Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning

In this paper, an artificial neural network (ANN) trained through a deep reinforcement learning (DRL) agent is used to perform flow control. The target is to look for the wake stabilization mechanism in an active way. The flow past a 2-D cylinder with a Reynolds number 240 is addressed with and with...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrodynamics. Series B Vol. 32; no. 2; pp. 254 - 258
Main Authors Xu, Hui, Zhang, Wei, Deng, Jian, Rabault, Jean
Format Journal Article
LanguageEnglish
Published Singapore Springer Singapore 01.04.2020
Subjects
Online AccessGet full text
ISSN1001-6058
1878-0342
DOI10.1007/s42241-020-0027-z

Cover

Loading…
Abstract In this paper, an artificial neural network (ANN) trained through a deep reinforcement learning (DRL) agent is used to perform flow control. The target is to look for the wake stabilization mechanism in an active way. The flow past a 2-D cylinder with a Reynolds number 240 is addressed with and without a control strategy. The control strategy is based on using two small rotating cylinders which are located at two symmetrical positions back of the main cylinder. The rotating speed of the counter-rotating small cylinder pair is determined by the ANN and DRL approach. By performing the final test, the interaction of the counter-rotating small cylinder pair with the wake of the main cylinder is able to stabilize the periodic shedding of the main cylinder wake. This demonstrates that the way of establishing this control strategy is reliable and viable. In another way, the internal interaction mechanism in this control method can be explored by the ANN and DRL approach.
AbstractList In this paper, an artificial neural network (ANN) trained through a deep reinforcement learning (DRL) agent is used to perform flow control. The target is to look for the wake stabilization mechanism in an active way. The flow past a 2-D cylinder with a Reynolds number 240 is addressed with and without a control strategy. The control strategy is based on using two small rotating cylinders which are located at two symmetrical positions back of the main cylinder. The rotating speed of the counter-rotating small cylinder pair is determined by the ANN and DRL approach. By performing the final test, the interaction of the counter-rotating small cylinder pair with the wake of the main cylinder is able to stabilize the periodic shedding of the main cylinder wake. This demonstrates that the way of establishing this control strategy is reliable and viable. In another way, the internal interaction mechanism in this control method can be explored by the ANN and DRL approach.
Author Rabault, Jean
Deng, Jian
Xu, Hui
Zhang, Wei
Author_xml – sequence: 1
  givenname: Hui
  surname: Xu
  fullname: Xu, Hui
  organization: School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Department of Aeronautics, Imperial College London
– sequence: 2
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Marine Design and Research Institute of China
– sequence: 3
  givenname: Jian
  surname: Deng
  fullname: Deng, Jian
  email: zjudengjian@zju.edu.cn
  organization: Department of Mechanics, Zhejiang University
– sequence: 4
  givenname: Jean
  surname: Rabault
  fullname: Rabault, Jean
  organization: Department of Mathematics, University of Oslo
BookMark eNp9kM9OAjEYxBuDiYA-gLe-QLXtlm05EuK_hMSLnjfd7rdYXFrytUjg6d0VTx48zRzmN8nMhIxCDEDIreB3gnN9n5SUSjAuOeNcana6IGNhtGG8UHLUe84FK_nMXJFJShvOi3LO1ZjgwmX_BbTt4oG6GDLGjh58_qAYs80-rKk7dj40gInWR2oDtZh96523HQ2wxx_Jh4ifNKP1AZoh1wDsKIIPbUQHWwiZdmAx9IXX5LK1XYKbX52S98eHt-UzW70-vSwXK-akMZlJZazUStuyETCfO-0KB67kwhbKgKlLU87rtimlbm0hW2WVcbWRxvXOzZQupkSfex3GlBDayvlh0jDS-q4SvBquq87XVf111XBddepJ8Yfcod9aPP7LyDOT-mxYA1abuMfQD_wH-gZVuYaH
CitedBy_id crossref_primary_10_1155_2022_4705272
crossref_primary_10_1016_j_jcp_2025_113893
crossref_primary_10_3390_fluids7020062
crossref_primary_10_1186_s10033_022_00791_4
crossref_primary_10_1016_j_jweia_2024_105662
crossref_primary_10_1088_1742_6596_2753_1_012022
crossref_primary_10_1063_5_0103113
crossref_primary_10_1038_s41598_023_34007_z
crossref_primary_10_1007_s11012_024_01830_1
crossref_primary_10_1007_s42791_024_00067_z
crossref_primary_10_1109_ACCESS_2022_3204968
crossref_primary_10_1007_s10494_024_00619_2
crossref_primary_10_2478_pomr_2024_0046
crossref_primary_10_1038_s41467_025_56408_6
crossref_primary_10_1063_5_0153181
crossref_primary_10_1103_PhysRevFluids_6_053902
crossref_primary_10_1017_jfm_2024_333
crossref_primary_10_3390_act11120359
crossref_primary_10_1063_5_0128446
crossref_primary_10_1063_5_0068454
crossref_primary_10_1088_1361_6501_ac93a4
crossref_primary_10_1063_5_0037334
crossref_primary_10_1007_s42241_020_0074_5
crossref_primary_10_1017_jfm_2023_147
crossref_primary_10_1016_j_awe_2024_100002
crossref_primary_10_1155_2022_6158067
crossref_primary_10_1007_s10494_024_00609_4
crossref_primary_10_3390_fluids9090216
crossref_primary_10_46300_9106_2022_16_73
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125561
crossref_primary_10_1063_5_0097241
crossref_primary_10_1016_j_physrep_2024_05_004
crossref_primary_10_1017_jfm_2022_1020
crossref_primary_10_1140_epje_s10189_023_00285_8
crossref_primary_10_1063_5_0152777
crossref_primary_10_1016_j_jcp_2021_110317
crossref_primary_10_1063_5_0241809
crossref_primary_10_1063_5_0099699
crossref_primary_10_1063_5_0204237
crossref_primary_10_1063_5_0143913
crossref_primary_10_1063_5_0170316
crossref_primary_10_1002_fld_5025
crossref_primary_10_1016_j_oceaneng_2025_120989
crossref_primary_10_1016_j_oceaneng_2023_114320
crossref_primary_10_1063_5_0087208
crossref_primary_10_1007_s10483_022_2940_9
crossref_primary_10_1063_5_0142949
crossref_primary_10_1016_j_oceaneng_2024_118531
crossref_primary_10_3389_arc_2023_11130
crossref_primary_10_1016_j_oceaneng_2021_110357
crossref_primary_10_1088_1873_7005_ac505d
crossref_primary_10_1007_s00162_023_00641_6
crossref_primary_10_1063_5_0221845
crossref_primary_10_1007_s42241_021_0099_4
crossref_primary_10_1017_jfm_2021_1045
Cites_doi 10.1017/S0022112099004309
10.1007/978-3-642-23099-8_21
10.1115/1.4031878
10.1007/s00348-003-0704-z
10.1146/annurev.fluid.39.050905.110149
10.1017/S0022112000002214
10.1017/jfm.2016.803
10.1016/0021-9991(79)90088-3
10.1002/fld.4416
10.1017/S0022112004000588
10.1007/s00348-014-1707-7
10.1007/s00348-019-2717-2
10.1146/annurev.fluid.36.050802.122128
10.1017/S0022112065000162
10.1088/1361-6501/aa8b87
10.1016/j.jfluidstructs.2015.05.011
10.1103/PhysRevE.100.053107
10.1103/PhysRevLett.109.154502
10.1063/1.1850151
10.1073/pnas.1800923115
10.1063/1.5116415
10.1006/jfls.1997.0128
10.1016/j.neunet.2014.09.003
10.1016/j.compfluid.2014.12.020
10.1017/jfm.2017.395
10.1017/jfm.2013.332
10.1006/jfls.2000.0337
10.1017/jfm.2019.62
ContentType Journal Article
Copyright China Ship Scientific Research Center 2020
Copyright_xml – notice: China Ship Scientific Research Center 2020
DBID AAYXX
CITATION
DOI 10.1007/s42241-020-0027-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-0342
EndPage 258
ExternalDocumentID 10_1007_s42241_020_0027_z
GroupedDBID --K
--M
-01
-0A
-EM
-SA
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
4.4
406
457
4G.
5GY
5VR
5VS
5XA
5XB
7-5
71M
8P~
92H
92I
92M
9D9
9DA
AABNK
AACDK
AACTN
AAEDT
AAEDW
AAHNG
AAIAL
AAIKJ
AAJBT
AAKOC
AALRI
AAOAW
AAQFI
AASML
AATNV
AAUYE
AAXDM
AAXKI
AAXUO
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABWVN
ABXDB
ABXPI
ACAOD
ACDAQ
ACDTI
ACGFS
ACHSB
ACMLO
ACNNM
ACOKC
ACPIV
ACRLP
ACRPL
ACZOJ
ADEZE
ADHHG
ADKNI
ADMLS
ADMUD
ADNMO
ADRFC
ADTZH
ADURQ
ADYFF
AEBSH
AECPX
AEFQL
AEIPS
AEJRE
AEKER
AEMSY
AENEX
AEPYU
AESKC
AFBBN
AFKWA
AFQWF
AFUIB
AGDGC
AGHFR
AGJBK
AGMZJ
AGQEE
AGRTI
AGUBO
AGYEJ
AHJVU
AIAKS
AIEXJ
AIGIU
AIKHN
AILAN
AITGF
AITUG
AJOXV
AJZVZ
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
ANKPU
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEA
CCEZO
CCVFK
CHBEP
CS3
CW9
DPUIP
DU5
EBLON
EBS
EFJIC
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FIGPU
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IHE
IKXTQ
IWAJR
J-C
J1W
JJJVA
JUIAU
JZLTJ
KOM
KOV
LLZTM
M41
M4Y
MO0
N9A
NPVJJ
NQJWS
NU0
O9-
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q-0
Q38
R-A
REI
RIG
RLLFE
ROL
RPZ
RSV
RT1
S..
SDC
SDF
SDG
SES
SJYHP
SNE
SNPRN
SOHCF
SOJ
SPC
SRMVM
SSLCW
SST
SSZ
STPWE
T5K
T8Q
TCJ
TGT
TSG
U1F
U1G
U5A
U5K
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
~LB
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
ID FETCH-LOGICAL-c288t-248a2747a6d1e99c7c3cec601a348e8b6869bfd627fa32f4a48cb828c4a4c5473
ISSN 1001-6058
IngestDate Tue Jul 01 02:16:52 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Fri Feb 21 02:30:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords rotating cylinders
Artificial neural network (ANN)
flow control
deep reinforcement learning (DRL)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c288t-248a2747a6d1e99c7c3cec601a348e8b6869bfd627fa32f4a48cb828c4a4c5473
PageCount 5
ParticipantIDs crossref_citationtrail_10_1007_s42241_020_0027_z
crossref_primary_10_1007_s42241_020_0027_z
springer_journals_10_1007_s42241_020_0027_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200400
2020-04-00
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of hydrodynamics. Series B
PublicationTitleAbbrev J Hydrodyn
PublicationYear 2020
Publisher Springer Singapore
Publisher_xml – name: Springer Singapore
References Blackburn, Henderson (CR10) 1999; 385
Sohankar, Khodadadi, Rangraz (CR15) 2015; 109
Chen, Li, Hu (CR14) 2014; 55
Cetiner, Rockwell (CR8) 2001; 427
Goda (CR29) 1979; 30
Leontini, Jacono, Thompson (CR9) 2013; 730
Chauhan, Dutta, Gandhi (CR11) 2016; 138
Schulmeister, Dahl, Weymouth (CR18) 2017; 825
Verma, Novati, Koumoutsakos (CR23) 2018; 115
Bearman (CR2) 1965; 21
Kim, Choi (CR13) 2005; 17
Mittal (CR16) 2001; 15
Valen-Sendstad, Logg, Mardal (CR28) 2012
Rabault, Kuchta, Jensen (CR19) 2019; 865
Williamson, Govardhan (CR1) 2004; 36
Bagheri, A Mazzino, Bottaro (CR4) 2012; 109
Cai, Zhou, Xu (CR24) 2019; 60
Zhu, Yao, Ma (CR17) 2015; 57
Bearman, Owen (CR3) 1998; 12
Wang, Xiao, Fang (CR22) 2018; 86
CR26
Schmidhuber (CR20) 2015; 61
Rabault, Kuhnle (CR27) 2019; 31
Rabault, Kolaas, Jensen (CR25) 2017; 28
Choi, Jeon, Kim (CR6) 2008; 40
Deng, Mao, Xie (CR5) 2019; 100
Nathan (CR21) 2017; 814
Poncet (CR7) 2004; 517
Artana, Sosa, Moreau (CR12) 2003; 35
H Choi (27_CR6) 2008; 40
J Deng (27_CR5) 2019; 100
27_CR26
J Rabault (27_CR27) 2019; 31
H M Blackburn (27_CR10) 1999; 385
M K Chauhan (27_CR11) 2016; 138
S Cai (27_CR24) 2019; 60
C H K Williamson (27_CR1) 2004; 36
S Mittal (27_CR16) 2001; 15
J Rabault (27_CR25) 2017; 28
P W Bearman (27_CR3) 1998; 12
S Verma (27_CR23) 2018; 115
G Artana (27_CR12) 2003; 35
P Poncet (27_CR7) 2004; 517
S Bagheri (27_CR4) 2012; 109
J Schmidhuber (27_CR20) 2015; 61
W L Chen (27_CR14) 2014; 55
K Valen-Sendstad (27_CR28) 2012
K Goda (27_CR29) 1979; 30
P W Bearman (27_CR2) 1965; 21
Z Wang (27_CR22) 2018; 86
J C Schulmeister (27_CR18) 2017; 825
J S Leontini (27_CR9) 2013; 730
H Zhu (27_CR17) 2015; 57
J Kim (27_CR13) 2005; 17
K J Nathan (27_CR21) 2017; 814
O Cetiner (27_CR8) 2001; 427
J Rabault (27_CR19) 2019; 865
A Sohankar (27_CR15) 2015; 109
References_xml – volume: 385
  start-page: 255
  year: 1999
  end-page: 286
  ident: CR10
  article-title: A study of two-dimensional flow past an oscillating cylinder [J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112099004309
– start-page: 399
  year: 2012
  end-page: 420
  ident: CR28
  publication-title: A comparison of finite element schemes for the incompressible Navier-Stokes equations (Automated solution of differential equations by the finite element method [M]
  doi: 10.1007/978-3-642-23099-8_21
– volume: 138
  start-page: 051105
  issue: 5
  year: 2016
  ident: CR11
  article-title: Experimental investigation of flow over a transversely oscillating square cylinder atintermediate Reynolds number [J]
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4031878
– volume: 35
  start-page: 580
  year: 2003
  end-page: 588
  ident: CR12
  article-title: Control of the near-wake flow around a circular cylinder with electro hydrodynamic actuators [J]
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-003-0704-z
– volume: 40
  start-page: 113
  year: 2008
  end-page: 139
  ident: CR6
  article-title: Control of flow over a bluff body [J]
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.39.050905.110149
– volume: 427
  start-page: 1
  year: 2001
  end-page: 28
  ident: CR8
  article-title: Streamwise oscillations of a cylinder in a steady current. Part 1. Locked-on states of vortex formation and loading [J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112000002214
– volume: 814
  start-page: 1
  year: 2017
  end-page: 4
  ident: CR21
  article-title: Deep learning in fluid dynamics [J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2016.803
– volume: 30
  start-page: 76
  issue: 1
  year: 1979
  end-page: 95
  ident: CR29
  article-title: A multistep technique with implicit difference schemes for calculating two-or three-dimensional cavity flows [J]
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(79)90088-3
– volume: 86
  start-page: 255
  issue: 4
  year: 2018
  end-page: 268
  ident: CR22
  article-title: Model identification of reduced order fluid dynamics systems using deep learning [J]
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.4416
– volume: 517
  start-page: 27
  year: 2004
  end-page: 53
  ident: CR7
  article-title: Topological aspects of three-dimensional wakes behind rotary oscillating cylinders [J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112004000588
– volume: 55
  start-page: 1707
  year: 2014
  ident: CR14
  article-title: An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder [J]
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-014-1707-7
– volume: 60
  start-page: 73
  year: 2019
  ident: CR24
  article-title: Dense motion estimation of particle images via a convolutional neural network [J]
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-019-2717-2
– volume: 36
  start-page: 413
  year: 2004
  end-page: 455
  ident: CR1
  article-title: Vortex-induced vibrations [J]
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.36.050802.122128
– volume: 21
  start-page: 241
  year: 1965
  end-page: 255
  ident: CR2
  article-title: Investigation of the flow behind a two-dimensional model with a blunt trailing edge and fitted with splitter plates [J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112065000162
– volume: 28
  start-page: 125301
  issue: 12
  year: 2017
  ident: CR25
  article-title: Performing particle image velocimetry using artificial neural networks: a proof-of-concept [J]
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/aa8b87
– volume: 57
  start-page: 66
  year: 2015
  end-page: 80
  ident: CR17
  article-title: Simultaneous CFD evaluation of VIV suppression using smaller control cylinders [J]
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2015.05.011
– volume: 100
  start-page: 053107
  year: 2019
  ident: CR5
  article-title: Dynamics of two-dimensional flow around a circular cylinder attached with flexible filaments [J]
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.100.053107
– volume: 109
  start-page: 154502
  issue: 15
  year: 2012
  ident: CR4
  article-title: Spontaneous symmetry breaking of a hinged flapping filament generates lift [J]
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.109.154502
– volume: 17
  start-page: 033103
  issue: 3
  year: 2005
  ident: CR13
  article-title: Distributed forcing of flow over a circular cylinder [J]
  publication-title: Physics of Fluids
  doi: 10.1063/1.1850151
– volume: 115
  start-page: 5849
  issue: 23
  year: 2018
  end-page: 5854
  ident: CR23
  article-title: Efficient collective swimming by harnessing vortices through deep reinforcement learning [J]
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1800923115
– volume: 31
  start-page: 094105
  issue: 9
  year: 2019
  ident: CR27
  article-title: Accelerating deep reinforcement learning of active flowcontrol strategies through a multi-environment approach [J]
  publication-title: Physics of Fluids
  doi: 10.1063/1.5116415
– volume: 12
  start-page: 123
  issue: 1
  year: 1998
  end-page: 130
  ident: CR3
  article-title: Reduction of bluff-body drag and suppression of vortex shedding by the introduction of wavy separation lines [J]
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.1997.0128
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR20
  article-title: Deep learning in neural networks: An overview [J]
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– ident: CR26
– volume: 109
  start-page: 155
  year: 2015
  end-page: 167
  ident: CR15
  article-title: Control of fluid flow and heat transfer around a square cylinder by uniform suction and blowing at low Reynolds numbers [J]
  publication-title: Computers and Fluids
  doi: 10.1016/j.compfluid.2014.12.020
– volume: 825
  start-page: 743
  year: 2017
  end-page: 763
  ident: CR18
  article-title: Flow control with rotating cylinders [J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2017.395
– volume: 730
  start-page: 162
  year: 2013
  end-page: 192
  ident: CR9
  article-title: Wake states and frequency selection of a streamwise oscillating cylinder [J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2013.332
– volume: 15
  start-page: 291
  issue: 2
  year: 2001
  end-page: 326
  ident: CR16
  article-title: Control of flow past bluff bodies using rotating control cylinders [J]
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.2000.0337
– volume: 865
  start-page: 281
  year: 2019
  end-page: 302
  ident: CR19
  article-title: Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control [J]
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2019.62
– volume: 15
  start-page: 291
  issue: 2
  year: 2001
  ident: 27_CR16
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.2000.0337
– volume: 385
  start-page: 255
  year: 1999
  ident: 27_CR10
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112099004309
– volume: 814
  start-page: 1
  year: 2017
  ident: 27_CR21
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2016.803
– volume: 100
  start-page: 053107
  year: 2019
  ident: 27_CR5
  publication-title: Physical Review E
  doi: 10.1103/PhysRevE.100.053107
– volume: 115
  start-page: 5849
  issue: 23
  year: 2018
  ident: 27_CR23
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1800923115
– volume: 86
  start-page: 255
  issue: 4
  year: 2018
  ident: 27_CR22
  publication-title: International Journal for Numerical Methods in Fluids
  doi: 10.1002/fld.4416
– volume: 31
  start-page: 094105
  issue: 9
  year: 2019
  ident: 27_CR27
  publication-title: Physics of Fluids
  doi: 10.1063/1.5116415
– start-page: 399
  volume-title: A comparison of finite element schemes for the incompressible Navier-Stokes equations (Automated solution of differential equations by the finite element method [M]
  year: 2012
  ident: 27_CR28
  doi: 10.1007/978-3-642-23099-8_21
– volume: 35
  start-page: 580
  year: 2003
  ident: 27_CR12
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-003-0704-z
– volume: 730
  start-page: 162
  year: 2013
  ident: 27_CR9
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2013.332
– volume: 825
  start-page: 743
  year: 2017
  ident: 27_CR18
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2017.395
– volume: 865
  start-page: 281
  year: 2019
  ident: 27_CR19
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2019.62
– volume: 517
  start-page: 27
  year: 2004
  ident: 27_CR7
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112004000588
– volume: 21
  start-page: 241
  year: 1965
  ident: 27_CR2
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112065000162
– ident: 27_CR26
– volume: 138
  start-page: 051105
  issue: 5
  year: 2016
  ident: 27_CR11
  publication-title: Journal of Fluids Engineering
  doi: 10.1115/1.4031878
– volume: 40
  start-page: 113
  year: 2008
  ident: 27_CR6
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.39.050905.110149
– volume: 30
  start-page: 76
  issue: 1
  year: 1979
  ident: 27_CR29
  publication-title: Journal of Computational Physics
  doi: 10.1016/0021-9991(79)90088-3
– volume: 55
  start-page: 1707
  year: 2014
  ident: 27_CR14
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-014-1707-7
– volume: 57
  start-page: 66
  year: 2015
  ident: 27_CR17
  publication-title: Journal of Fluids and Structures
  doi: 10.1016/j.jfluidstructs.2015.05.011
– volume: 17
  start-page: 033103
  issue: 3
  year: 2005
  ident: 27_CR13
  publication-title: Physics of Fluids
  doi: 10.1063/1.1850151
– volume: 61
  start-page: 85
  year: 2015
  ident: 27_CR20
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.09.003
– volume: 36
  start-page: 413
  year: 2004
  ident: 27_CR1
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.36.050802.122128
– volume: 427
  start-page: 1
  year: 2001
  ident: 27_CR8
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112000002214
– volume: 109
  start-page: 155
  year: 2015
  ident: 27_CR15
  publication-title: Computers and Fluids
  doi: 10.1016/j.compfluid.2014.12.020
– volume: 28
  start-page: 125301
  issue: 12
  year: 2017
  ident: 27_CR25
  publication-title: Measurement Science and Technology
  doi: 10.1088/1361-6501/aa8b87
– volume: 12
  start-page: 123
  issue: 1
  year: 1998
  ident: 27_CR3
  publication-title: Journal of Fluids and Structures
  doi: 10.1006/jfls.1997.0128
– volume: 60
  start-page: 73
  year: 2019
  ident: 27_CR24
  publication-title: Experiments in Fluids
  doi: 10.1007/s00348-019-2717-2
– volume: 109
  start-page: 154502
  issue: 15
  year: 2012
  ident: 27_CR4
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.109.154502
SSID ssj0036904
Score 2.4791808
Snippet In this paper, an artificial neural network (ANN) trained through a deep reinforcement learning (DRL) agent is used to perform flow control. The target is to...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 254
SubjectTerms Engineering
Engineering Fluid Dynamics
Hydrology/Water Resources
Numerical and Computational Physics
Simulation
Special Column on the International Symposium on High-Fidelity Computational Methods and Applications 2019 (Guest Editors Hui Xu
Wei Zhang
Title Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning
URI https://link.springer.com/article/10.1007/s42241-020-0027-z
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCeoEDojxEW0A-cCLaarHdXe8xKqCqFRxKq-a2sr1eqBQlVZIVSv5O_2hnbO-LEkS5bFajiXeT-ex5eDxDyHsttTQxF5HNjkwkbJlGmbYi4takvIx1oizGIb9-S04uxenkaDIY3HaylqqVPjSbP54r-R-pAg3kiqdkHyDZZlAgwD3IF64gYbj-k4zHxlftns5_9XPOF3PcYcfjtOvptTu-gmYmTGUcJNSMwEqW7sPlgfteEd4cLay9GS2sq6lqXPiwbi7xY4st-3NdwELsm9svD3EBAge8beg8qZyGq67vhamvbEP7ZENycAew50qrauq3S2wghxAFizuZLd0Q5eg7dvkGt8J2FlxM6cKtWa-PPE1i1V8ueqt0GwVtnOWw5Poi1EF7Mz_SPcXgc0GWAi2WyL0i-OPRptWCTW5iU8fZ8ebAmyNvvnlEdhj4ImxIdsZn51dntcLnSea6VDY_pd48xxOavz-wb_70996dSXPxjDwN8qNjD6xdMrCz5-RJp0LlC7LwEKMIMRogRhFitIYYbSBG9ZqqGW0hRj3EaIAYDRBDPoQY7UGM1hB7SS6_fL44PolCm47IMClXERNSYWxDJcVHm2UmNdxYA46-4kJaqROZZLosEpaWirNSKCGNBkffwJ3B1tevyHA2n9nXhKaFYalWpZKphgFZJkUhuWSlFmBGFvEeiet_Lzehhj2--zTfKrU98qH5yo0v4PI35lEtkjzM8-V27v0HcR-Qx-3ceEOGq0Vl34JBu9LvAqDuAP3Gor4
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+flow+control+with+rotating+cylinders+by+an+artificial+neural+network+trained+by+deep+reinforcement+learning&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Xu%2C+Hui&rft.au=Zhang%2C+Wei&rft.au=Deng%2C+Jian&rft.au=Rabault%2C+Jean&rft.date=2020-04-01&rft.pub=Springer+Singapore&rft.issn=1001-6058&rft.eissn=1878-0342&rft.volume=32&rft.issue=2&rft.spage=254&rft.epage=258&rft_id=info:doi/10.1007%2Fs42241-020-0027-z&rft.externalDocID=10_1007_s42241_020_0027_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-6058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-6058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-6058&client=summon