Operator product expansion in Carrollian CFT
A bstract Carrollian conformal field theory offers an alternative description of massless scattering amplitudes, that is holographic in nature. In an effort to build a framework that is both predictive and constraining, we construct operator product expansions (OPE) that are compatible with carrolli...
Saved in:
Published in | The journal of high energy physics Vol. 2025; no. 7; pp. 193 - 44 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2025
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
Carrollian conformal field theory offers an alternative description of massless scattering amplitudes, that is holographic in nature. In an effort to build a framework that is both predictive and constraining, we construct operator product expansions (OPE) that are compatible with carrollian symmetries. In this way, we unify and extend preliminary works on the subject, and demonstrate that the carrollian OPEs indeed control the short-distance expansion of carrollian correlators and amplitudes. In the process, we extend the representation theory of carrollian conformal fields such as to account for composite operators like the carrollian stress tensor or those creating multiparticle states. In addition we classify 2- and 3-point carrollian correlators and amplitudes with complex kinematics, and give the general form of the 4-point function allowed by symmetry. |
---|---|
AbstractList | A
bstract
Carrollian conformal field theory offers an alternative description of massless scattering amplitudes, that is holographic in nature. In an effort to build a framework that is both predictive and constraining, we construct operator product expansions (OPE) that are compatible with carrollian symmetries. In this way, we unify and extend preliminary works on the subject, and demonstrate that the carrollian OPEs indeed control the short-distance expansion of carrollian correlators and amplitudes. In the process, we extend the representation theory of carrollian conformal fields such as to account for composite operators like the carrollian stress tensor or those creating multiparticle states. In addition we classify 2- and 3-point carrollian correlators and amplitudes with complex kinematics, and give the general form of the 4-point function allowed by symmetry. Carrollian conformal field theory offers an alternative description of massless scattering amplitudes, that is holographic in nature. In an effort to build a framework that is both predictive and constraining, we construct operator product expansions (OPE) that are compatible with carrollian symmetries. In this way, we unify and extend preliminary works on the subject, and demonstrate that the carrollian OPEs indeed control the short-distance expansion of carrollian correlators and amplitudes. In the process, we extend the representation theory of carrollian conformal fields such as to account for composite operators like the carrollian stress tensor or those creating multiparticle states. In addition we classify 2- and 3-point carrollian correlators and amplitudes with complex kinematics, and give the general form of the 4-point function allowed by symmetry. Abstract Carrollian conformal field theory offers an alternative description of massless scattering amplitudes, that is holographic in nature. In an effort to build a framework that is both predictive and constraining, we construct operator product expansions (OPE) that are compatible with carrollian symmetries. In this way, we unify and extend preliminary works on the subject, and demonstrate that the carrollian OPEs indeed control the short-distance expansion of carrollian correlators and amplitudes. In the process, we extend the representation theory of carrollian conformal fields such as to account for composite operators like the carrollian stress tensor or those creating multiparticle states. In addition we classify 2- and 3-point carrollian correlators and amplitudes with complex kinematics, and give the general form of the 4-point function allowed by symmetry. |
ArticleNumber | 193 |
Author | Salzer, Jakob Nguyen, Kevin |
Author_xml | – sequence: 1 givenname: Kevin orcidid: 0000-0002-7714-2328 surname: Nguyen fullname: Nguyen, Kevin organization: Université Libre de Bruxelles and International Solvay Institutes – sequence: 2 givenname: Jakob orcidid: 0000-0002-9560-344X surname: Salzer fullname: Salzer, Jakob email: jakob.salzer@ulb.be organization: Université Libre de Bruxelles and International Solvay Institutes |
BookMark | eNp1kM1LAzEQxYNUsK2evS54UXDt5GPzcZTS2kqhHuo5xGy2bFk3NdmC_vemrqgXTzMM7_1m5o3QoPWtQ-gSwx0GEJPHxewJxDUBUtxgRU_QEANRuWRCDf70Z2gU4w4AF1jBEN2u9y6YzodsH3x5sF3m3vemjbVvs7rNpiYE3zS1Se18c45OK9NEd_Fdx-h5PttMF_lq_bCc3q9yS6SkuTRS4aoQwlKupLG04hV3nBWWAhjLJX1RzlaKFMYRWmHGpOGCSUdpaQTndIyWPbf0Zqf3oX414UN7U-uvgQ9bbUJX28ZpypijwjoCGJiDUkpWSoeFUKUlXIrEuupZ6b-3g4ud3vlDaNP5mhKKgZOCqKSa9CobfIzBVT9bMehjvLqPVx_j1Sne5IDeEZOy3brwy_3P8gnhonrq |
Cites_doi | 10.1103/PhysRevLett.128.241601 10.1007/JHEP01(2024)076 10.1007/JHEP05(2024)145 10.1007/JHEP02(2021)108 10.1007/JHEP09(2022)063 10.1007/JHEP02(2017)038 10.1007/JHEP10(2023)084 10.1007/JHEP04(2023)135 10.1007/JHEP04(2023)051 10.3389/fphy.2022.810405 10.1007/JHEP09(2022)007 10.1007/JHEP12(2022)154 10.1007/JHEP07(2024)054 10.1103/PhysRevD.107.126027 10.1007/JHEP08(2024)144 10.1007/JHEP05(2024)012 10.1007/JHEP03(2025)158 10.1007/JHEP03(2020)125 10.21468/SciPostPhys.12.6.205 10.1007/JHEP01(2019)205 10.22323/1.406.0133 10.1103/PhysRevLett.129.071602 10.1007/JHEP03(2024)064 10.2307/1968551 10.1142/0352 10.1007/JHEP11(2021)180 10.1007/JHEP04(2020)130 10.1007/JHEP12(2016)147 10.1007/JHEP07(2016)129 10.1007/JHEP03(2023)252 10.1007/JHEP05(2010)062 10.1098/rspa.1962.0161 10.1098/rspa.1962.0206 10.1016/0003-4916(73)90096-1 10.1007/978-3-031-46987-9 10.3390/universe9090385 10.1007/JHEP01(2022)029 10.1063/5.0003616 10.1007/JHEP10(2023)080 10.1007/JHEP06(2023)051 10.1007/JHEP01(2025)183 10.1007/JHEP04(2024)127 10.1007/JHEP09(2023)148 10.1007/JHEP10(2024)049 10.1007/JHEP12(2024)122 10.1007/JHEP01(2025)169 10.1103/PhysRev.128.2851 10.1103/snfw-gbbc 10.1007/JHEP02(2021)176 10.1017/CBO9781107706620 10.1103/PhysRevD.108.045020 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.1007/JHEP07(2025)193 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
EndPage | 44 |
ExternalDocumentID | oai_doaj_org_article_344e37ce20104e0d884d8e1779dc2687 10_1007_JHEP07_2025_193 |
GroupedDBID | 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMVHM ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP N5L N9A NB0 O93 OK1 P62 P9T PHGZM PHGZT PIMPY PQGLB PROAC R9I RO9 S1Z S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX CITATION ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c2883-8a891f577c3698ac3f6f6e645c300ac683b9ecf925ae23f1448a6748e33da7663 |
IEDL.DBID | DOA |
ISSN | 1029-8479 |
IngestDate | Wed Aug 27 01:19:51 EDT 2025 Fri Aug 08 05:11:09 EDT 2025 Thu Aug 14 00:09:03 EDT 2025 Fri Aug 08 01:10:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Gauge-Gravity Correspondence Space-Time Symmetries Scale and Conformal Symmetries Scattering Amplitudes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2883-8a891f577c3698ac3f6f6e645c300ac683b9ecf925ae23f1448a6748e33da7663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7714-2328 0000-0002-9560-344X |
OpenAccessLink | https://doaj.org/article/344e37ce20104e0d884d8e1779dc2687 |
PQID | 3231062529 |
PQPubID | 2034718 |
PageCount | 44 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_344e37ce20104e0d884d8e1779dc2687 proquest_journals_3231062529 crossref_primary_10_1007_JHEP07_2025_193 springer_journals_10_1007_JHEP07_2025_193 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
References | 26769_CR41 Y Herfray (26769_CR39) 2020; 61 26769_CR40 M Henneaux (26769_CR28) 2021; 11 L Ren (26769_CR62) 2023; 10 G Barnich (26769_CR45) 2022; 12 26769_CR49 K Nguyen (26769_CR16) 2024; 01 D Nandan (26769_CR59) 2017; 02 26769_CR47 S Stieberger (26769_CR21) 2024; 04 E Have (26769_CR56) 2024; 07 26769_CR5 26769_CR7 26769_CR6 A Bagchi (26769_CR11) 2023; 04 P Kraus (26769_CR22) 2025; 01 A Bagchi (26769_CR4) 2022; 128 S Banerjee (26769_CR2) 2019; 01 G Barnich (26769_CR43) 2010; 05 26769_CR54 L Bidussi (26769_CR33) 2022; 12 B Czech (26769_CR36) 2016; 07 26769_CR50 A Bagchi (26769_CR1) 2016; 12 J Cotler (26769_CR26) 2024; 10 26769_CR58 S Banerjee (26769_CR60) 2021; 02 26769_CR57 26769_CR55 T Adamo (26769_CR61) 2023; 03 S Banerjee (26769_CR23) 2024; 12 R Ruzziconi (26769_CR48) 2025; 01 W-B Liu (26769_CR53) 2023; 107 L Donnay (26769_CR44) 2022; 09 L Mason (26769_CR18) 2024; 05 S Pasterski (26769_CR52) 2017; 96 LF Alday (26769_CR20) 2025; 03 V Chandrasekaran (26769_CR46) 2022; 01 A Bagchi (26769_CR17) 2024; 08 S Banerjee (26769_CR9) 2020; 04 A Saha (26769_CR15) 2024; 05 L Iacobacci (26769_CR63) 2025; 111 A Saha (26769_CR12) 2023; 06 26769_CR24 L Donnay (26769_CR10) 2023; 107 J de Boer (26769_CR25) 2023; 09 B Chen (26769_CR19) 2024; 03 K Nguyen (26769_CR42) 2021; 02 L Donnay (26769_CR3) 2022; 129 26769_CR32 26769_CR31 26769_CR30 O Kasikci (26769_CR35) 2023; 108 26769_CR38 26769_CR37 C-M Chang (26769_CR51) 2023; 04 26769_CR34 S Banerjee (26769_CR8) 2020; 03 J Salzer (26769_CR13) 2023; 10 K Nguyen (26769_CR14) 2023; 9 J de Boer (26769_CR29) 2022; 10 C Duval (26769_CR27) 2014; 31 |
References_xml | – volume: 128 year: 2022 ident: 26769_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.241601 – volume: 01 start-page: 076 year: 2024 ident: 26769_CR16 publication-title: JHEP doi: 10.1007/JHEP01(2024)076 – volume: 05 start-page: 145 year: 2024 ident: 26769_CR15 publication-title: JHEP doi: 10.1007/JHEP05(2024)145 – volume: 02 start-page: 108 year: 2021 ident: 26769_CR42 publication-title: JHEP doi: 10.1007/JHEP02(2021)108 – volume: 09 start-page: 063 year: 2022 ident: 26769_CR44 publication-title: JHEP doi: 10.1007/JHEP09(2022)063 – volume: 02 start-page: 038 year: 2017 ident: 26769_CR59 publication-title: JHEP doi: 10.1007/JHEP02(2017)038 – ident: 26769_CR50 – volume: 10 start-page: 084 year: 2023 ident: 26769_CR13 publication-title: JHEP doi: 10.1007/JHEP10(2023)084 – volume: 04 start-page: 135 year: 2023 ident: 26769_CR11 publication-title: JHEP doi: 10.1007/JHEP04(2023)135 – volume: 04 start-page: 051 year: 2023 ident: 26769_CR51 publication-title: JHEP doi: 10.1007/JHEP04(2023)051 – volume: 10 year: 2022 ident: 26769_CR29 publication-title: Front. in Phys. doi: 10.3389/fphy.2022.810405 – ident: 26769_CR40 doi: 10.1007/JHEP09(2022)007 – volume: 12 start-page: 154 year: 2022 ident: 26769_CR45 publication-title: JHEP doi: 10.1007/JHEP12(2022)154 – volume: 07 start-page: 054 year: 2024 ident: 26769_CR56 publication-title: JHEP doi: 10.1007/JHEP07(2024)054 – volume: 107 year: 2023 ident: 26769_CR10 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.126027 – volume: 08 start-page: 144 year: 2024 ident: 26769_CR17 publication-title: JHEP doi: 10.1007/JHEP08(2024)144 – volume: 05 start-page: 012 year: 2024 ident: 26769_CR18 publication-title: JHEP doi: 10.1007/JHEP05(2024)012 – volume: 03 start-page: 158 year: 2025 ident: 26769_CR20 publication-title: JHEP doi: 10.1007/JHEP03(2025)158 – volume: 03 start-page: 125 year: 2020 ident: 26769_CR8 publication-title: JHEP doi: 10.1007/JHEP03(2020)125 – volume: 12 start-page: 205 year: 2022 ident: 26769_CR33 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.12.6.205 – volume: 01 start-page: 205 year: 2019 ident: 26769_CR2 publication-title: JHEP doi: 10.1007/JHEP01(2019)205 – ident: 26769_CR41 doi: 10.22323/1.406.0133 – volume: 129 year: 2022 ident: 26769_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.071602 – volume: 03 start-page: 064 year: 2024 ident: 26769_CR19 publication-title: JHEP doi: 10.1007/JHEP03(2024)064 – ident: 26769_CR38 doi: 10.2307/1968551 – volume: 31 year: 2014 ident: 26769_CR27 publication-title: Class. Quant. Grav. – ident: 26769_CR58 doi: 10.1142/0352 – volume: 11 start-page: 180 year: 2021 ident: 26769_CR28 publication-title: JHEP doi: 10.1007/JHEP11(2021)180 – ident: 26769_CR32 – volume: 04 start-page: 130 year: 2020 ident: 26769_CR9 publication-title: JHEP doi: 10.1007/JHEP04(2020)130 – ident: 26769_CR57 – ident: 26769_CR37 – volume: 12 start-page: 147 year: 2016 ident: 26769_CR1 publication-title: JHEP doi: 10.1007/JHEP12(2016)147 – volume: 07 start-page: 129 year: 2016 ident: 26769_CR36 publication-title: JHEP doi: 10.1007/JHEP07(2016)129 – volume: 03 start-page: 252 year: 2023 ident: 26769_CR61 publication-title: JHEP doi: 10.1007/JHEP03(2023)252 – volume: 96 year: 2017 ident: 26769_CR52 publication-title: Phys. Rev. D – volume: 05 start-page: 062 year: 2010 ident: 26769_CR43 publication-title: JHEP doi: 10.1007/JHEP05(2010)062 – ident: 26769_CR47 – ident: 26769_CR5 doi: 10.1098/rspa.1962.0161 – ident: 26769_CR7 doi: 10.1098/rspa.1962.0206 – ident: 26769_CR31 doi: 10.1016/0003-4916(73)90096-1 – ident: 26769_CR55 doi: 10.1007/978-3-031-46987-9 – volume: 9 start-page: 385 year: 2023 ident: 26769_CR14 publication-title: Universe doi: 10.3390/universe9090385 – volume: 01 start-page: 029 year: 2022 ident: 26769_CR46 publication-title: JHEP doi: 10.1007/JHEP01(2022)029 – volume: 61 year: 2020 ident: 26769_CR39 publication-title: J. Math. Phys. doi: 10.1063/5.0003616 – volume: 10 start-page: 080 year: 2023 ident: 26769_CR62 publication-title: JHEP doi: 10.1007/JHEP10(2023)080 – volume: 06 start-page: 051 year: 2023 ident: 26769_CR12 publication-title: JHEP doi: 10.1007/JHEP06(2023)051 – volume: 01 start-page: 183 year: 2025 ident: 26769_CR22 publication-title: JHEP doi: 10.1007/JHEP01(2025)183 – volume: 107 year: 2023 ident: 26769_CR53 publication-title: Phys. Rev. D – ident: 26769_CR34 – volume: 04 start-page: 127 year: 2024 ident: 26769_CR21 publication-title: JHEP doi: 10.1007/JHEP04(2024)127 – volume: 09 start-page: 148 year: 2023 ident: 26769_CR25 publication-title: JHEP doi: 10.1007/JHEP09(2023)148 – volume: 10 start-page: 049 year: 2024 ident: 26769_CR26 publication-title: JHEP doi: 10.1007/JHEP10(2024)049 – ident: 26769_CR49 – volume: 12 start-page: 122 year: 2024 ident: 26769_CR23 publication-title: JHEP doi: 10.1007/JHEP12(2024)122 – ident: 26769_CR24 – volume: 01 start-page: 169 year: 2025 ident: 26769_CR48 publication-title: JHEP doi: 10.1007/JHEP01(2025)169 – ident: 26769_CR6 doi: 10.1103/PhysRev.128.2851 – ident: 26769_CR30 – volume: 111 year: 2025 ident: 26769_CR63 publication-title: Phys. Rev. D doi: 10.1103/snfw-gbbc – volume: 02 start-page: 176 year: 2021 ident: 26769_CR60 publication-title: JHEP doi: 10.1007/JHEP02(2021)176 – ident: 26769_CR54 doi: 10.1017/CBO9781107706620 – volume: 108 year: 2023 ident: 26769_CR35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.045020 |
SSID | ssj0015190 |
Score | 2.473637 |
Snippet | A
bstract
Carrollian conformal field theory offers an alternative description of massless scattering amplitudes, that is holographic in nature. In an effort to... Carrollian conformal field theory offers an alternative description of massless scattering amplitudes, that is holographic in nature. In an effort to build a... Abstract Carrollian conformal field theory offers an alternative description of massless scattering amplitudes, that is holographic in nature. In an effort to... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 193 |
SubjectTerms | Amplitudes Classical and Quantum Gravitation Elementary Particles Field theory Gauge-Gravity Correspondence Gravity Kinematics Operators (mathematics) Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Scale and Conformal Symmetries Scattering Amplitudes Space-Time Symmetries String Theory Tensors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFA66IXgRf2J1Sg8eNrCsbdokPYkbG2PgHLLBbiFNU_HS1W2Cf74vabqpoLfShlC-_Hjf997jPYTuAmC5xBehlwsBAgUUhMeiLPAyGWaBZHkamuTxpwkZzaPxIl5Yh9vaplXWd6K5qLOl1D7yLtZEBMh6mDyU757uGqWjq7aFxj5qwhXMQHw1e4PJ9GUbRwB-4tcFfXzaHY8GU5-2QfDHHRNr_maLTMn-HzzzV2jUWJzhMTqyVNF9rNb2BO2p4hQdmJRNuT5D98-lMjFyt6yqtrrqE4629n65b4Xb19UVtS8FHoezczQfDmb9kWd7H3hS9__1mGBJkMeUSkwSJiTOSU4UiWKJfV9IwnCaKJknYSxUiHOQRUzoviEK40xQoBEXqFEsC3WJXMpiCUYalBGMEj5NBMheMF4iS4EsxKmD2jUKvKxKXPC6mHEFGNeAcQDMQT2N0naYrk1tXixXr9xudY6jSGEqlY6zR8rPGCw-UwGlCWwAwqiDWjXG3B6YNd8tr4M6Ne67z3_8z9X_U12jQz2yyq5tocZm9aFugENs0lu7Ub4AVS_A4w priority: 102 providerName: ProQuest – databaseName: Springer Journals Complete - Open Access dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MieBF_InVKT142MBC2zQ_etThGAN_HDbYLaRpKl66sU3wz_clbZQpHryFNoXyJen7vr6XLwA3CbJcFqs0qpRCgYIKIhJZmUSlTstEi6pIXfH44xMbz7LJnM47kPi9MK7a3ack3Zfab3abjB9eYt5HsU4HyDp2YJdi207qod3g0CYOkJDE3sHn90Nbwcd59G8Ryx-5UBdiRodw0HLD8K4ZzCPomPoY9lyNpl6fwO3z0rikeLhsbFpD84Fr2f7uCt_qcGjtFO3PE2yOpqcwGz1Mh-OoPewg0vbA30gokScV5VwTlgulScUqZlhGNYljpZkgRW50ladUmZRUqIOEsgeFGEJKxZE3nEG3XtTmHEIuqMaojFIIe6mY5wp1LkYrVRbIDmgRQN-jIJeNp4X07sUNYNICJhGwAO4tSl_drBm1u7BYvcp2bkuSZYZwbWxiPTNxKXC0hUk4z3HEmeAB9DzGsl0ha0kssUTxleYBDDzu37f_eJ-Lf_S9hH3bbGpre9DdrN7NFTKITXHt5swnaC67CA priority: 102 providerName: Springer Nature |
Title | Operator product expansion in Carrollian CFT |
URI | https://link.springer.com/article/10.1007/JHEP07(2025)193 https://www.proquest.com/docview/3231062529 https://doaj.org/article/344e37ce20104e0d884d8e1779dc2687 |
Volume | 2025 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFH_oRPAifmJ1jh48bGBZ2rRJetzK6hg4h2ywW0nTFLzM4Sb45_uStn6BePES-hFC-KXhvV_e6-8B3Pjo5TIiA6-UEgkKMghPhIXvFSoofCXKPLDJ4_dTNl6Ek2W0_FLqy-SEVfLAFXB9GoaacqVN1DbUpBA4lNA-5zEOx4T9jxxtXkOm6vgB-iWkEfIhvD8Zj2aEd5HoRz0bY_5ig6xU_zf_8kdI1Fqa9AgOaxfRHVRTO4YdvTqBfZuqqTancPuw1jY27q4rtVZXv-GWNqde7tPKTYyqojlDwct0fgaLdDRPxl5d88BTpu6vJ6SI_TLiXFEWC6loyUqmWRgpSohUTNA81qqMg0jqgJZIh4Q09UI0pYXk6D6cQ2v1vNIX4HIRKTTOyIiwlyQ8lkh30WjJIkfAotyBboNCtq6kLbJGxLgCLDOAZQiYA0OD0kc3o0ltH-BKZfVKZX-tlAPtBuOs3iibjBr_EjlYEDvQa3D_fP3LfC7_Yz5XcGDGq3Jv29Davrzqa_QwtnkHdkV614G94Wg6e8S7JAhNy5KO_cywXQSDd8ILzC4 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEYILYhWFAjmABBJREzuJnQNCUFrKzqGVejOO4yAubWmLgJ_iGxk7DZsEN25R4kTRy7PnjWcyA7Dto8qNPEncTEp0UNCDcHmQ-m6qSOorniXEJo9fXUfNdnDeCTsT8Fb8C2PSKos10S7UaU-ZPfIqNUIExTqJD_uPrukaZaKrRQuNnBYX-vUZXbbhwdkJft8dQhr1Vq3pjrsKuMp01nW55LGfhYwpGsVcKppFWaSjIFTU86SKOE1irbKYhFITmqHDwaXpyKEpTSVDA43PnYSpgNLYzCjeOP2IWqAa8oryQR6rnjfrtx7bJSgr9mxk-4vlsw0CvqnaH4FYa98a8zA3FqbOUc6kBZjQ3UWYtgmiargE-zd9bSPyTj-vEevoF1xIzF6b89B1aqaWo9m5wcNGaxna_4LJCpS6va5eBYfxUKEkQD8MR0mPxRKdbDSVMk1QmoRJGXYLFEQ_L6ghitLJOWDCACYQsDIcG5Q-hplK2PZEb3AvxhNL0CDQlCltovqB9lKOVOPaZyxGukWclaFSYCzG03MoPslUhr0C98_Lv7zP2t-P2oKZZuvqUlyeXV-sw6y5K8_rrUBpNHjSG6heRsmmpYwDd__N0Xf-cvs3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB1BEYgLYhVlzQEkkIjq2EnsHBCipVXZSoVA4mYcx0Fc2tKCgF_j6xhnYZPgxi1KnCh6efa88UxmALY8VLkhUdRNlUIHBT0IV_iJ5yaaJp4WaUyz5PHzTti-9k9ugpsxeCv_hbFpleWamC3USV_bPfIas0IExTqNammRFtE9ah0MHlzbQcpGWst2GjlFTs3rM7pvo_3jI_zW25S2mleNtlt0GHC17bLrCiUiLw041yyMhNIsDdPQhH6gGSFKh4LFkdFpRANlKEvR-RDKducwjCWKo7HG547DBEeviFRgot7sdC8_YhiojUhZTIjw2km72SV8h6LI2M3i3F_sYNYu4JvG_RGWzaxdaxZmCpnqHOa8moMx05uHySxdVI8WYO9iYLL4vDPIK8Y65gWXFbvz5tz3nIat7Gj3cfCwdbUI1_-CyhJUev2eWQaHi0CjQECvDEcpwiOFLjcaTpXEKFSCuAo7JQpykJfXkGUh5RwwaQGTCFgV6halj2G2LnZ2oj-8k8U0k8z3DePa2Bi_b0gikHjCeJxHSL5Q8CqslRjLYrKO5Ce1qrBb4v55-Zf3Wfn7UZswhfyUZ8ed01WYtjflSb5rUHkcPpl1lDKP8UbBGQdu_5um7xfHANg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Operator+product+expansion+in+Carrollian+CFT&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kevin+Nguyen&rft.au=Jakob+Salzer&rft.date=2025-07-01&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2025&rft.issue=7&rft.spage=1&rft.epage=44&rft_id=info:doi/10.1007%2FJHEP07%282025%29193&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_344e37ce20104e0d884d8e1779dc2687 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |