Iron‐Incorporated α‐Ni(OH)2 Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation
An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+‐to‐Ni3+ pre...
Saved in:
Published in | Chemistry : a European journal Vol. 24; no. 69; pp. 18408 - 18412 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
10.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+‐to‐Ni3+ pre‐oxidation process to boost the generation of active high‐valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron‐incorporated α‐Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future.
An iron belt: A hierarchical belt‐on‐sheet iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst was developed. This catalyst exhibits increased surface areas, improved charge‐transfer behavior, favorable reaction kinetics, and excellent structural stability for robust urea oxidation. |
---|---|
AbstractList | An iron-incorporated α-Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single-crystalline belt-on-sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+ -to-Ni3+ pre-oxidation process to boost the generation of active high-valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron-incorporated α-Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future.An iron-incorporated α-Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single-crystalline belt-on-sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+ -to-Ni3+ pre-oxidation process to boost the generation of active high-valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron-incorporated α-Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future. An iron‐incorporated α‐Ni(OH) 2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni 2+ ‐to‐Ni 3+ pre‐oxidation process to boost the generation of active high‐valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron‐incorporated α‐Ni(OH) 2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future. An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+‐to‐Ni3+ pre‐oxidation process to boost the generation of active high‐valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron‐incorporated α‐Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future. An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+‐to‐Ni3+ pre‐oxidation process to boost the generation of active high‐valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron‐incorporated α‐Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future. An iron belt: A hierarchical belt‐on‐sheet iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst was developed. This catalyst exhibits increased surface areas, improved charge‐transfer behavior, favorable reaction kinetics, and excellent structural stability for robust urea oxidation. An iron-incorporated α-Ni(OH) nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single-crystalline belt-on-sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni -to-Ni pre-oxidation process to boost the generation of active high-valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron-incorporated α-Ni(OH) hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future. |
Author | Liu, Weiwei Xie, Junfeng Zhang, Xiaodong Tang, Bo Lei, Fengcai Gao, Li Qu, Haichao Hao, Pin Xie, Yi |
Author_xml | – sequence: 1 givenname: Junfeng surname: Xie fullname: Xie, Junfeng email: xiejf@sdnu.edu.cn organization: University of Science and Technology of China – sequence: 2 givenname: Weiwei surname: Liu fullname: Liu, Weiwei organization: Shandong Normal University – sequence: 3 givenname: Fengcai surname: Lei fullname: Lei, Fengcai organization: University of Science and Technology of China – sequence: 4 givenname: Xiaodong surname: Zhang fullname: Zhang, Xiaodong organization: University of Science and Technology of China – sequence: 5 givenname: Haichao surname: Qu fullname: Qu, Haichao organization: Shandong Normal University – sequence: 6 givenname: Li surname: Gao fullname: Gao, Li organization: Shandong Normal University – sequence: 7 givenname: Pin surname: Hao fullname: Hao, Pin organization: Shandong Normal University – sequence: 8 givenname: Bo surname: Tang fullname: Tang, Bo email: tangb@sdnu.edu.cn organization: Shandong Normal University – sequence: 9 givenname: Yi orcidid: 0000-0002-1416-5557 surname: Xie fullname: Xie, Yi email: yxie@ustc.edu.cn organization: University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30088303$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFuEzEQhi1URNPClSNaiUs5bBjbu2vvsYoCiVSaCz1b3tlZxdVmHWxHkBuPwKvwIn2IPgkb0oJUCXGyNPq-Gf8zZ-xk8AMx9prDlAOI97imzVQA1yAV18_YhJeC51JV5QmbQF2ovCplfcrOYrwFgLqS8gU7lQBaS5AT1iyDH-6__1gO6MPWB5uoze5-jpVrd7FavBPZwlGwAdcObZ9d28HHNVHKLkOw-5h1PmTznjAFjzbZfp8cZjeBbLb65lqbnB9esued7SO9enjP2c2H-efZIr9afVzOLq9yFFrrvCnrzqI4pFJtZZF43RAvpSh5XbQdYNdpq1WhJHKOKC0VUqmmEFA1HBTIc3Zx7LsN_suOYjIbF5H63g7kd9EI0GVVSS6KEX37BL31uzCMvzNiHFlWohZypN48ULtmQ63ZBrexYW8etzcCxRHA4GMM1Bl06XfmFKzrDQdziGMORzJ_jjRq0yfaY-d_CvVR-Op62v-HNrPF_NNf9xcqBKWU |
CitedBy_id | crossref_primary_10_1039_D0TA05160H crossref_primary_10_1007_s11426_020_9770_5 crossref_primary_10_1021_acsami_1c08148 crossref_primary_10_1016_j_jechem_2022_01_031 crossref_primary_10_1039_D4SE01191K crossref_primary_10_1039_D3NJ00236E crossref_primary_10_1016_j_ccr_2023_215381 crossref_primary_10_1016_j_cej_2022_137240 crossref_primary_10_1016_j_elecom_2023_107599 crossref_primary_10_1002_smll_202302923 crossref_primary_10_1016_j_cej_2022_138698 crossref_primary_10_1021_acsmaterialslett_9b00124 crossref_primary_10_1016_j_jcis_2023_03_152 crossref_primary_10_1021_acscatal_1c05190 crossref_primary_10_1016_j_ccr_2024_215777 crossref_primary_10_1016_j_cej_2021_130337 crossref_primary_10_1016_j_rechem_2023_101031 crossref_primary_10_1016_j_apsusc_2022_154484 crossref_primary_10_1021_acscatal_9b00994 crossref_primary_10_1039_C9CC00269C crossref_primary_10_1021_acsestengg_1c00400 crossref_primary_10_1002_aenm_201902703 crossref_primary_10_1039_C9CC04409D crossref_primary_10_1039_C9CC02507C crossref_primary_10_1016_j_jssc_2020_121644 crossref_primary_10_1039_D2TA00120A crossref_primary_10_1002_asia_201900742 crossref_primary_10_1021_acs_langmuir_3c03205 crossref_primary_10_1016_j_fuel_2022_123279 crossref_primary_10_1016_j_jcis_2023_09_115 crossref_primary_10_1021_acs_inorgchem_9b01124 crossref_primary_10_1016_j_cej_2020_127540 crossref_primary_10_1002_aic_18547 crossref_primary_10_1007_s11237_019_09624_3 crossref_primary_10_1016_j_apsusc_2022_155041 crossref_primary_10_1039_D3DT03456A crossref_primary_10_1002_smll_201906133 crossref_primary_10_1039_D0CC07969C crossref_primary_10_1002_celc_201900844 crossref_primary_10_2139_ssrn_4141914 crossref_primary_10_1002_cjoc_202100294 crossref_primary_10_1021_acssuschemeng_4c02596 crossref_primary_10_1016_j_ijhydene_2021_12_099 crossref_primary_10_1039_D0NA00847H crossref_primary_10_1039_D4NJ03424D crossref_primary_10_1021_acssuschemeng_0c04049 crossref_primary_10_1021_acsomega_1c01758 crossref_primary_10_1021_acscatal_8b04103 crossref_primary_10_1016_j_apcatb_2020_119436 crossref_primary_10_1016_j_ijhydene_2019_09_004 crossref_primary_10_1002_chem_202001055 crossref_primary_10_1016_j_cej_2024_151251 crossref_primary_10_1088_2515_7639_abd596 crossref_primary_10_1007_s10876_023_02460_5 crossref_primary_10_1007_s11696_020_01260_9 crossref_primary_10_1002_ange_202100610 crossref_primary_10_1002_cnma_202400476 crossref_primary_10_1016_j_partic_2021_01_002 crossref_primary_10_1039_D4CY00907J crossref_primary_10_1016_j_jpowsour_2019_227585 crossref_primary_10_1002_anie_201909832 crossref_primary_10_1039_C9NR09753H crossref_primary_10_3390_ma17112617 crossref_primary_10_1002_cctc_201901088 crossref_primary_10_1016_j_mseb_2024_117785 crossref_primary_10_1016_j_jallcom_2022_166145 crossref_primary_10_1016_j_jcis_2022_08_055 crossref_primary_10_1002_eom2_12477 crossref_primary_10_1007_s10008_024_05814_9 crossref_primary_10_1039_D2RA05145A crossref_primary_10_1002_anie_202206050 crossref_primary_10_1002_adfm_202313309 crossref_primary_10_1039_D4NR03486D crossref_primary_10_1039_D2MA00308B crossref_primary_10_1016_j_jcis_2023_07_010 crossref_primary_10_1002_anie_202100610 crossref_primary_10_1016_j_ijoes_2024_100805 crossref_primary_10_1039_C9CC05115E crossref_primary_10_1016_j_ceramint_2022_09_035 crossref_primary_10_1016_j_apcatb_2020_119339 crossref_primary_10_1016_j_electacta_2023_143055 crossref_primary_10_1021_acsanm_8b01470 crossref_primary_10_1016_j_cej_2021_130139 crossref_primary_10_1039_C9TA07857F crossref_primary_10_1007_s12274_020_3133_x crossref_primary_10_1002_cctc_202001528 crossref_primary_10_1016_j_cej_2024_151234 crossref_primary_10_1039_C9TA02891A crossref_primary_10_1039_D1CY00435B crossref_primary_10_1039_D0EN01247E crossref_primary_10_1007_s10800_021_01545_1 crossref_primary_10_1016_j_cej_2021_133515 crossref_primary_10_1016_j_electacta_2020_136516 crossref_primary_10_1016_j_cclet_2020_11_040 crossref_primary_10_1016_j_nanoen_2020_105355 crossref_primary_10_1016_j_apsusc_2023_158599 crossref_primary_10_1016_j_apsusc_2022_155520 crossref_primary_10_1016_j_nanoen_2023_109183 crossref_primary_10_3390_nano12203633 crossref_primary_10_1021_acssuschemeng_1c05718 crossref_primary_10_1016_j_colsurfa_2021_126425 crossref_primary_10_1016_j_fuel_2022_123280 crossref_primary_10_1021_acs_cgd_8b01594 crossref_primary_10_1002_asia_201900752 crossref_primary_10_1016_j_electacta_2022_141724 crossref_primary_10_1016_j_ijhydene_2022_07_219 crossref_primary_10_1002_smll_202409306 crossref_primary_10_1016_j_fuel_2023_129626 crossref_primary_10_1016_j_ijhydene_2022_12_095 crossref_primary_10_1039_D0CC05272H crossref_primary_10_3390_catal8090350 crossref_primary_10_1021_acsami_0c22148 crossref_primary_10_1002_cssc_202201921 crossref_primary_10_1016_j_cej_2023_146885 crossref_primary_10_1016_j_apsusc_2023_158766 crossref_primary_10_1088_2515_7639_ac09d2 crossref_primary_10_1039_D1CC07242K crossref_primary_10_1016_j_apcata_2021_118049 crossref_primary_10_1021_acsanm_4c05033 crossref_primary_10_1016_j_apcata_2022_118745 crossref_primary_10_1002_ange_201909832 crossref_primary_10_1016_j_apmate_2022_01_003 crossref_primary_10_1039_D1TA09989B crossref_primary_10_54227_mlab_20220009 crossref_primary_10_1016_j_jallcom_2021_159945 crossref_primary_10_1039_D1CC06290E crossref_primary_10_1007_s12598_022_02206_8 crossref_primary_10_1016_j_electacta_2020_135883 crossref_primary_10_1016_j_jtice_2020_10_019 crossref_primary_10_1002_ange_202206050 |
Cites_doi | 10.1016/j.electacta.2012.07.007 10.1038/nchem.1634 10.1002/cctc.201500396 10.1002/celc.201700392 10.1002/cssc.201701074 10.1021/acs.accounts.8b00193 10.1002/ange.201606313 10.1021/nn401402a 10.1021/acscatal.7b03177 10.1016/j.electacta.2013.06.137 10.1021/acssuschemeng.7b04732 10.1039/C3NR05359H 10.1038/35104599 10.1039/C8TA05054F 10.1039/C4SC02019G 10.1016/j.jpowsour.2011.02.015 10.1002/adma.201604765 10.1021/acscatal.6b00487 10.1039/C8NR00764K 10.1002/chem.201501120 10.1021/acscentsci.7b00424 10.1007/s12274-017-1421-x 10.1002/adfm.201702513 10.1021/acs.chemrev.7b00689 10.1002/aenm.201600621 10.1021/acsenergylett.8b00855 10.1002/anie.201606313 10.1016/j.nantod.2016.10.004 10.1021/ja408329q 10.1021/ja502379c 10.1039/C7TA03582A 10.1039/C8NR02071J 10.1039/C6QI00198J 10.1021/ja502128j 10.1039/C7CS00418D |
ContentType | Journal Article |
Copyright | 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/chem.201803718 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 18412 |
ExternalDocumentID | 30088303 10_1002_chem_201803718 CHEM201803718 |
Genre | shortCommunication Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21501112, 21701102, U1632149, U1532265, 21331005, 11621063, 21535004, 21390411 and 91753111 – fundername: Natural Science Foundation of Shandong Province funderid: ZR2018JL009 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2018JL009 – fundername: National Natural Science Foundation of China grantid: 21501112, 21701102, U1632149, U1532265, 21331005, 11621063, 21535004, 21390411 and 91753111 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACUHS ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c2888-b59fac210027d6ace19be15325194df0cff8a87473c11cc3ae4377b4206b10703 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 1521-3765 |
IngestDate | Fri Jul 11 15:51:35 EDT 2025 Fri Jul 25 12:00:14 EDT 2025 Thu Apr 03 07:02:07 EDT 2025 Tue Jul 01 01:29:40 EDT 2025 Thu Apr 24 23:12:10 EDT 2025 Wed Jan 22 16:53:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 69 |
Keywords | oxidation element incorporation electrochemistry nanosheet hierarchical structure |
Language | English |
License | 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2888-b59fac210027d6ace19be15325194df0cff8a87473c11cc3ae4377b4206b10703 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1416-5557 |
PMID | 30088303 |
PQID | 2153562923 |
PQPubID | 986340 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2085663124 proquest_journals_2153562923 pubmed_primary_30088303 crossref_citationtrail_10_1002_chem_201803718 crossref_primary_10_1002_chem_201803718 wiley_primary_10_1002_chem_201803718_CHEM201803718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 10, 2018 |
PublicationDateYYYYMMDD | 2018-12-10 |
PublicationDate_xml | – month: 12 year: 2018 text: December 10, 2018 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chemistry |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2012; 81 2017; 3 2017; 4 2013; 108 2017; 27 2017; 46 2017; 29 2011; 196 2013; 7 2013; 5 2015; 7 2014; 136 2016; 11 2018; 6 2016; 6 2018; 8 2018; 3 2014; 5 2016 2016; 55 128 2016; 3 2018; 118 2017; 10 2013; 135 2018; 51 2018; 10 2014; 6 2001; 414 2016; 22 e_1_2_2_3_2 e_1_2_2_4_2 e_1_2_2_22_3 e_1_2_2_23_2 e_1_2_2_24_1 e_1_2_2_5_2 e_1_2_2_22_2 e_1_2_2_6_2 e_1_2_2_21_2 e_1_2_2_1_1 e_1_2_2_20_1 e_1_2_2_2_2 e_1_2_2_40_1 e_1_2_2_41_1 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_27_2 e_1_2_2_28_1 e_1_2_2_26_2 e_1_2_2_9_2 e_1_2_2_25_2 e_1_2_2_13_2 e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_10_2 e_1_2_2_39_2 e_1_2_2_30_2 e_1_2_2_31_1 e_1_2_2_19_1 e_1_2_2_18_1 e_1_2_2_32_2 e_1_2_2_16_2 e_1_2_2_17_1 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_35_1 e_1_2_2_36_1 |
References_xml | – volume: 27 start-page: 1702513 year: 2017 publication-title: Adv. Funct. Mater. – volume: 118 start-page: 6337 year: 2018 publication-title: Chem. Rev. – volume: 10 start-page: 12302 year: 2018 end-page: 12307 publication-title: Nanoscale – volume: 108 start-page: 660 year: 2013 end-page: 665 publication-title: Electrochim. Acta – volume: 10 start-page: 7941 year: 2018 end-page: 7945 publication-title: Nanoscale – volume: 51 start-page: 1711 year: 2018 end-page: 1721 publication-title: Acc. Chem. Res. – volume: 55 128 start-page: 12465 12653 year: 2016 2016 end-page: 12469 12657 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 4615 year: 2014 end-page: 4620 publication-title: Chem. Sci. – volume: 3 start-page: 1221 year: 2017 end-page: 1227 publication-title: ACS Cent. Sci. – volume: 81 start-page: 292 year: 2012 end-page: 300 publication-title: Electrochim. Acta – volume: 136 start-page: 7077 year: 2014 end-page: 7084 publication-title: J. Am. Chem. Soc. – volume: 196 start-page: 5021 year: 2011 end-page: 5026 publication-title: J. Power Sources – volume: 5 start-page: 362 year: 2013 end-page: 363 publication-title: Nat. Chem. – volume: 10 start-page: 1178 year: 2017 end-page: 1188 publication-title: Nano Res. – volume: 7 start-page: 5430 year: 2013 end-page: 5436 publication-title: ACS Nano – volume: 6 start-page: 5044 year: 2016 end-page: 5051 publication-title: ACS Catal. – volume: 6 start-page: 16121 year: 2018 end-page: 16129 publication-title: J. Mater. Chem. A – volume: 46 start-page: 7338 year: 2017 end-page: 7373 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 1600621 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 start-page: 13336 year: 2017 end-page: 13340 publication-title: J. Mater. Chem. A – volume: 3 start-page: 1160 year: 2016 end-page: 1166 publication-title: Inorg. Chem. Front. – volume: 6 start-page: 1369 year: 2014 end-page: 1376 publication-title: Nanoscale – volume: 4 start-page: 1840 year: 2017 end-page: 1845 publication-title: ChemElectroChem – volume: 135 start-page: 17881 year: 2013 end-page: 17888 publication-title: J. Am. Chem. Soc. – volume: 414 start-page: 332 year: 2001 end-page: 337 publication-title: Nature – volume: 10 start-page: 4465 year: 2017 end-page: 4471 publication-title: ChemSusChem – volume: 22 start-page: 3588 year: 2016 end-page: 3598 publication-title: Chem. Eur. J. – volume: 11 start-page: 793 year: 2016 end-page: 816 publication-title: Nano Today – volume: 8 start-page: 1 year: 2018 end-page: 7 publication-title: ACS Catal. – volume: 3 start-page: 1648 year: 2018 end-page: 1654 publication-title: ACS Energy Lett. – volume: 7 start-page: 2568 year: 2015 end-page: 2580 publication-title: ChemCatChem – volume: 29 start-page: 1604765 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 4499 year: 2018 end-page: 4503 publication-title: ACS Sustainable Chem. Eng. – volume: 136 start-page: 6744 year: 2014 end-page: 6753 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_19_1 doi: 10.1016/j.electacta.2012.07.007 – ident: e_1_2_2_1_1 – ident: e_1_2_2_3_2 doi: 10.1038/nchem.1634 – ident: e_1_2_2_5_2 doi: 10.1002/cctc.201500396 – ident: e_1_2_2_10_2 doi: 10.1002/celc.201700392 – ident: e_1_2_2_38_2 doi: 10.1002/cssc.201701074 – ident: e_1_2_2_37_1 – ident: e_1_2_2_7_2 doi: 10.1021/acs.accounts.8b00193 – ident: e_1_2_2_22_3 doi: 10.1002/ange.201606313 – ident: e_1_2_2_31_1 – ident: e_1_2_2_36_1 doi: 10.1021/nn401402a – ident: e_1_2_2_21_2 doi: 10.1021/acscatal.7b03177 – ident: e_1_2_2_23_2 doi: 10.1016/j.electacta.2013.06.137 – ident: e_1_2_2_20_1 – ident: e_1_2_2_12_2 doi: 10.1021/acssuschemeng.7b04732 – ident: e_1_2_2_17_1 doi: 10.1039/C3NR05359H – ident: e_1_2_2_2_2 doi: 10.1038/35104599 – ident: e_1_2_2_26_2 doi: 10.1039/C8TA05054F – ident: e_1_2_2_41_1 doi: 10.1039/C4SC02019G – ident: e_1_2_2_15_2 doi: 10.1016/j.jpowsour.2011.02.015 – ident: e_1_2_2_28_1 – ident: e_1_2_2_34_2 doi: 10.1002/adma.201604765 – ident: e_1_2_2_18_1 doi: 10.1021/acscatal.6b00487 – ident: e_1_2_2_9_2 doi: 10.1039/C8NR00764K – ident: e_1_2_2_4_2 doi: 10.1002/chem.201501120 – ident: e_1_2_2_14_1 – ident: e_1_2_2_39_2 doi: 10.1021/acscentsci.7b00424 – ident: e_1_2_2_30_2 doi: 10.1007/s12274-017-1421-x – ident: e_1_2_2_6_2 doi: 10.1002/adfm.201702513 – ident: e_1_2_2_16_2 doi: 10.1021/acs.chemrev.7b00689 – ident: e_1_2_2_25_2 doi: 10.1002/aenm.201600621 – ident: e_1_2_2_8_2 doi: 10.1021/acsenergylett.8b00855 – ident: e_1_2_2_22_2 doi: 10.1002/anie.201606313 – ident: e_1_2_2_32_2 doi: 10.1016/j.nantod.2016.10.004 – ident: e_1_2_2_40_1 doi: 10.1021/ja408329q – ident: e_1_2_2_27_2 doi: 10.1021/ja502379c – ident: e_1_2_2_24_1 – ident: e_1_2_2_13_2 doi: 10.1039/C7TA03582A – ident: e_1_2_2_11_2 doi: 10.1039/C8NR02071J – ident: e_1_2_2_29_2 doi: 10.1039/C6QI00198J – ident: e_1_2_2_35_1 doi: 10.1021/ja502128j – ident: e_1_2_2_33_2 doi: 10.1039/C7CS00418D |
SSID | ssj0009633 |
Score | 2.5899632 |
Snippet | An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The... An iron‐incorporated α‐Ni(OH) 2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported.... An iron-incorporated α-Ni(OH) nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The... An iron-incorporated α-Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18408 |
SubjectTerms | Arrays Catalysis Catalysts Charge transfer Chemistry Clean energy electrochemistry element incorporation hierarchical structure Iron Kinetics nanosheet Nanosheets Nanostructure Nickel compounds Oxidation Oxidation process Reaction kinetics Structural stability Surface charge Urea Wastewater treatment |
Title | Iron‐Incorporated α‐Ni(OH)2 Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201803718 https://www.ncbi.nlm.nih.gov/pubmed/30088303 https://www.proquest.com/docview/2153562923 https://www.proquest.com/docview/2085663124 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB5CLumlTdI_tU7YQKHtYW3tSrLkYwgxdiA2lBp8E7vrFTUJUvEPxD3lEfIqfZE-RJ4kM1pLjhtKob3pZ1f7O7PfrHa-Afig46CDq6rPQ1zueGhCxTUaIlzL2GhpbUcYcnC-HLR7o_BiHI0fefE7foh6w40ko9TXJOBKz1sb0lBsE3mSi4RI58jblw5sESr6suGPwtnlYsmHMScO1oq10Zet7ezbq9ITqLmNXMulp_sCVFVpd-Lkqrlc6Kb58Ruf4_-0ah-er3EpO3UT6QB2bH4Ie2dVOLiXoPuzIr-_vesT8WVJfmwn7NdPfDKYfhr2PkvWm5Izcxlb5Zqh1i7m36xd4CdnajVnCI7ZuYu5U24ZrbAgNkLIyoY3UxfY6RWMuudfz3p8HaCBG4mWM9dRJ1NGUtXjSVsZKzraogolb9hwkvkmyxKVoMESGCGMCZQNgzjWofTbWpCueQ27eZHbt8DQbDLKJrGNMJHOAh2JRJG1GQVta5TwgFcDlJo1ezkF0bhOHe-yTKnn0rrnPPhYp__ueDv-mLJRjXe6lt95ikAoQGSI6NeDk_o19jj9TlG5LZaYBtEq4jUESB68cfOkLipAaJUgOvBAlqP9lzqkxH9R3737l0zv4Rld00kb4TdgdzFb2iPESwt9XMrEA1YBDVw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VeoBLC-WnaYG6UqXCwUvsJJvsESFQtoVFQqzELbK9jlgVZav9kUpPPAKv0hfhIXgSZuJN0BYhJDjGseP_mW8czzcA33QctFCr-jxEdcdDEyqu0RDhWsZGS2tbwpCD83GnmXbDH-dRdZuQfGEcP0R94EY7o5TXtMHpQHr3gTUUO0Wu5CIh1rlkDt5SWO_Sqjp9YJDC9eWiyYcxJxbWirfRl7uz5Wf10iOwOYtdS-Vz-B501Wx35-RXYzLWDfP3P0bHV_VrCd5NoSnbc2tpGd7Y4gMs7FcR4VZAt4eD4u76pk3clyX_se2x23-Y0ulvn6Q7kqV98mcuw6tcMhTcg9GFtWP85FBdjRjiY3bgwu6Up0ZXWBHrImplJ3_6LrbTKnQPD872Uz6N0cCNROOZ66iVKyOp6XGvqYwVLW1RipJDbNjLfZPniUrQZgmMEMYEyoZBHOtQ-k0tSNyswXwxKOxHYGg5GWWT2EaYSeeBjkSiyOCMgqY1SnjAqxnKzJTAnOJoXGaOellmNHJZPXIefK_z_3bUHU_m3KgmPJtu4VGGWChAcIgA2IOv9Wsccfqjogo7mGAeBKwI2RAjebDuFkpdVYDoKkGA4IEsp_uZNmREgVE_fXpJoS-wkJ4dH2VH7c7Pz7BI6XTxRvgbMD8eTuwmwqex3io3yD0kPBF3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BkQovhQKlaQs1UiXgwW3sOJd9RG1Xu1y2CLFS3yLb64gVVbbai0R56if0V_oj_Qi-hJl4k7JUqBI8xrHj64zPOJ4zADsmjVq4q4Zc4XbHlVWaGzREuJGpNdK5lrDk4Pyxl3T66t1xfPybF7_nh2gO3EgyKn1NAn46KPauSUOxT-RJLjIincvuwj2VhBmt64PP1wRSuLx8MHmVciJhrWkbQ7m3WH5xW7qBNReha7X3tB-Crlvtr5x8251Nza798Qeh4_906xGszIEpe-tX0ircceVjuL9fx4N7AqY7HpU_zy-6xHxZsR-7Abu6xJTe8PVR541knSF5M1fBVU4Yqu3R5KtzU_zkWJ9NGKJjduiD7lRnRmdYEesjZmVH34c-stNT6LcPv-x3-DxCA7cSTWdu4lahraSmp4NEWydaxqEOJXdYNShCWxSZztBiiawQ1kbaqShNjZJhYgQpmzVYKkelWweGdpPVLktdjJlMEZlYZJrMzThKnNUiAF5PUG7n9OUUReMk98TLMqeRy5uRC-BVk__UE3f8NedWPd_5XIAnOSKhCKEhwt8AXjavccTpf4ou3WiGeRCuImBDhBTAM79OmqoixFYZwoMAZDXbt7QhJwKM5mnjXwptw_Kng3b-odt7vwkPKJlu3YhwC5am45l7jthpal5U4vEL-34QLw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron%E2%80%90Incorporated+%CE%B1%E2%80%90Ni%28OH%292+Hierarchical+Nanosheet+Arrays+for+Electrocatalytic+Urea+Oxidation&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Xie%2C+Junfeng&rft.au=Liu%2C+Weiwei&rft.au=Fengcai+Lei&rft.au=Zhang%2C+Xiaodong&rft.date=2018-12-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=24&rft.issue=69&rft.spage=18408&rft.epage=18412&rft_id=info:doi/10.1002%2Fchem.201803718&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |