Peridynamic‐based modeling of elastoplasticity and fracture dynamics

This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic theory. Traditional approaches, such as the Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), to modeling elastic mater...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 35; no. 4
Main Authors Wang, Haoping, Wang, Xiaokun, Xu, Yanrui, Zhang, Yalan, Yao, Chao, Guo, Yu, Ban, Xiaojuan
Format Journal Article
LanguageEnglish
Published Chichester Wiley Subscription Services, Inc 01.07.2024
Subjects
Online AccessGet full text
ISSN1546-4261
1546-427X
DOI10.1002/cav.2242

Cover

Loading…
Abstract This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic theory. Traditional approaches, such as the Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), to modeling elastic materials have primarily relied on discretization techniques and continuous constitutive model. However, accurately capturing fracture and crack development in elastoplastic materials poses significant challenges for these conventional models. Our approach integrates a Peridynamic‐based elastic model with a density constraint, enhancing stability and realism. We adopt the Von Mises yield criterion and a bond stretch criterion to simulate plastic deformation and fracture formation, respectively. The proposed method stabilizes the elastic model through a density‐based position constraint, while plasticity is modeled using the Von Mises yield criterion within the bond of particle paris. Fracturing and the generation of fine fragments are facilitated by the fracture criterion and the application of complementarity operations to the inter‐particle connections. Our experimental results demonstrate the efficacy of our framework in realistically depicting a wide range of material behaviors, including elasticity, plasticity, and fracturing, across various scenarios. An experiment on the elasticity, plasticity and cutting of an elastoplastic dough. The dough is made to drop onto a wooden board, and collide with the rolling pin and the metal blade to exhibit the rendering effects of elasticity, plasticity and fracture within our particle framework.
AbstractList This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic theory. Traditional approaches, such as the Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), to modeling elastic materials have primarily relied on discretization techniques and continuous constitutive model. However, accurately capturing fracture and crack development in elastoplastic materials poses significant challenges for these conventional models. Our approach integrates a Peridynamic‐based elastic model with a density constraint, enhancing stability and realism. We adopt the Von Mises yield criterion and a bond stretch criterion to simulate plastic deformation and fracture formation, respectively. The proposed method stabilizes the elastic model through a density‐based position constraint, while plasticity is modeled using the Von Mises yield criterion within the bond of particle paris. Fracturing and the generation of fine fragments are facilitated by the fracture criterion and the application of complementarity operations to the inter‐particle connections. Our experimental results demonstrate the efficacy of our framework in realistically depicting a wide range of material behaviors, including elasticity, plasticity, and fracturing, across various scenarios.
This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic theory. Traditional approaches, such as the Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), to modeling elastic materials have primarily relied on discretization techniques and continuous constitutive model. However, accurately capturing fracture and crack development in elastoplastic materials poses significant challenges for these conventional models. Our approach integrates a Peridynamic‐based elastic model with a density constraint, enhancing stability and realism. We adopt the Von Mises yield criterion and a bond stretch criterion to simulate plastic deformation and fracture formation, respectively. The proposed method stabilizes the elastic model through a density‐based position constraint, while plasticity is modeled using the Von Mises yield criterion within the bond of particle paris. Fracturing and the generation of fine fragments are facilitated by the fracture criterion and the application of complementarity operations to the inter‐particle connections. Our experimental results demonstrate the efficacy of our framework in realistically depicting a wide range of material behaviors, including elasticity, plasticity, and fracturing, across various scenarios. An experiment on the elasticity, plasticity and cutting of an elastoplastic dough. The dough is made to drop onto a wooden board, and collide with the rolling pin and the metal blade to exhibit the rendering effects of elasticity, plasticity and fracture within our particle framework.
Author Wang, Xiaokun
Zhang, Yalan
Guo, Yu
Yao, Chao
Wang, Haoping
Ban, Xiaojuan
Xu, Yanrui
Author_xml – sequence: 1
  givenname: Haoping
  orcidid: 0009-0000-2422-9342
  surname: Wang
  fullname: Wang, Haoping
  organization: University of Science and Technology Beijing
– sequence: 2
  givenname: Xiaokun
  orcidid: 0000-0002-4449-591X
  surname: Wang
  fullname: Wang, Xiaokun
  email: banxj@ustb.edu.cn
  organization: University of Science and Technology Beijing
– sequence: 3
  givenname: Yanrui
  orcidid: 0000-0002-2154-1178
  surname: Xu
  fullname: Xu, Yanrui
  organization: University of Groningen
– sequence: 4
  givenname: Yalan
  orcidid: 0000-0002-8736-7125
  surname: Zhang
  fullname: Zhang, Yalan
  organization: University of Science and Technology Beijing
– sequence: 5
  givenname: Chao
  orcidid: 0000-0001-5483-3225
  surname: Yao
  fullname: Yao, Chao
  organization: University of Science and Technology Beijing
– sequence: 6
  givenname: Yu
  surname: Guo
  fullname: Guo, Yu
  organization: University of Science and Technology Beijing
– sequence: 7
  givenname: Xiaojuan
  surname: Ban
  fullname: Ban, Xiaojuan
  email: wangxiaokun@ustb.edu.cn
  organization: Liaoning Academy of Materials
BookMark eNp10M1Kw0AQB_BFKthWwUcIePGSul_J7h5LsSoU9KDibdlP2ZImdTdVcvMRfEafxMQWb15m5vCbGfhPwKhuagfAOYIzBCG-Mup9hjHFR2CMClrmFLOX0d9cohMwSWndyxIjOAbLBxeD7Wq1Ceb780ur5Gy2aayrQv2aNT5zlUptsx1qMKHtMlXbzEdl2l102WEznYJjr6rkzg59Cp6W14-L23x1f3O3mK9ygznHObMFFZoJxrk32uuSYOixJoyUQluqOdNaeGt0QRhD0HFXME8Mo1wJj4kjU3Cxv7uNzdvOpVaum12s-5eSQFFwASmFvbrcKxOblKLzchvDRsVOIiiHlGSfkhxS6mm-px-hct2_Ti7mz7_-B2yFa4E
Cites_doi 10.1145/2185520.2185558
10.1016/j.ijmecsci.2019.05.003
10.1016/S0022-5096(99)00029-0
10.1145/1015706.1015734
10.1007/s10659-008-9163-3
10.1145/1276377.1276397
10.1007/s10659-007-9125-1
10.1146/annurev.aa.30.090192.002551
10.1145/3306346.3322949
10.1016/j.compstruc.2004.11.026
10.2172/1160289
10.1016/j.cag.2014.08.006
10.1007/s10659-009-9234-0
10.1145/2766996
10.1145/2461912.2461984
10.1109/TVCG.2017.2755646
10.1145/3386569.3392431
10.1145/3072959.3073666
10.1145/3197517.3201293
10.1111/cgf.13520
10.1145/2461912.2461948
10.1111/cgf.13317
10.1145/3480142
10.1145/3072959.2990496
10.1007/b98874
10.1007/978-94-010-1906-4
10.1145/3522573
10.1145/2343483.2343501
10.1145/1028523.1028542
10.1016/j.cag.2023.09.007
10.1007/s41095‐023‐0368‐y
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.2242
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_2242
CAV2242
Genre article
GrantInformation_xml – fundername: Basic and Applied Basic Research Foundation of Guangdong Province
  funderid: 2021A1515012285; 2022A1515110350; 2023A1515030177
– fundername: National Natural Science Foundation of China
  funderid: 62332017; U22A2022; 62376025
– fundername: National Key Research and Development Program of China
  funderid: 2022ZD0118001
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
ADMLS
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2882-7d549b79788fcbfb6320f2b37369bd4b87bb9fdcb537710e8e57f3c748a9f23e3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Jul 26 02:28:52 EDT 2025
Tue Jul 01 02:42:24 EDT 2025
Wed Jan 22 17:14:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2882-7d549b79788fcbfb6320f2b37369bd4b87bb9fdcb537710e8e57f3c748a9f23e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2154-1178
0009-0000-2422-9342
0000-0001-5483-3225
0000-0002-8736-7125
0000-0002-4449-591X
OpenAccessLink https://pure.rug.nl/ws/files/1065127421/Computer_Animation_Virtual_-_2024_-_Wang_-_Peridynamic_based_modeling_of_elastoplasticity_and_fracture_dynamics.pdf
PQID 3095890440
PQPubID 2034909
PageCount 16
ParticipantIDs proquest_journals_3095890440
crossref_primary_10_1002_cav_2242
wiley_primary_10_1002_cav_2242_CAV2242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July/August 2024
2024-07-00
20240701
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July/August 2024
PublicationDecade 2020
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 99
2015; 34
2021; 4
2012
2000; 48
2017; 24
2004; 23
2020; 39
2019; 38
2007
2022; 41
2004
2024
2005; 83
2008; 93
2014; 45
2012; 31
1999
1992; 30
2023; 42
2023
2017; 36
2013; 32
2023; 116
2009; 9
2018
2019; 157
1975; 2
2014
2007; 88
2018; 37
2007; 26
e_1_2_11_10_1
Chen W (e_1_2_11_13_1) 2018
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
Hu Y (e_1_2_11_31_1) 2018; 37
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_2_1
Lu Z (e_1_2_11_15_1) 2023
Su H (e_1_2_11_32_1) 2022
Kee MH (e_1_2_11_26_1) 2023
Jiang C (e_1_2_11_30_1) 2015; 34
e_1_2_11_21_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_38_1
Joshuah W (e_1_2_11_34_1) 2020; 39
e_1_2_11_39_1
e_1_2_11_19_1
Becker M (e_1_2_11_3_1) 2009; 9
References_xml – volume: 39
  start-page: 31
  issue: 4
  year: 2020
  end-page: 36
  article-title: An implicit compressible SPH solver for snow simulation
  publication-title: ACM Trans Graph
– volume: 88
  start-page: 151
  year: 2007
  end-page: 184
  article-title: Peridynamic states and constitutive modeling
  publication-title: J Elasticity
– volume: 30
  start-page: 543
  issue: 1
  year: 1992
  end-page: 574
  article-title: Smoothed particle hydrodynamics
  publication-title: Ann Rev Astronomy Astrophys
– volume: 42
  start-page: 225
  year: 2023
  end-page: 233
– volume: 157
  start-page: 498
  year: 2019
  end-page: 511
  article-title: A Total Lagrangian SPH method for modelling damage and failure in solids
  publication-title: Int J Mech Sci
– year: 2007
– volume: 99
  start-page: 85
  year: 2010
  end-page: 111
  article-title: Linearized theory of peridynamic states
  publication-title: J Elasticity
– volume: 32
  start-page: 1
  issue: 4
  year: 2013
  end-page: 10
  article-title: A material point method for snow simulation
  publication-title: ACM Trans Graph
– year: 2004;
– year: 2023
  article-title: Projective Peridynamic Modeling of Hyperelastic membranes with contact
  publication-title: IEEE Trans Vis Comput Graph
– volume: 36
  start-page: 1
  issue: 3
  year: 2017
  end-page: 16
  article-title: Quasi‐newton methods for real‐time simulation of hyperelastic materials
  publication-title: Acm Trans Graph
– volume: 26
  start-page: 16
  issue: 3
  year: 2007
  article-title: A finite element method for animating large viscoplastic flow
  publication-title: ACM Trans Graph
– volume: 37
  start-page: 112
  year: 2018
  end-page: 124
– volume: 2
  year: 1975
– volume: 23
  start-page: 385
  issue: 3
  year: 2004
  end-page: 392
  article-title: A virtual node algorithm for changing mesh topology during simulation
  publication-title: ACM Trans Graph
– volume: 37
  start-page: 149
  year: 2018
  end-page: 160
– volume: 38
  start-page: 1
  issue: 4
  year: 2019
  end-page: 15
  article-title: CD‐MPM: continuum damage material point methods for dynamic fracture animation
  publication-title: ACM Trans Graph
– volume: 83
  start-page: 1526
  issue: 17‐18
  year: 2005
  end-page: 1535
  article-title: A meshfree method based on the peridynamic model of solid mechanics
  publication-title: Comput Struct
– year: 2014
– volume: 32
  start-page: 1
  issue: 4
  year: 2013
  end-page: 12
  article-title: Position based fluids
  publication-title: ACM Trans Graph
– year: 2012
– volume: 116
  start-page: 437
  year: 2023
  end-page: 447
  article-title: Simulating hyperelastic materials with anisotropic stiffness models in a particle‐based framework
  publication-title: Comput Graph
– volume: 39
  start-page: 31
  issue: 4
  year: 2020
  end-page: 37
  article-title: Anisompm: animating anisotropic damage mechanics
  publication-title: ACM Trans Graph
– volume: 31
  start-page: 1
  issue: 4
  year: 2012
  end-page: 8
  article-title: Versatile rigid‐fluid coupling for incompressible SPH
  publication-title: ACM Trans Graph
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  end-page: 14
  article-title: A moving least squares material point method with displacement discontinuity and two‐way rigid body coupling
  publication-title: ACM Trans Graph
– volume: 9
  start-page: 27
  year: 2009
  end-page: 34
  article-title: Corotated SPH for deformable solids
  publication-title: Nph
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 13
  article-title: Robust extended finite elements for complex cutting of deformables
  publication-title: ACM Trans Graph
– volume: 41
  start-page: 325
  year: 2022
  end-page: 341
– volume: 93
  start-page: 13
  year: 2008
  end-page: 37
  article-title: Convergence of peridynamics to classical elasticity theory
  publication-title: J Elasticity
– volume: 41
  start-page: 1
  issue: 5
  year: 2022
  end-page: 20
  article-title: Simulating brittle fracture with material points
  publication-title: ACM Trans Graph
– volume: 24
  start-page: 2589
  issue: 9
  year: 2017
  end-page: 2599
  article-title: Projective peridynamics for modeling versatile elastoplastic materials
  publication-title: IEEE Trans Vis Comput Graph
– volume: 4
  start-page: 1
  issue: 3
  year: 2021
  end-page: 21
  article-title: Fast corotated elastic SPH solids with implicit zero‐energy mode control
  publication-title: Proc ACM Comput Graph Interact Techn
– year: 2024
  article-title: Physics‐based fluid simulation in computer graphics: survey, research trends, and challenges
  publication-title: Comput Visual Media
– start-page: 135
  year: 2018
  end-page: 148
– volume: 48
  start-page: 175
  issue: 1
  year: 2000
  end-page: 209
  article-title: Reformulation of elasticity theory for discontinuities and long‐range forces
  publication-title: J Mech Phys Solids
– year: 1999
– volume: 34
  start-page: 1
  issue: 4
  year: 2015
  end-page: 10
  article-title: The affine particle‐in‐cell method
  publication-title: ACM Trans Graph
– volume: 45
  start-page: 86
  year: 2014
  end-page: 100
  article-title: Fracture modeling in computer graphics
  publication-title: Comput Graph
– ident: e_1_2_11_22_1
  doi: 10.1145/2185520.2185558
– ident: e_1_2_11_8_1
  doi: 10.1016/j.ijmecsci.2019.05.003
– ident: e_1_2_11_19_1
– ident: e_1_2_11_2_1
– ident: e_1_2_11_10_1
  doi: 10.1016/S0022-5096(99)00029-0
– ident: e_1_2_11_20_1
  doi: 10.1145/1015706.1015734
– ident: e_1_2_11_37_1
  doi: 10.1007/s10659-008-9163-3
– ident: e_1_2_11_17_1
  doi: 10.1145/1276377.1276397
– year: 2023
  ident: e_1_2_11_15_1
  article-title: Projective Peridynamic Modeling of Hyperelastic membranes with contact
  publication-title: IEEE Trans Vis Comput Graph
– volume: 39
  start-page: 31
  issue: 4
  year: 2020
  ident: e_1_2_11_34_1
  article-title: Anisompm: animating anisotropic damage mechanics
  publication-title: ACM Trans Graph
– volume: 9
  start-page: 27
  year: 2009
  ident: e_1_2_11_3_1
  article-title: Corotated SPH for deformable solids
  publication-title: Nph
– ident: e_1_2_11_11_1
  doi: 10.1007/s10659-007-9125-1
– start-page: 112
  volume-title: Computer graphics forum
  year: 2018
  ident: e_1_2_11_13_1
– ident: e_1_2_11_23_1
  doi: 10.1146/annurev.aa.30.090192.002551
– ident: e_1_2_11_33_1
  doi: 10.1145/3306346.3322949
– ident: e_1_2_11_36_1
  doi: 10.1016/j.compstruc.2004.11.026
– ident: e_1_2_11_38_1
  doi: 10.2172/1160289
– ident: e_1_2_11_40_1
  doi: 10.1016/j.cag.2014.08.006
– ident: e_1_2_11_12_1
  doi: 10.1007/s10659-009-9234-0
– volume: 34
  start-page: 1
  issue: 4
  year: 2015
  ident: e_1_2_11_30_1
  article-title: The affine particle‐in‐cell method
  publication-title: ACM Trans Graph
  doi: 10.1145/2766996
– ident: e_1_2_11_39_1
  doi: 10.1145/2461912.2461984
– start-page: 225
  volume-title: Computer graphics forum
  year: 2023
  ident: e_1_2_11_26_1
– ident: e_1_2_11_14_1
  doi: 10.1109/TVCG.2017.2755646
– ident: e_1_2_11_28_1
  doi: 10.1145/3386569.3392431
– ident: e_1_2_11_21_1
  doi: 10.1145/3072959.3073666
– volume: 37
  start-page: 1
  issue: 4
  year: 2018
  ident: e_1_2_11_31_1
  article-title: A moving least squares material point method with displacement discontinuity and two‐way rigid body coupling
  publication-title: ACM Trans Graph
  doi: 10.1145/3197517.3201293
– ident: e_1_2_11_18_1
  doi: 10.1111/cgf.13520
– ident: e_1_2_11_29_1
  doi: 10.1145/2461912.2461948
– ident: e_1_2_11_9_1
– ident: e_1_2_11_5_1
  doi: 10.1111/cgf.13317
– ident: e_1_2_11_6_1
  doi: 10.1145/3480142
– ident: e_1_2_11_25_1
  doi: 10.1145/3072959.2990496
– ident: e_1_2_11_24_1
  doi: 10.1007/b98874
– ident: e_1_2_11_41_1
  doi: 10.1007/978-94-010-1906-4
– ident: e_1_2_11_35_1
  doi: 10.1145/3522573
– start-page: 325
  volume-title: Computer graphics forum
  year: 2022
  ident: e_1_2_11_32_1
– ident: e_1_2_11_16_1
  doi: 10.1145/2343483.2343501
– ident: e_1_2_11_4_1
  doi: 10.1145/1028523.1028542
– ident: e_1_2_11_27_1
  doi: 10.1016/j.cag.2023.09.007
– ident: e_1_2_11_7_1
  doi: 10.1007/s41095‐023‐0368‐y
SSID ssj0026210
Score 2.3506062
Snippet This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Constitutive models
Constraints
Density
Elastic deformation
elastoplastic simulation
Elastoplasticity
Finite element method
fracture
Fractures
Fracturing
Mathematical models
Modelling
peridynamic
Plastic deformation
Smooth particle hydrodynamics
Stability criteria
Yield criteria
Title Peridynamic‐based modeling of elastoplasticity and fracture dynamics
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2242
https://www.proquest.com/docview/3095890440
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcX8aQH32K1ygriLW3dRx7HUixFUERsKXgI-4QitKVJPHjyI_gZ_STOZpNWBUG8JLBkIZns7vwmmf0PQhfaqoRZSQOt4k7AgLgDUf5zZVzAmkzj0LjNybd34WDIbsZ8XGVVur0wXh9i-cHNzYxyvXYTXMisvRINVeKlBf7HLb8uVcvx0MNSOYqExAsRcBYGLkqodWc7pF13_O6JVnj5FVJLL9PfRk_1_fnkkudWkcuWev0h3fi_B9hBWxV84q4fLbtozUz30OZokhW-NdtH_XsYktqXqf94e3dOTuOyXA74ODyz2ABu57O5O04UIDwWU42t22tVLAyuemYHaNi_fuwNgqrWQqBICdkaAkUZQUwZWyWtDCnpWCJpRMNEaibjSMrEaiU5jQBKTGx4ZKmKWCwSS6ihh2h9OpuaI4SN4NxcESMZUYB7RliIWrSy0Ey44KqBzmu7p3MvqZF68WSSgk1SZ5MGatYvJK0mVZZSwME4cTWyG-iytOyv_dNed-TOx3-98ARtEMAVn4jbROv5ojCngBu5PCsH1ic15dM3
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KHtSDb7FaNYJ4S1t3s3ngqRRL1baItKUHIWRfUIS29OHBkz_B3-gvcTbbtCoI4iWBJQPJZGbnm92dbwAupBaRpzl1pQjLroeI203SPVePJTgn09BXpji52fLrHe-ux3o5uM5qYSw_xGLBzXhGOl8bBzcL0qUla6hIXooYgHD-XTUNvdN86nHBHUV8YqkImOe7Jk_ImGfLpJRJfo9FS4D5Faamcaa2BU_ZG9rjJc_F2ZQXxesP8sZ_fsI2bM7xp1OxBrMDOTXYhY1ufzKzo5M9qD2gVUrbqf7j7d3EOemkHXMwzDlD7ShE3NPhyFz7AlG8kwyko0251WysnLnkZB86tZt2te7O2y24gqQ4W2KuyANMK0MtuOY-JWVNOA2oH3Hp8TDgPNJScEYDxCUqVCzQVARemESaUEUPYGUwHKhDcFTCmLoiintEIOJTicbERQqNw4QlTOThPFN8PLKsGrHlTyYx6iQ2OslDIfsj8dyvJjFFRBhGpk12Hi5T1f4qH1crXXM_-uuDZ7BWbzcbceO2dX8M6wTRiz2XW4CV6XimThB9TPlpamWfawPXUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EQfTgW6xWjSDe0tZ95HEsraG-ShFbCh5C9gVFaEubevDkT_A3-kuczSatCoJ4SWDJQDKZ2fkmmfkGoXOpRUg1J64UQc2lgLjdJPvnSlkCezIJPGWak-_bXqtLb_qsn1dVml4Yyw8x_-BmPCPbr42Dj6WuLkhDRfJSgfgD2-8K9WqBsejmw5w6CnvYMhEw6rkmTSiIZ2u4Wkh-D0ULfPkVpWZhJtpET8UN2uqS58os5RXx-oO78X9PsIU2cvTp1K25bKMlNdxB673BdGZXp7so6oBNSjun_uPt3UQ56WTzciDIOSPtKMDb6WhsjgMBGN5JhtLRptlqNlFOLjndQ93o6rHRcvNhC67AGcqWkClyH5LKQAuuuUdwTWNOfOKFXFIe-JyHWgrOiA-oRAWK-ZoInwZJqDFRZB8tD0dDdYAclTCmLrHiFAvAeyrRkLZIoWEZs4SJEjor9B6PLadGbNmTcQw6iY1OSqhcvJA496ppTAAPBqEZkl1CF5lmf5WPG_WeOR_-9cJTtNppRvHddfv2CK1hgC62KLeMltPJTB0D9Ej5SWZjnyka1go
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peridynamic%E2%80%90based+modeling+of+elastoplasticity+and+fracture+dynamics&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Wang%2C+Haoping&rft.au=Wang%2C+Xiaokun&rft.au=Xu%2C+Yanrui&rft.au=Zhang%2C+Yalan&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1002%2Fcav.2242&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon