Iron‐Incorporated α‐Ni(OH)2 Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation

An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+‐to‐Ni3+ pre...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 24; no. 69; pp. 18408 - 18412
Main Authors Xie, Junfeng, Liu, Weiwei, Lei, Fengcai, Zhang, Xiaodong, Qu, Haichao, Gao, Li, Hao, Pin, Tang, Bo, Xie, Yi
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 10.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+‐to‐Ni3+ pre‐oxidation process to boost the generation of active high‐valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron‐incorporated α‐Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future. An iron belt: A hierarchical belt‐on‐sheet iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst was developed. This catalyst exhibits increased surface areas, improved charge‐transfer behavior, favorable reaction kinetics, and excellent structural stability for robust urea oxidation.
AbstractList An iron-incorporated α-Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single-crystalline belt-on-sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+ -to-Ni3+ pre-oxidation process to boost the generation of active high-valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron-incorporated α-Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future.An iron-incorporated α-Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single-crystalline belt-on-sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+ -to-Ni3+ pre-oxidation process to boost the generation of active high-valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron-incorporated α-Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future.
An iron‐incorporated α‐Ni(OH) 2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni 2+ ‐to‐Ni 3+ pre‐oxidation process to boost the generation of active high‐valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron‐incorporated α‐Ni(OH) 2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future.
An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+‐to‐Ni3+ pre‐oxidation process to boost the generation of active high‐valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron‐incorporated α‐Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future.
An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single‐crystalline belt‐on‐sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni2+‐to‐Ni3+ pre‐oxidation process to boost the generation of active high‐valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron‐incorporated α‐Ni(OH)2 hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future. An iron belt: A hierarchical belt‐on‐sheet iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst was developed. This catalyst exhibits increased surface areas, improved charge‐transfer behavior, favorable reaction kinetics, and excellent structural stability for robust urea oxidation.
An iron-incorporated α-Ni(OH) nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The unique single-crystalline belt-on-sheet hierarchical nanostructure was identified and it endows more reactive edges for the Ni -to-Ni pre-oxidation process to boost the generation of active high-valence species for the urea oxidation reaction (UOR). Benefitting from the optimal Fe concentration, the UOR activity was further optimized owing to the favorable reaction kinetics. With the synergistic benefits of the increased surface areas, improved charge transfer behavior, favorable reaction kinetics and excellent structural stability, the iron-incorporated α-Ni(OH) hierarchical nanosheet array catalyst displays significantly improved UOR performance with both high activity and outstanding operational stability. This work could guide the design of advanced UOR catalysts for wastewater treatment and clean energy production in the future.
Author Liu, Weiwei
Xie, Junfeng
Zhang, Xiaodong
Tang, Bo
Lei, Fengcai
Gao, Li
Qu, Haichao
Hao, Pin
Xie, Yi
Author_xml – sequence: 1
  givenname: Junfeng
  surname: Xie
  fullname: Xie, Junfeng
  email: xiejf@sdnu.edu.cn
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Weiwei
  surname: Liu
  fullname: Liu, Weiwei
  organization: Shandong Normal University
– sequence: 3
  givenname: Fengcai
  surname: Lei
  fullname: Lei, Fengcai
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Xiaodong
  surname: Zhang
  fullname: Zhang, Xiaodong
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Haichao
  surname: Qu
  fullname: Qu, Haichao
  organization: Shandong Normal University
– sequence: 6
  givenname: Li
  surname: Gao
  fullname: Gao, Li
  organization: Shandong Normal University
– sequence: 7
  givenname: Pin
  surname: Hao
  fullname: Hao, Pin
  organization: Shandong Normal University
– sequence: 8
  givenname: Bo
  surname: Tang
  fullname: Tang, Bo
  email: tangb@sdnu.edu.cn
  organization: Shandong Normal University
– sequence: 9
  givenname: Yi
  orcidid: 0000-0002-1416-5557
  surname: Xie
  fullname: Xie, Yi
  email: yxie@ustc.edu.cn
  organization: University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30088303$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFuEzEQhi1URNPClSNaiUs5bBjbu2vvsYoCiVSaCz1b3tlZxdVmHWxHkBuPwKvwIn2IPgkb0oJUCXGyNPq-Gf8zZ-xk8AMx9prDlAOI97imzVQA1yAV18_YhJeC51JV5QmbQF2ovCplfcrOYrwFgLqS8gU7lQBaS5AT1iyDH-6__1gO6MPWB5uoze5-jpVrd7FavBPZwlGwAdcObZ9d28HHNVHKLkOw-5h1PmTznjAFjzbZfp8cZjeBbLb65lqbnB9esued7SO9enjP2c2H-efZIr9afVzOLq9yFFrrvCnrzqI4pFJtZZF43RAvpSh5XbQdYNdpq1WhJHKOKC0VUqmmEFA1HBTIc3Zx7LsN_suOYjIbF5H63g7kd9EI0GVVSS6KEX37BL31uzCMvzNiHFlWohZypN48ULtmQ63ZBrexYW8etzcCxRHA4GMM1Bl06XfmFKzrDQdziGMORzJ_jjRq0yfaY-d_CvVR-Op62v-HNrPF_NNf9xcqBKWU
CitedBy_id crossref_primary_10_1039_D0TA05160H
crossref_primary_10_1007_s11426_020_9770_5
crossref_primary_10_1021_acsami_1c08148
crossref_primary_10_1016_j_jechem_2022_01_031
crossref_primary_10_1039_D4SE01191K
crossref_primary_10_1039_D3NJ00236E
crossref_primary_10_1016_j_ccr_2023_215381
crossref_primary_10_1016_j_cej_2022_137240
crossref_primary_10_1016_j_elecom_2023_107599
crossref_primary_10_1002_smll_202302923
crossref_primary_10_1016_j_cej_2022_138698
crossref_primary_10_1021_acsmaterialslett_9b00124
crossref_primary_10_1016_j_jcis_2023_03_152
crossref_primary_10_1021_acscatal_1c05190
crossref_primary_10_1016_j_ccr_2024_215777
crossref_primary_10_1016_j_cej_2021_130337
crossref_primary_10_1016_j_rechem_2023_101031
crossref_primary_10_1016_j_apsusc_2022_154484
crossref_primary_10_1021_acscatal_9b00994
crossref_primary_10_1039_C9CC00269C
crossref_primary_10_1021_acsestengg_1c00400
crossref_primary_10_1002_aenm_201902703
crossref_primary_10_1039_C9CC04409D
crossref_primary_10_1039_C9CC02507C
crossref_primary_10_1016_j_jssc_2020_121644
crossref_primary_10_1039_D2TA00120A
crossref_primary_10_1002_asia_201900742
crossref_primary_10_1021_acs_langmuir_3c03205
crossref_primary_10_1016_j_fuel_2022_123279
crossref_primary_10_1016_j_jcis_2023_09_115
crossref_primary_10_1021_acs_inorgchem_9b01124
crossref_primary_10_1016_j_cej_2020_127540
crossref_primary_10_1002_aic_18547
crossref_primary_10_1007_s11237_019_09624_3
crossref_primary_10_1016_j_apsusc_2022_155041
crossref_primary_10_1039_D3DT03456A
crossref_primary_10_1002_smll_201906133
crossref_primary_10_1039_D0CC07969C
crossref_primary_10_1002_celc_201900844
crossref_primary_10_2139_ssrn_4141914
crossref_primary_10_1002_cjoc_202100294
crossref_primary_10_1021_acssuschemeng_4c02596
crossref_primary_10_1016_j_ijhydene_2021_12_099
crossref_primary_10_1039_D0NA00847H
crossref_primary_10_1039_D4NJ03424D
crossref_primary_10_1021_acssuschemeng_0c04049
crossref_primary_10_1021_acsomega_1c01758
crossref_primary_10_1021_acscatal_8b04103
crossref_primary_10_1016_j_apcatb_2020_119436
crossref_primary_10_1016_j_ijhydene_2019_09_004
crossref_primary_10_1002_chem_202001055
crossref_primary_10_1016_j_cej_2024_151251
crossref_primary_10_1088_2515_7639_abd596
crossref_primary_10_1007_s10876_023_02460_5
crossref_primary_10_1007_s11696_020_01260_9
crossref_primary_10_1002_ange_202100610
crossref_primary_10_1002_cnma_202400476
crossref_primary_10_1016_j_partic_2021_01_002
crossref_primary_10_1039_D4CY00907J
crossref_primary_10_1016_j_jpowsour_2019_227585
crossref_primary_10_1002_anie_201909832
crossref_primary_10_1039_C9NR09753H
crossref_primary_10_3390_ma17112617
crossref_primary_10_1002_cctc_201901088
crossref_primary_10_1016_j_mseb_2024_117785
crossref_primary_10_1016_j_jallcom_2022_166145
crossref_primary_10_1016_j_jcis_2022_08_055
crossref_primary_10_1002_eom2_12477
crossref_primary_10_1007_s10008_024_05814_9
crossref_primary_10_1039_D2RA05145A
crossref_primary_10_1002_anie_202206050
crossref_primary_10_1002_adfm_202313309
crossref_primary_10_1039_D4NR03486D
crossref_primary_10_1039_D2MA00308B
crossref_primary_10_1016_j_jcis_2023_07_010
crossref_primary_10_1002_anie_202100610
crossref_primary_10_1016_j_ijoes_2024_100805
crossref_primary_10_1039_C9CC05115E
crossref_primary_10_1016_j_ceramint_2022_09_035
crossref_primary_10_1016_j_apcatb_2020_119339
crossref_primary_10_1016_j_electacta_2023_143055
crossref_primary_10_1021_acsanm_8b01470
crossref_primary_10_1016_j_cej_2021_130139
crossref_primary_10_1039_C9TA07857F
crossref_primary_10_1007_s12274_020_3133_x
crossref_primary_10_1002_cctc_202001528
crossref_primary_10_1016_j_cej_2024_151234
crossref_primary_10_1039_C9TA02891A
crossref_primary_10_1039_D1CY00435B
crossref_primary_10_1039_D0EN01247E
crossref_primary_10_1007_s10800_021_01545_1
crossref_primary_10_1016_j_cej_2021_133515
crossref_primary_10_1016_j_electacta_2020_136516
crossref_primary_10_1016_j_cclet_2020_11_040
crossref_primary_10_1016_j_nanoen_2020_105355
crossref_primary_10_1016_j_apsusc_2023_158599
crossref_primary_10_1016_j_apsusc_2022_155520
crossref_primary_10_1016_j_nanoen_2023_109183
crossref_primary_10_3390_nano12203633
crossref_primary_10_1021_acssuschemeng_1c05718
crossref_primary_10_1016_j_colsurfa_2021_126425
crossref_primary_10_1016_j_fuel_2022_123280
crossref_primary_10_1021_acs_cgd_8b01594
crossref_primary_10_1002_asia_201900752
crossref_primary_10_1016_j_electacta_2022_141724
crossref_primary_10_1016_j_ijhydene_2022_07_219
crossref_primary_10_1002_smll_202409306
crossref_primary_10_1016_j_fuel_2023_129626
crossref_primary_10_1016_j_ijhydene_2022_12_095
crossref_primary_10_1039_D0CC05272H
crossref_primary_10_3390_catal8090350
crossref_primary_10_1021_acsami_0c22148
crossref_primary_10_1002_cssc_202201921
crossref_primary_10_1016_j_cej_2023_146885
crossref_primary_10_1016_j_apsusc_2023_158766
crossref_primary_10_1088_2515_7639_ac09d2
crossref_primary_10_1039_D1CC07242K
crossref_primary_10_1016_j_apcata_2021_118049
crossref_primary_10_1021_acsanm_4c05033
crossref_primary_10_1016_j_apcata_2022_118745
crossref_primary_10_1002_ange_201909832
crossref_primary_10_1016_j_apmate_2022_01_003
crossref_primary_10_1039_D1TA09989B
crossref_primary_10_54227_mlab_20220009
crossref_primary_10_1016_j_jallcom_2021_159945
crossref_primary_10_1039_D1CC06290E
crossref_primary_10_1007_s12598_022_02206_8
crossref_primary_10_1016_j_electacta_2020_135883
crossref_primary_10_1016_j_jtice_2020_10_019
crossref_primary_10_1002_ange_202206050
Cites_doi 10.1016/j.electacta.2012.07.007
10.1038/nchem.1634
10.1002/cctc.201500396
10.1002/celc.201700392
10.1002/cssc.201701074
10.1021/acs.accounts.8b00193
10.1002/ange.201606313
10.1021/nn401402a
10.1021/acscatal.7b03177
10.1016/j.electacta.2013.06.137
10.1021/acssuschemeng.7b04732
10.1039/C3NR05359H
10.1038/35104599
10.1039/C8TA05054F
10.1039/C4SC02019G
10.1016/j.jpowsour.2011.02.015
10.1002/adma.201604765
10.1021/acscatal.6b00487
10.1039/C8NR00764K
10.1002/chem.201501120
10.1021/acscentsci.7b00424
10.1007/s12274-017-1421-x
10.1002/adfm.201702513
10.1021/acs.chemrev.7b00689
10.1002/aenm.201600621
10.1021/acsenergylett.8b00855
10.1002/anie.201606313
10.1016/j.nantod.2016.10.004
10.1021/ja408329q
10.1021/ja502379c
10.1039/C7TA03582A
10.1039/C8NR02071J
10.1039/C6QI00198J
10.1021/ja502128j
10.1039/C7CS00418D
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.201803718
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 18412
ExternalDocumentID 30088303
10_1002_chem_201803718
CHEM201803718
Genre shortCommunication
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21501112, 21701102, U1632149, U1532265, 21331005, 11621063, 21535004, 21390411 and 91753111
– fundername: Natural Science Foundation of Shandong Province
  funderid: ZR2018JL009
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2018JL009
– fundername: National Natural Science Foundation of China
  grantid: 21501112, 21701102, U1632149, U1532265, 21331005, 11621063, 21535004, 21390411 and 91753111
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c2888-b59fac210027d6ace19be15325194df0cff8a87473c11cc3ae4377b4206b10703
IEDL.DBID DR2
ISSN 0947-6539
1521-3765
IngestDate Fri Jul 11 15:51:35 EDT 2025
Fri Jul 25 12:00:14 EDT 2025
Thu Apr 03 07:02:07 EDT 2025
Tue Jul 01 01:29:40 EDT 2025
Thu Apr 24 23:12:10 EDT 2025
Wed Jan 22 16:53:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 69
Keywords oxidation
element incorporation
electrochemistry
nanosheet
hierarchical structure
Language English
License 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2888-b59fac210027d6ace19be15325194df0cff8a87473c11cc3ae4377b4206b10703
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1416-5557
PMID 30088303
PQID 2153562923
PQPubID 986340
PageCount 5
ParticipantIDs proquest_miscellaneous_2085663124
proquest_journals_2153562923
pubmed_primary_30088303
crossref_citationtrail_10_1002_chem_201803718
crossref_primary_10_1002_chem_201803718
wiley_primary_10_1002_chem_201803718_CHEM201803718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 10, 2018
PublicationDateYYYYMMDD 2018-12-10
PublicationDate_xml – month: 12
  year: 2018
  text: December 10, 2018
  day: 10
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chemistry
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2012; 81
2017; 3
2017; 4
2013; 108
2017; 27
2017; 46
2017; 29
2011; 196
2013; 7
2013; 5
2015; 7
2014; 136
2016; 11
2018; 6
2016; 6
2018; 8
2018; 3
2014; 5
2016 2016; 55 128
2016; 3
2018; 118
2017; 10
2013; 135
2018; 51
2018; 10
2014; 6
2001; 414
2016; 22
e_1_2_2_3_2
e_1_2_2_4_2
e_1_2_2_22_3
e_1_2_2_23_2
e_1_2_2_24_1
e_1_2_2_5_2
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_20_1
e_1_2_2_2_2
e_1_2_2_40_1
e_1_2_2_41_1
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_27_2
e_1_2_2_28_1
e_1_2_2_26_2
e_1_2_2_9_2
e_1_2_2_25_2
e_1_2_2_13_2
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_10_2
e_1_2_2_39_2
e_1_2_2_30_2
e_1_2_2_31_1
e_1_2_2_19_1
e_1_2_2_18_1
e_1_2_2_32_2
e_1_2_2_16_2
e_1_2_2_17_1
e_1_2_2_33_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_35_1
e_1_2_2_36_1
References_xml – volume: 27
  start-page: 1702513
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 118
  start-page: 6337
  year: 2018
  publication-title: Chem. Rev.
– volume: 10
  start-page: 12302
  year: 2018
  end-page: 12307
  publication-title: Nanoscale
– volume: 108
  start-page: 660
  year: 2013
  end-page: 665
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 7941
  year: 2018
  end-page: 7945
  publication-title: Nanoscale
– volume: 51
  start-page: 1711
  year: 2018
  end-page: 1721
  publication-title: Acc. Chem. Res.
– volume: 55 128
  start-page: 12465 12653
  year: 2016 2016
  end-page: 12469 12657
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 4615
  year: 2014
  end-page: 4620
  publication-title: Chem. Sci.
– volume: 3
  start-page: 1221
  year: 2017
  end-page: 1227
  publication-title: ACS Cent. Sci.
– volume: 81
  start-page: 292
  year: 2012
  end-page: 300
  publication-title: Electrochim. Acta
– volume: 136
  start-page: 7077
  year: 2014
  end-page: 7084
  publication-title: J. Am. Chem. Soc.
– volume: 196
  start-page: 5021
  year: 2011
  end-page: 5026
  publication-title: J. Power Sources
– volume: 5
  start-page: 362
  year: 2013
  end-page: 363
  publication-title: Nat. Chem.
– volume: 10
  start-page: 1178
  year: 2017
  end-page: 1188
  publication-title: Nano Res.
– volume: 7
  start-page: 5430
  year: 2013
  end-page: 5436
  publication-title: ACS Nano
– volume: 6
  start-page: 5044
  year: 2016
  end-page: 5051
  publication-title: ACS Catal.
– volume: 6
  start-page: 16121
  year: 2018
  end-page: 16129
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 7338
  year: 2017
  end-page: 7373
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 1600621
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 13336
  year: 2017
  end-page: 13340
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1160
  year: 2016
  end-page: 1166
  publication-title: Inorg. Chem. Front.
– volume: 6
  start-page: 1369
  year: 2014
  end-page: 1376
  publication-title: Nanoscale
– volume: 4
  start-page: 1840
  year: 2017
  end-page: 1845
  publication-title: ChemElectroChem
– volume: 135
  start-page: 17881
  year: 2013
  end-page: 17888
  publication-title: J. Am. Chem. Soc.
– volume: 414
  start-page: 332
  year: 2001
  end-page: 337
  publication-title: Nature
– volume: 10
  start-page: 4465
  year: 2017
  end-page: 4471
  publication-title: ChemSusChem
– volume: 22
  start-page: 3588
  year: 2016
  end-page: 3598
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 793
  year: 2016
  end-page: 816
  publication-title: Nano Today
– volume: 8
  start-page: 1
  year: 2018
  end-page: 7
  publication-title: ACS Catal.
– volume: 3
  start-page: 1648
  year: 2018
  end-page: 1654
  publication-title: ACS Energy Lett.
– volume: 7
  start-page: 2568
  year: 2015
  end-page: 2580
  publication-title: ChemCatChem
– volume: 29
  start-page: 1604765
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 4499
  year: 2018
  end-page: 4503
  publication-title: ACS Sustainable Chem. Eng.
– volume: 136
  start-page: 6744
  year: 2014
  end-page: 6753
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_19_1
  doi: 10.1016/j.electacta.2012.07.007
– ident: e_1_2_2_1_1
– ident: e_1_2_2_3_2
  doi: 10.1038/nchem.1634
– ident: e_1_2_2_5_2
  doi: 10.1002/cctc.201500396
– ident: e_1_2_2_10_2
  doi: 10.1002/celc.201700392
– ident: e_1_2_2_38_2
  doi: 10.1002/cssc.201701074
– ident: e_1_2_2_37_1
– ident: e_1_2_2_7_2
  doi: 10.1021/acs.accounts.8b00193
– ident: e_1_2_2_22_3
  doi: 10.1002/ange.201606313
– ident: e_1_2_2_31_1
– ident: e_1_2_2_36_1
  doi: 10.1021/nn401402a
– ident: e_1_2_2_21_2
  doi: 10.1021/acscatal.7b03177
– ident: e_1_2_2_23_2
  doi: 10.1016/j.electacta.2013.06.137
– ident: e_1_2_2_20_1
– ident: e_1_2_2_12_2
  doi: 10.1021/acssuschemeng.7b04732
– ident: e_1_2_2_17_1
  doi: 10.1039/C3NR05359H
– ident: e_1_2_2_2_2
  doi: 10.1038/35104599
– ident: e_1_2_2_26_2
  doi: 10.1039/C8TA05054F
– ident: e_1_2_2_41_1
  doi: 10.1039/C4SC02019G
– ident: e_1_2_2_15_2
  doi: 10.1016/j.jpowsour.2011.02.015
– ident: e_1_2_2_28_1
– ident: e_1_2_2_34_2
  doi: 10.1002/adma.201604765
– ident: e_1_2_2_18_1
  doi: 10.1021/acscatal.6b00487
– ident: e_1_2_2_9_2
  doi: 10.1039/C8NR00764K
– ident: e_1_2_2_4_2
  doi: 10.1002/chem.201501120
– ident: e_1_2_2_14_1
– ident: e_1_2_2_39_2
  doi: 10.1021/acscentsci.7b00424
– ident: e_1_2_2_30_2
  doi: 10.1007/s12274-017-1421-x
– ident: e_1_2_2_6_2
  doi: 10.1002/adfm.201702513
– ident: e_1_2_2_16_2
  doi: 10.1021/acs.chemrev.7b00689
– ident: e_1_2_2_25_2
  doi: 10.1002/aenm.201600621
– ident: e_1_2_2_8_2
  doi: 10.1021/acsenergylett.8b00855
– ident: e_1_2_2_22_2
  doi: 10.1002/anie.201606313
– ident: e_1_2_2_32_2
  doi: 10.1016/j.nantod.2016.10.004
– ident: e_1_2_2_40_1
  doi: 10.1021/ja408329q
– ident: e_1_2_2_27_2
  doi: 10.1021/ja502379c
– ident: e_1_2_2_24_1
– ident: e_1_2_2_13_2
  doi: 10.1039/C7TA03582A
– ident: e_1_2_2_11_2
  doi: 10.1039/C8NR02071J
– ident: e_1_2_2_29_2
  doi: 10.1039/C6QI00198J
– ident: e_1_2_2_35_1
  doi: 10.1021/ja502128j
– ident: e_1_2_2_33_2
  doi: 10.1039/C7CS00418D
SSID ssj0009633
Score 2.5899632
Snippet An iron‐incorporated α‐Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The...
An iron‐incorporated α‐Ni(OH) 2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported....
An iron-incorporated α-Ni(OH) nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The...
An iron-incorporated α-Ni(OH)2 nanosheet array catalyst characterized by hierarchical surface nanobelts and robust urea oxidation performance are reported. The...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18408
SubjectTerms Arrays
Catalysis
Catalysts
Charge transfer
Chemistry
Clean energy
electrochemistry
element incorporation
hierarchical structure
Iron
Kinetics
nanosheet
Nanosheets
Nanostructure
Nickel compounds
Oxidation
Oxidation process
Reaction kinetics
Structural stability
Surface charge
Urea
Wastewater treatment
Title Iron‐Incorporated α‐Ni(OH)2 Hierarchical Nanosheet Arrays for Electrocatalytic Urea Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201803718
https://www.ncbi.nlm.nih.gov/pubmed/30088303
https://www.proquest.com/docview/2153562923
https://www.proquest.com/docview/2085663124
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NattAEB5CLumlTdI_tU7YQKHtYW3tSrLkYwgxdiA2lBp8E7vrFTUJUvEPxD3lEfIqfZE-RJ4kM1pLjhtKob3pZ1f7O7PfrHa-Afig46CDq6rPQ1zueGhCxTUaIlzL2GhpbUcYcnC-HLR7o_BiHI0fefE7foh6w40ko9TXJOBKz1sb0lBsE3mSi4RI58jblw5sESr6suGPwtnlYsmHMScO1oq10Zet7ezbq9ITqLmNXMulp_sCVFVpd-Lkqrlc6Kb58Ruf4_-0ah-er3EpO3UT6QB2bH4Ie2dVOLiXoPuzIr-_vesT8WVJfmwn7NdPfDKYfhr2PkvWm5Izcxlb5Zqh1i7m36xd4CdnajVnCI7ZuYu5U24ZrbAgNkLIyoY3UxfY6RWMuudfz3p8HaCBG4mWM9dRJ1NGUtXjSVsZKzraogolb9hwkvkmyxKVoMESGCGMCZQNgzjWofTbWpCueQ27eZHbt8DQbDLKJrGNMJHOAh2JRJG1GQVta5TwgFcDlJo1ezkF0bhOHe-yTKnn0rrnPPhYp__ueDv-mLJRjXe6lt95ikAoQGSI6NeDk_o19jj9TlG5LZaYBtEq4jUESB68cfOkLipAaJUgOvBAlqP9lzqkxH9R3737l0zv4Rld00kb4TdgdzFb2iPESwt9XMrEA1YBDVw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB4VeoBLC-WnaYG6UqXCwUvsJJvsESFQtoVFQqzELbK9jlgVZav9kUpPPAKv0hfhIXgSZuJN0BYhJDjGseP_mW8czzcA33QctFCr-jxEdcdDEyqu0RDhWsZGS2tbwpCD83GnmXbDH-dRdZuQfGEcP0R94EY7o5TXtMHpQHr3gTUUO0Wu5CIh1rlkDt5SWO_Sqjp9YJDC9eWiyYcxJxbWirfRl7uz5Wf10iOwOYtdS-Vz-B501Wx35-RXYzLWDfP3P0bHV_VrCd5NoSnbc2tpGd7Y4gMs7FcR4VZAt4eD4u76pk3clyX_se2x23-Y0ulvn6Q7kqV98mcuw6tcMhTcg9GFtWP85FBdjRjiY3bgwu6Up0ZXWBHrImplJ3_6LrbTKnQPD872Uz6N0cCNROOZ66iVKyOp6XGvqYwVLW1RipJDbNjLfZPniUrQZgmMEMYEyoZBHOtQ-k0tSNyswXwxKOxHYGg5GWWT2EaYSeeBjkSiyOCMgqY1SnjAqxnKzJTAnOJoXGaOellmNHJZPXIefK_z_3bUHU_m3KgmPJtu4VGGWChAcIgA2IOv9Wsccfqjogo7mGAeBKwI2RAjebDuFkpdVYDoKkGA4IEsp_uZNmREgVE_fXpJoS-wkJ4dH2VH7c7Pz7BI6XTxRvgbMD8eTuwmwqex3io3yD0kPBF3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BkQovhQKlaQs1UiXgwW3sOJd9RG1Xu1y2CLFS3yLb64gVVbbai0R56if0V_oj_Qi-hJl4k7JUqBI8xrHj64zPOJ4zADsmjVq4q4Zc4XbHlVWaGzREuJGpNdK5lrDk4Pyxl3T66t1xfPybF7_nh2gO3EgyKn1NAn46KPauSUOxT-RJLjIincvuwj2VhBmt64PP1wRSuLx8MHmVciJhrWkbQ7m3WH5xW7qBNReha7X3tB-Crlvtr5x8251Nza798Qeh4_906xGszIEpe-tX0ircceVjuL9fx4N7AqY7HpU_zy-6xHxZsR-7Abu6xJTe8PVR541knSF5M1fBVU4Yqu3R5KtzU_zkWJ9NGKJjduiD7lRnRmdYEesjZmVH34c-stNT6LcPv-x3-DxCA7cSTWdu4lahraSmp4NEWydaxqEOJXdYNShCWxSZztBiiawQ1kbaqShNjZJhYgQpmzVYKkelWweGdpPVLktdjJlMEZlYZJrMzThKnNUiAF5PUG7n9OUUReMk98TLMqeRy5uRC-BVk__UE3f8NedWPd_5XIAnOSKhCKEhwt8AXjavccTpf4ou3WiGeRCuImBDhBTAM79OmqoixFYZwoMAZDXbt7QhJwKM5mnjXwptw_Kng3b-odt7vwkPKJlu3YhwC5am45l7jthpal5U4vEL-34QLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iron%E2%80%90Incorporated+%CE%B1%E2%80%90Ni%28OH%292+Hierarchical+Nanosheet+Arrays+for+Electrocatalytic+Urea+Oxidation&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Xie%2C+Junfeng&rft.au=Liu%2C+Weiwei&rft.au=Fengcai+Lei&rft.au=Zhang%2C+Xiaodong&rft.date=2018-12-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=24&rft.issue=69&rft.spage=18408&rft.epage=18412&rft_id=info:doi/10.1002%2Fchem.201803718&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon