Layered Oxide Cathode‐Electrolyte Interface towards Na‐Ion Batteries: Advances and Perspectives
With the ever increasing demand for low‐cost and economic sustainable energy storage, Na‐ion batteries have received much attention for the application on large‐scale energy storage for electric grids because of the worldwide distribution and natural abundance of sodium element, low solvation energy...
Saved in:
Published in | Chemistry, an Asian journal Vol. 17; no. 12; pp. e202200213 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
15.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the ever increasing demand for low‐cost and economic sustainable energy storage, Na‐ion batteries have received much attention for the application on large‐scale energy storage for electric grids because of the worldwide distribution and natural abundance of sodium element, low solvation energy of Na+ ion in the electrolyte and the low cost of Al as current collectors. Starting from a brief comparison with Li‐ion batteries, this review summarizes the current understanding of layered oxide cathode/electrolyte interphase in NIBs, and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte. Urgent challenges are detailed in order to provide insight into the imminent developments of NIBs.
This review summarizes the current understanding of layered oxide cathode/electrolyte interphase in Na‐ion batteries (NIBs) and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte. Urgent challenges are detailed in order to provide insight into the imminent developments of NIBs. |
---|---|
AbstractList | With the ever increasing demand for low‐cost and economic sustainable energy storage, Na‐ion batteries have received much attention for the application on large‐scale energy storage for electric grids because of the worldwide distribution and natural abundance of sodium element, low solvation energy of Na+ ion in the electrolyte and the low cost of Al as current collectors. Starting from a brief comparison with Li‐ion batteries, this review summarizes the current understanding of layered oxide cathode/electrolyte interphase in NIBs, and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte. Urgent challenges are detailed in order to provide insight into the imminent developments of NIBs. With the ever increasing demand for low‐cost and economic sustainable energy storage, Na‐ion batteries have received much attention for the application on large‐scale energy storage for electric grids because of the worldwide distribution and natural abundance of sodium element, low solvation energy of Na+ ion in the electrolyte and the low cost of Al as current collectors. Starting from a brief comparison with Li‐ion batteries, this review summarizes the current understanding of layered oxide cathode/electrolyte interphase in NIBs, and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte. Urgent challenges are detailed in order to provide insight into the imminent developments of NIBs. This review summarizes the current understanding of layered oxide cathode/electrolyte interphase in Na‐ion batteries (NIBs) and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte. Urgent challenges are detailed in order to provide insight into the imminent developments of NIBs. With the ever increasing demand for low-cost and economic sustainable energy storage, Na-ion batteries have received much attention for the application on large-scale energy storage for electric grids because of the worldwide distribution and natural abundance of sodium element, low solvation energy of Na+ ion in the electrolyte and the low cost of Al as current collectors. Starting from a brief comparison with Li-ion batteries, this review summarizes the current understanding of layered oxide cathode/electrolyte interphase in NIBs, and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte. Urgent challenges are detailed in order to provide insight into the imminent developments of NIBs.With the ever increasing demand for low-cost and economic sustainable energy storage, Na-ion batteries have received much attention for the application on large-scale energy storage for electric grids because of the worldwide distribution and natural abundance of sodium element, low solvation energy of Na+ ion in the electrolyte and the low cost of Al as current collectors. Starting from a brief comparison with Li-ion batteries, this review summarizes the current understanding of layered oxide cathode/electrolyte interphase in NIBs, and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte. Urgent challenges are detailed in order to provide insight into the imminent developments of NIBs. With the ever increasing demand for low-cost and economic sustainable energy storage, Na-ion batteries have received much attention for the application on large-scale energy storage for electric grids because of the worldwide distribution and natural abundance of sodium element, low solvation energy of Na ion in the electrolyte and the low cost of Al as current collectors. Starting from a brief comparison with Li-ion batteries, this review summarizes the current understanding of layered oxide cathode/electrolyte interphase in NIBs, and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte. Urgent challenges are detailed in order to provide insight into the imminent developments of NIBs. With the ever increasing demand for low‐cost and economic sustainable energy storage, Na‐ion batteries have received much attention for the application on large‐scale energy storage for electric grids because of the worldwide distribution and natural abundance of sodium element, low solvation energy of Na + ion in the electrolyte and the low cost of Al as current collectors. Starting from a brief comparison with Li‐ion batteries, this review summarizes the current understanding of layered oxide cathode/electrolyte interphase in NIBs, and discusses the related degradation mechanisms, such as surface reconstruction and transition metal dissolution. Recent advances in constructing stable cathode electrolyte interface (CEI) on layered oxide cathode are systematically summarized, including surface modification of layered oxide cathode materials and formulation of electrolyte. Urgent challenges are detailed in order to provide insight into the imminent developments of NIBs. |
Author | Yin, Ya‐Xia Lei, Zhou‐Quan Wang, En‐Hui Zhang, Yu‐Ying He, Wei‐Huan Guo, Yu‐Guo Xin, Sen Guo, Yu‐Jie |
Author_xml | – sequence: 1 givenname: Zhou‐Quan surname: Lei fullname: Lei, Zhou‐Quan organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Yu‐Jie surname: Guo fullname: Guo, Yu‐Jie organization: University of Chinese Academy of Sciences – sequence: 3 givenname: En‐Hui surname: Wang fullname: Wang, En‐Hui organization: Chinese Academy of Sciences (CAS) – sequence: 4 givenname: Wei‐Huan surname: He fullname: He, Wei‐Huan organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Yu‐Ying surname: Zhang fullname: Zhang, Yu‐Ying organization: University of Chinese Academy of Sciences – sequence: 6 givenname: Sen surname: Xin fullname: Xin, Sen organization: University of Chinese Academy of Sciences – sequence: 7 givenname: Ya‐Xia orcidid: 0000-0002-0983-9916 surname: Yin fullname: Yin, Ya‐Xia email: yxyin@iccas.ac.cn organization: University of Chinese Academy of Sciences – sequence: 8 givenname: Yu‐Guo surname: Guo fullname: Guo, Yu‐Guo organization: University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35560519$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc-KFDEQh4OsuH_06lEavHiZMZXuTqe9jcOqA4MrqOAt1CTVmKUnGZPMrnPzEXxGn8QMs46wIJ5SId9XFep3zk588MTYU-BT4Fy8xORwKrgQ5QL1A3YGSsKk6eDLybEW6pSdp3TNeSt4rx6x07ptJW-hP2NmiTuKZKur785SNcf8NVj69ePn5UgmxzDuMlULnykOaKjK4RajTdV7LMgi-Oo15vLmKL2qZvYGvaFUobfVB4ppUzq4G0qP2cMBx0RP7s4L9vnN5af5u8ny6u1iPltOjFCqnoBqDedgALElwF52VA8ole17bJRRqKBFwBUoUDVXspFoG7tCbGjgopf1BXtx6LuJ4duWUtZrlwyNI3oK26SFlE1XOOgK-vweeh220ZffadEJkF0n-J56dkdtV2uyehPdGuNO_1lfAaYHwMSQUqThiADX-3z0Ph99zKcIzT3BuIzZBZ8juvHfWn_Qbt1Iu_8M0bOPi9lf9zd40KXI |
CitedBy_id | crossref_primary_10_1039_D4SE01225A crossref_primary_10_1016_j_apsusc_2024_161804 crossref_primary_10_1016_j_chphma_2024_01_004 crossref_primary_10_1002_adma_202301314 crossref_primary_10_1016_j_cej_2024_156294 crossref_primary_10_1039_D2QI02237K crossref_primary_10_1002_elt2_31 crossref_primary_10_3390_molecules29245988 crossref_primary_10_1016_j_cjsc_2023_100028 crossref_primary_10_1002_smll_202408018 crossref_primary_10_3390_batteries9090461 crossref_primary_10_1016_j_jpowsour_2024_235558 crossref_primary_10_1039_D3EE02934D crossref_primary_10_1021_acssuschemeng_4c08326 crossref_primary_10_1021_acsaem_4c00949 crossref_primary_10_1021_acsami_4c22709 crossref_primary_10_1016_j_jallcom_2023_172977 crossref_primary_10_1002_cssc_202401666 crossref_primary_10_1002_adma_202402008 |
Cites_doi | 10.1016/j.jelechem.2019.113633 10.1039/C6CP08441A 10.1016/j.cej.2021.133454 10.1021/acs.jpcc.9b08220 10.1038/ncomms3437 10.1149/2.0161914jes 10.1021/jacs.7b00164 10.1016/j.jpowsour.2010.01.004 10.1021/acs.chemmater.6b03403 10.1038/s41467-020-18285-z 10.1149/2.1021803jes 10.1039/c2cp23363k 10.1016/j.ensm.2019.11.024 10.1021/acsmaterialslett.0c00356 10.1246/cl.170284 10.1016/j.jpowsour.2021.229542 10.1021/acsami.9b03279 10.1021/ar400115x 10.1002/marc.1986.030070901 10.1016/j.jpowsour.2005.05.084 10.1016/j.cej.2019.123234 10.1016/j.electacta.2018.05.185 10.1016/j.jallcom.2020.156441 10.1021/acsaem.9b02021 10.1002/aenm.202102444 10.1149/1.3155432 10.1016/j.jpowsour.2013.02.075 10.1021/acs.jpcc.7b02303 10.1039/C5EE00695C 10.1021/cm901452z 10.1021/acsami.5b02904 10.1016/j.nanoen.2020.105061 10.1021/acsenergylett.0c00337 10.1016/j.ensm.2020.11.016 10.1021/acsami.9b06233 10.1002/aenm.201702942 10.1149/2.1151902jes 10.1016/j.ensm.2019.07.010 10.1038/s41467-021-25610-7 10.1021/cr500003w 10.1002/aenm.201701912 10.1016/j.jpowsour.2019.04.052 10.1039/c4cp00833b 10.1002/anie.202116865 10.1021/acs.chemmater.8b00750 10.1126/science.abc3167 10.1039/C8TA06551A 10.1007/s10800-013-0628-0 10.1002/adma.201808393 10.1016/j.jpowsour.2006.10.025 10.1016/j.carbon.2019.11.011 10.1039/C4CP01799D 10.1002/adfm.201705968 10.1021/acs.chemmater.9b00227 10.1021/nl503169v 10.1021/acs.jpclett.5b01727 10.1021/acsami.5b07887 10.1149/2.074311jes 10.1149/1.1775219 10.1016/j.jpowsour.2006.07.028 10.1017/S1431927614012744 10.1021/cr030203g 10.1016/j.jcis.2019.12.132 10.1021/acsenergylett.7b00907 10.1002/cssc.201501605 10.1088/1361-6463/aa646d 10.1002/adma.201605694 10.1002/aenm.201801975 10.1149/1.2200138 10.1039/C8EE01006D 10.1149/1.3290775 10.1016/j.nanoen.2016.06.026 10.1016/j.elecom.2011.10.026 10.1016/S0378-7753(98)00241-9 10.1149/2.020303jes 10.1149/2.0311704jes 10.1002/adfm.202001334 10.1149/2.035308jes 10.1021/acs.chemmater.7b02546 10.1002/adfm.201909887 10.1002/adma.201904816 10.1021/acsami.1c03844 10.1002/celc.202000002 10.1021/acsami.7b05326 10.1021/acs.nanolett.8b01036 10.1039/C9TA06389G 10.1021/jacs.7b05176 10.1021/acs.chemmater.8b00635 10.1021/am501671p 10.1039/b813846j 10.3891/acta.chem.scand.25-2370 10.1016/j.jpowsour.2019.01.086 10.1039/C6RA09560G 10.1038/s41560-019-0336-z 10.1016/j.commatsci.2013.09.017 10.1038/s41565-019-0428-8 10.1002/adma.202200777 10.1039/C5CP03119B 10.1002/aenm.201701785 10.1149/2.0151514jes 10.1149/1.3098494 10.1149/2.0861707jes 10.1007/s10008-012-1962-6 10.1016/j.apsusc.2019.143814 10.1021/ic300357d 10.1021/acsenergylett.0c01712 10.1021/acs.nanolett.5b03373 10.1016/j.nanoen.2018.10.072 10.1002/smll.202106927 10.1016/j.jpowsour.2012.01.122 10.1149/1.2128859 10.1021/acsami.9b19260 10.1002/adma.202108947 10.1016/j.solidstatesciences.2017.08.017 10.1021/acsami.0c20542 10.1021/acsnano.8b08266 10.1021/acsami.9b02555 10.1002/adma.201700210 10.1002/smll.202007236 10.1038/s41467-017-00157-8 10.1021/jp405158m 10.1021/acsaem.9b01471 10.1021/nl403402q 10.1021/cr500192f 10.1021/acsami.7b09464 10.1021/acsnano.7b01494 10.1021/acs.analchem.6b01292 10.1021/acscentsci.9b01166 10.1149/1945-7111/abdc7c 10.1021/acsami.0c17080 10.1016/j.ensm.2021.11.041 10.1149/2.1111702jes 10.1038/s41563-019-0318-3 10.1016/j.apsusc.2019.07.247 10.1002/adfm.202010500 10.1107/S0567739476001551 10.1002/aenm.201200598 10.1016/j.jpowsour.2006.03.058 10.1039/C7TA08443A 10.3389/fenrg.2018.00082 10.1021/acsami.0c12280 10.1002/sstr.202000042 10.1002/anie.201911135 10.1002/aenm.202102687 10.1021/acsenergylett.6b00491 10.1016/j.jechem.2021.06.015 10.1016/j.jallcom.2020.157533 10.1149/1.1697905 10.1021/acs.chemmater.6b04429 10.1016/j.jcis.2020.01.023 10.1039/C4RA10346G 10.1002/smll.201904388 10.1021/acsenergylett.0c00700 10.1002/aenm.201703082 10.1016/j.nanoen.2018.09.073 10.1016/j.electacta.2014.04.091 10.1149/2.0091513jes 10.1002/anie.202013803 10.1149/1.1532326 10.1016/j.nanoen.2019.02.059 10.1021/ar300094m 10.1002/aenm.202001609 10.1149/2.0411707jes 10.1021/acs.chemmater.9b03245 10.1021/acs.chemmater.6b02870 10.1002/anie.202111954 10.1021/acsenergylett.7b01213 10.1016/j.jpowsour.2012.09.039 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/asia.202200213 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1861-471X |
EndPage | n/a |
ExternalDocumentID | 35560519 10_1002_asia_202200213 ASIA202200213 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Beijing Natural Science Foundation funderid: 2222089 – fundername: National Natural Science Foundation of China funderid: 22075299; 21975266; 52172252; 22109165 – fundername: “Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDA21070300 – fundername: National Key R&D Program of China funderid: 2019YFA0705602 – fundername: National Natural Science Foundation of China grantid: 21975266 – fundername: National Natural Science Foundation of China grantid: 22109165 – fundername: "Transformational Technologies for Clean Energy and Demonstration", Strategic Priority Research Program of the Chinese Academy of Sciences grantid: XDA21070300 – fundername: National Natural Science Foundation of China grantid: 22075299 – fundername: National Natural Science Foundation of China grantid: 52172252 – fundername: Beijing Natural Science Foundation grantid: 2222089 – fundername: National Key R&D Program of China grantid: 2019YFA0705602 |
GroupedDBID | --- 05W 0R~ 1L6 1OC 29B 33P 3WU 4.4 5GY 6J9 8-1 87K 8UM A00 AAESR AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABDBF ABIJN ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACUHS ACXBN ACXQS ADBBV ADKYN ADMGS ADOZA ADXAS ADZMN AEGXH AEIGN AEUQT AEUYR AFBPY AFFPM AFGKR AFWVQ AHBTC AHMBA AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI CS3 DCZOG DRFUL DRSTM EBD EBS F5P G-S HBH HGLYW HHY HHZ HZ~ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MXFUL MXSTM MY~ O66 O9- OIG P2W P4E PQQKQ QRW ROL RWI SUPJJ WBKPD WHG WOHZO WXSBR WYJ XSW XV2 ZZTAW ~S- AAYXX AEYWJ AGHNM AGYGG CITATION NPM K9. 7X8 |
ID | FETCH-LOGICAL-c2883-185c001c1aa5e1a967e3fa68d99a48c8a815a1ab1818308646ad4dbaa4ef02963 |
ISSN | 1861-4728 1861-471X |
IngestDate | Fri Jul 11 11:41:23 EDT 2025 Mon Jun 30 10:01:19 EDT 2025 Mon Jul 21 05:52:58 EDT 2025 Thu Apr 24 23:00:09 EDT 2025 Tue Jul 01 00:53:35 EDT 2025 Wed Jan 22 16:23:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Layered oxide cathode Stability Electrolyte Interface Na-ion batteries |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2883-185c001c1aa5e1a967e3fa68d99a48c8a815a1ab1818308646ad4dbaa4ef02963 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0983-9916 |
PMID | 35560519 |
PQID | 2721677207 |
PQPubID | 986338 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2664796317 proquest_journals_2721677207 pubmed_primary_35560519 crossref_primary_10_1002_asia_202200213 crossref_citationtrail_10_1002_asia_202200213 wiley_primary_10_1002_asia_202200213_ASIA202200213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 15, 2022 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: June 15, 2022 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Chemistry, an Asian journal |
PublicationTitleAlternate | Chem Asian J |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_171_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_175_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_164_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 e_1_2_10_92_1 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_161_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – ident: e_1_2_10_108_1 doi: 10.1016/j.jelechem.2019.113633 – ident: e_1_2_10_89_1 doi: 10.1039/C6CP08441A – ident: e_1_2_10_92_1 doi: 10.1016/j.cej.2021.133454 – ident: e_1_2_10_121_1 doi: 10.1021/acs.jpcc.9b08220 – ident: e_1_2_10_67_1 doi: 10.1038/ncomms3437 – ident: e_1_2_10_178_1 doi: 10.1149/2.0161914jes – ident: e_1_2_10_74_1 doi: 10.1021/jacs.7b00164 – ident: e_1_2_10_123_1 doi: 10.1016/j.jpowsour.2010.01.004 – ident: e_1_2_10_160_1 doi: 10.1021/acs.chemmater.6b03403 – ident: e_1_2_10_52_1 doi: 10.1038/s41467-020-18285-z – ident: e_1_2_10_82_1 doi: 10.1149/2.1021803jes – ident: e_1_2_10_142_1 doi: 10.1039/c2cp23363k – ident: e_1_2_10_103_1 doi: 10.1016/j.ensm.2019.11.024 – ident: e_1_2_10_7_1 doi: 10.1021/acsmaterialslett.0c00356 – ident: e_1_2_10_162_1 doi: 10.1246/cl.170284 – ident: e_1_2_10_80_1 doi: 10.1016/j.jpowsour.2021.229542 – ident: e_1_2_10_161_1 doi: 10.1021/acsami.9b03279 – ident: e_1_2_10_78_1 doi: 10.1021/ar400115x – ident: e_1_2_10_35_1 doi: 10.1002/marc.1986.030070901 – ident: e_1_2_10_57_1 doi: 10.1016/j.jpowsour.2005.05.084 – ident: e_1_2_10_126_1 doi: 10.1016/j.cej.2019.123234 – ident: e_1_2_10_157_1 doi: 10.1016/j.electacta.2018.05.185 – ident: e_1_2_10_106_1 doi: 10.1016/j.jallcom.2020.156441 – ident: e_1_2_10_107_1 doi: 10.1021/acsaem.9b02021 – ident: e_1_2_10_145_1 doi: 10.1002/aenm.202102444 – ident: e_1_2_10_36_1 doi: 10.1149/1.3155432 – ident: e_1_2_10_83_1 doi: 10.1016/j.jpowsour.2013.02.075 – ident: e_1_2_10_81_1 doi: 10.1021/acs.jpcc.7b02303 – ident: e_1_2_10_141_1 doi: 10.1039/C5EE00695C – ident: e_1_2_10_21_1 doi: 10.1021/cm901452z – ident: e_1_2_10_38_1 doi: 10.1021/acsami.5b02904 – ident: e_1_2_10_147_1 doi: 10.1016/j.nanoen.2020.105061 – ident: e_1_2_10_165_1 doi: 10.1021/acsenergylett.0c00337 – ident: e_1_2_10_86_1 doi: 10.1016/j.ensm.2020.11.016 – ident: e_1_2_10_114_1 doi: 10.1021/acsami.9b06233 – ident: e_1_2_10_131_1 doi: 10.1002/aenm.201702942 – ident: e_1_2_10_70_1 doi: 10.1149/2.1151902jes – ident: e_1_2_10_134_1 doi: 10.1016/j.ensm.2019.07.010 – ident: e_1_2_10_102_1 – ident: e_1_2_10_95_1 doi: 10.1038/s41467-021-25610-7 – ident: e_1_2_10_24_1 doi: 10.1021/cr500003w – ident: e_1_2_10_42_1 doi: 10.1002/aenm.201701912 – ident: e_1_2_10_133_1 doi: 10.1016/j.jpowsour.2019.04.052 – ident: e_1_2_10_64_1 doi: 10.1039/c4cp00833b – ident: e_1_2_10_96_1 doi: 10.1002/anie.202116865 – ident: e_1_2_10_14_1 doi: 10.1021/acs.chemmater.8b00750 – ident: e_1_2_10_55_1 doi: 10.1126/science.abc3167 – ident: e_1_2_10_109_1 doi: 10.1039/C8TA06551A – ident: e_1_2_10_172_1 doi: 10.1007/s10800-013-0628-0 – ident: e_1_2_10_6_1 doi: 10.1002/adma.201808393 – ident: e_1_2_10_23_1 doi: 10.1016/j.jpowsour.2006.10.025 – ident: e_1_2_10_139_1 doi: 10.1016/j.carbon.2019.11.011 – ident: e_1_2_10_87_1 doi: 10.1039/C4CP01799D – ident: e_1_2_10_132_1 doi: 10.1002/adfm.201705968 – ident: e_1_2_10_71_1 doi: 10.1021/acs.chemmater.9b00227 – ident: e_1_2_10_93_1 – ident: e_1_2_10_116_1 doi: 10.1021/nl503169v – ident: e_1_2_10_28_1 doi: 10.1021/acs.jpclett.5b01727 – ident: e_1_2_10_63_1 doi: 10.1021/acsami.5b07887 – ident: e_1_2_10_4_1 doi: 10.1149/2.074311jes – ident: e_1_2_10_27_1 doi: 10.1149/1.1775219 – ident: e_1_2_10_111_1 doi: 10.1016/j.jpowsour.2006.07.028 – ident: e_1_2_10_176_1 doi: 10.1017/S1431927614012744 – ident: e_1_2_10_5_1 doi: 10.1021/cr030203g – ident: e_1_2_10_104_1 doi: 10.1016/j.jcis.2019.12.132 – ident: e_1_2_10_54_1 doi: 10.1021/acsenergylett.7b00907 – ident: e_1_2_10_18_1 doi: 10.1002/cssc.201501605 – ident: e_1_2_10_77_1 doi: 10.1088/1361-6463/aa646d – ident: e_1_2_10_10_1 doi: 10.1002/adma.201605694 – ident: e_1_2_10_41_1 doi: 10.1002/aenm.201801975 – ident: e_1_2_10_31_1 doi: 10.1149/1.2200138 – ident: e_1_2_10_45_1 doi: 10.1039/C8EE01006D – ident: e_1_2_10_34_1 doi: 10.1149/1.3290775 – ident: e_1_2_10_118_1 doi: 10.1016/j.nanoen.2016.06.026 – ident: e_1_2_10_60_1 doi: 10.1016/j.elecom.2011.10.026 – ident: e_1_2_10_173_1 doi: 10.1016/S0378-7753(98)00241-9 – ident: e_1_2_10_59_1 doi: 10.1149/2.020303jes – ident: e_1_2_10_150_1 – ident: e_1_2_10_16_1 doi: 10.1149/2.0311704jes – ident: e_1_2_10_47_1 doi: 10.1002/adfm.202001334 – ident: e_1_2_10_65_1 doi: 10.1149/2.035308jes – ident: e_1_2_10_88_1 doi: 10.1021/acs.chemmater.7b02546 – ident: e_1_2_10_17_1 doi: 10.1002/adfm.201909887 – ident: e_1_2_10_94_1 doi: 10.1002/adma.201904816 – ident: e_1_2_10_154_1 doi: 10.1021/acsami.1c03844 – ident: e_1_2_10_148_1 doi: 10.1002/celc.202000002 – ident: e_1_2_10_90_1 doi: 10.1016/j.ensm.2020.11.016 – ident: e_1_2_10_117_1 doi: 10.1021/acsami.7b05326 – ident: e_1_2_10_53_1 doi: 10.1021/acs.nanolett.8b01036 – ident: e_1_2_10_76_1 doi: 10.1039/C9TA06389G – ident: e_1_2_10_91_1 doi: 10.1021/jacs.7b05176 – ident: e_1_2_10_39_1 doi: 10.1021/acs.chemmater.8b00635 – ident: e_1_2_10_158_1 doi: 10.1021/am501671p – ident: e_1_2_10_22_1 doi: 10.1039/b813846j – ident: e_1_2_10_124_1 doi: 10.3891/acta.chem.scand.25-2370 – ident: e_1_2_10_151_1 doi: 10.1016/j.jpowsour.2019.01.086 – ident: e_1_2_10_155_1 doi: 10.1039/C6RA09560G – ident: e_1_2_10_164_1 doi: 10.1038/s41560-019-0336-z – ident: e_1_2_10_68_1 doi: 10.1016/j.commatsci.2013.09.017 – ident: e_1_2_10_85_1 doi: 10.1038/s41565-019-0428-8 – ident: e_1_2_10_169_1 doi: 10.1002/adma.202200777 – ident: e_1_2_10_29_1 doi: 10.1039/C5CP03119B – ident: e_1_2_10_11_1 doi: 10.1002/aenm.201701785 – ident: e_1_2_10_43_1 doi: 10.1149/2.0151514jes – ident: e_1_2_10_25_1 doi: 10.1149/1.3098494 – ident: e_1_2_10_127_1 – ident: e_1_2_10_112_1 doi: 10.1149/2.0861707jes – ident: e_1_2_10_122_1 doi: 10.1007/s10008-012-1962-6 – ident: e_1_2_10_37_1 – ident: e_1_2_10_49_1 doi: 10.1016/j.nanoen.2020.105061 – ident: e_1_2_10_110_1 doi: 10.1016/j.apsusc.2019.143814 – ident: e_1_2_10_152_1 doi: 10.1021/ic300357d – ident: e_1_2_10_159_1 doi: 10.1021/acsenergylett.0c01712 – ident: e_1_2_10_175_1 doi: 10.1021/acs.nanolett.5b03373 – ident: e_1_2_10_144_1 doi: 10.1016/j.nanoen.2018.10.072 – ident: e_1_2_10_128_1 – ident: e_1_2_10_167_1 doi: 10.1002/smll.202106927 – ident: e_1_2_10_66_1 doi: 10.1016/j.jpowsour.2012.01.122 – ident: e_1_2_10_20_1 doi: 10.1149/1.2128859 – ident: e_1_2_10_149_1 doi: 10.1021/acsami.9b19260 – ident: e_1_2_10_99_1 doi: 10.1002/adma.202108947 – ident: e_1_2_10_2_1 doi: 10.1016/j.solidstatesciences.2017.08.017 – ident: e_1_2_10_166_1 doi: 10.1021/acsami.0c20542 – ident: e_1_2_10_50_1 doi: 10.1021/acsnano.8b08266 – ident: e_1_2_10_136_1 doi: 10.1021/acsami.9b02555 – ident: e_1_2_10_46_1 doi: 10.1002/adma.201700210 – ident: e_1_2_10_143_1 doi: 10.1002/smll.202007236 – ident: e_1_2_10_97_1 doi: 10.1038/s41467-017-00157-8 – ident: e_1_2_10_56_1 doi: 10.1021/jp405158m – ident: e_1_2_10_130_1 doi: 10.1021/acsaem.9b01471 – ident: e_1_2_10_174_1 doi: 10.1021/nl403402q – ident: e_1_2_10_44_1 doi: 10.1021/cr500192f – ident: e_1_2_10_153_1 doi: 10.1021/acsami.7b09464 – ident: e_1_2_10_30_1 doi: 10.1021/acsnano.7b01494 – ident: e_1_2_10_33_1 doi: 10.1021/acs.analchem.6b01292 – ident: e_1_2_10_72_1 doi: 10.1021/acscentsci.9b01166 – ident: e_1_2_10_120_1 doi: 10.1149/1945-7111/abdc7c – ident: e_1_2_10_135_1 doi: 10.1021/acsami.0c17080 – ident: e_1_2_10_3_1 doi: 10.1016/j.ensm.2021.11.041 – ident: e_1_2_10_69_1 doi: 10.1149/2.1111702jes – ident: e_1_2_10_75_1 doi: 10.1038/s41563-019-0318-3 – ident: e_1_2_10_115_1 doi: 10.1016/j.apsusc.2019.07.247 – ident: e_1_2_10_156_1 doi: 10.1002/adfm.202010500 – ident: e_1_2_10_8_1 doi: 10.1107/S0567739476001551 – ident: e_1_2_10_125_1 doi: 10.1002/aenm.201200598 – ident: e_1_2_10_58_1 doi: 10.1016/j.jpowsour.2006.03.058 – ident: e_1_2_10_105_1 doi: 10.1039/C7TA08443A – ident: e_1_2_10_171_1 doi: 10.3389/fenrg.2018.00082 – ident: e_1_2_10_146_1 doi: 10.1021/acsami.0c12280 – ident: e_1_2_10_101_1 doi: 10.1002/sstr.202000042 – ident: e_1_2_10_168_1 doi: 10.1002/anie.201911135 – ident: e_1_2_10_170_1 doi: 10.1002/aenm.202102687 – ident: e_1_2_10_12_1 doi: 10.1021/acsenergylett.6b00491 – ident: e_1_2_10_1_1 doi: 10.1016/j.jechem.2021.06.015 – ident: e_1_2_10_119_1 doi: 10.1016/j.jallcom.2020.157533 – ident: e_1_2_10_32_1 doi: 10.1149/1.1697905 – ident: e_1_2_10_62_1 doi: 10.1021/acs.chemmater.6b04429 – ident: e_1_2_10_137_1 doi: 10.1016/j.jcis.2020.01.023 – ident: e_1_2_10_140_1 doi: 10.1039/C4RA10346G – ident: e_1_2_10_48_1 doi: 10.1002/smll.201904388 – ident: e_1_2_10_73_1 doi: 10.1021/acsenergylett.0c00700 – ident: e_1_2_10_19_1 doi: 10.1002/aenm.201703082 – ident: e_1_2_10_40_1 doi: 10.1016/j.nanoen.2018.09.073 – ident: e_1_2_10_61_1 doi: 10.1016/j.electacta.2014.04.091 – ident: e_1_2_10_13_1 doi: 10.1149/2.0091513jes – ident: e_1_2_10_15_1 doi: 10.1002/anie.202013803 – ident: e_1_2_10_26_1 doi: 10.1149/1.1532326 – ident: e_1_2_10_98_1 – ident: e_1_2_10_113_1 doi: 10.1016/j.nanoen.2019.02.059 – ident: e_1_2_10_138_1 doi: 10.1021/ar300094m – ident: e_1_2_10_51_1 doi: 10.1002/aenm.202001609 – ident: e_1_2_10_177_1 doi: 10.1149/2.0411707jes – ident: e_1_2_10_129_1 – ident: e_1_2_10_84_1 doi: 10.1021/acs.chemmater.9b03245 – ident: e_1_2_10_79_1 doi: 10.1021/acs.chemmater.6b02870 – ident: e_1_2_10_100_1 doi: 10.1002/anie.202111954 – ident: e_1_2_10_163_1 doi: 10.1021/acsenergylett.7b01213 – ident: e_1_2_10_9_1 doi: 10.1016/j.jpowsour.2012.09.039 |
SSID | ssj0052098 |
Score | 2.4430482 |
SecondaryResourceType | review_article |
Snippet | With the ever increasing demand for low‐cost and economic sustainable energy storage, Na‐ion batteries have received much attention for the application on... With the ever increasing demand for low-cost and economic sustainable energy storage, Na-ion batteries have received much attention for the application on... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e202200213 |
SubjectTerms | Cathodes Cathodic dissolution Chemistry Dissolution Electrode materials Electrolyte Energy storage Interface Layered oxide cathode Lithium-ion batteries Na-ion batteries Rechargeable batteries Sodium Sodium-ion batteries Solvation Stability Storage batteries Transition metals |
Title | Layered Oxide Cathode‐Electrolyte Interface towards Na‐Ion Batteries: Advances and Perspectives |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.202200213 https://www.ncbi.nlm.nih.gov/pubmed/35560519 https://www.proquest.com/docview/2721677207 https://www.proquest.com/docview/2664796317 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4AXxJ3CQEZC4gF5NI5z4y0bLd1UNhCtVHixHMcRkaYUsUZi_HqOL7mJIgYvUeNajuPvi3POybkg9ILRDGgRUEJ1eC7LfQ-eOa8gUkomvCLKEqUN-u9Pw_mKnayDdec2ZqJLttmB_LkzruR_UIU2wFVHyf4Dsu2g0AC_AV84AsJwvBLGC3GpS22-OvtR5soE821yRaa2ss355db5RRZC6gIZ2j8WdjVBjgFxm1eztB5xqXUEsOmaP3Thlxd90fWoKQ1nHT4B2NIZ8Zt5Gr8e4x3w5eumJh_rjnnvamOS_VyTk7L7GuRs1dOKzOuys8oavz9VQqMbwFklQKHV5XyC3kYah6CbRqYcDrxndrQ1u2_UZxnt7aVKj6tlEH_nVm9Tx-pQ04NBx2FO7dMzPlstFnw5XS-voz0KygQdob308O3hrHlja08gEzLZzK9J7jmhr4fjD4WX3zSSoYJjJJTlbXTLqRY4tTy5g66p6i660cJ2D3HHF2z4gnfwBbd8wY4v2PIFt3x5gxu2YGAL7rPlPlrNpsujOXEFNojURaYJyGoSxBTpCREoTyRhpPxChHGeJILFMhaxFwhPZCAFxj7oviwUOcszIZgqJhS27gdoVG0q9QhhmgV-kAlfBZIyESRxwSScxgz6FWFMx4g0K8elyz6vi6Ccc5s3m3K90rxd6TF62fb_ZvOu_LHnfgMEd5y_4FTnpAKsJ9EYPW__huXWn8NEpTY19AlDFsFNeNDnoQWwvRRI4aFWbsaIGkT_MgeefjpO27PHV7jkE3Sze2z20Wj7vVZPQbzdZs8cO38BYmCf6Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Layered+Oxide+Cathode-Electrolyte+Interface+towards+Na-Ion+Batteries%3A+Advances+and+Perspectives&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Lei%2C+Zhou-Quan&rft.au=Guo%2C+Yu-Jie&rft.au=Wang%2C+En-Hui&rft.au=He%2C+Wei-Huan&rft.date=2022-06-15&rft.issn=1861-471X&rft.eissn=1861-471X&rft.volume=17&rft.issue=12&rft.spage=e202200213&rft_id=info:doi/10.1002%2Fasia.202200213&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon |