamvbEP7ZENycAew50qrauq3S2wghxAFizuZLd0Q5eg7dvkGt8J2FlxM6cKtWa-PPE1i1V8ueqt0GwVtnOWw5Poi1EF7Mz_SPcXgc0GWAi2WyL0i-OPRptWCTW5iU8fZ8ebAmyNvvnlEdhj4ImxIdsZn51dntcLnSea6VDY_pd48xxOavz-wb_70996dSXPxjDwN8qNjD6xdMrCz5-RJp0LlC7LwEKMIMRogRhFitIYYbSBG9ZqqGW0hRj3EaIAYDRBDPoQY7UGM1hB7SS6_fL44PolCm47IMClXERNSYWxDJcVHm2UmNdxYA46-4kJaqROZZLosEpaWirNSKCGNBkffwJ3B1tevyHA2n9nXhKaFYalWpZKphgFZJkUhuWSlFmBGFvEeiet_Lzehhj2--zTfKrU98qH5yo0v4PI35lEtkjzM8-V27v0HcR-Qx-3ceEOGq0Vl34JBu9LvAqDuAP3Gor4 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+flow+control+with+rotating+cylinders+by+an+artificial+neural+network+trained+by+deep+reinforcement+learning&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Xu%2C+Hui&rft.au=Zhang%2C+Wei&rft.au=Deng%2C+Jian&rft.au=Rabault%2C+Jean&rft.date=2020-04-01&rft.pub=Springer+Singapore&rft.issn=1001-6058&rft.eissn=1878-0342&rft.volume=32&rft.issue=2&rft.spage=254&rft.epage=258&rft_id=info:doi/10.1007%2Fs42241-020-0027-z&rft.externalDocID=10_1007_s42241_020_0027_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-6058&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-6058&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-6058&client=summon |