Peridynamic‐based modeling of elastoplasticity and fracture dynamics
This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic theory. Traditional approaches, such as the Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), to modeling elastic mater...
Saved in:
Published in | Computer animation and virtual worlds Vol. 35; no. 4 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester
Wiley Subscription Services, Inc
01.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1546-4261 1546-427X |
DOI | 10.1002/cav.2242 |
Cover
Loading…
Abstract | This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic theory. Traditional approaches, such as the Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), to modeling elastic materials have primarily relied on discretization techniques and continuous constitutive model. However, accurately capturing fracture and crack development in elastoplastic materials poses significant challenges for these conventional models. Our approach integrates a Peridynamic‐based elastic model with a density constraint, enhancing stability and realism. We adopt the Von Mises yield criterion and a bond stretch criterion to simulate plastic deformation and fracture formation, respectively. The proposed method stabilizes the elastic model through a density‐based position constraint, while plasticity is modeled using the Von Mises yield criterion within the bond of particle paris. Fracturing and the generation of fine fragments are facilitated by the fracture criterion and the application of complementarity operations to the inter‐particle connections. Our experimental results demonstrate the efficacy of our framework in realistically depicting a wide range of material behaviors, including elasticity, plasticity, and fracturing, across various scenarios.
An experiment on the elasticity, plasticity and cutting of an elastoplastic dough. The dough is made to drop onto a wooden board, and collide with the rolling pin and the metal blade to exhibit the rendering effects of elasticity, plasticity and fracture within our particle framework. |
---|---|
AbstractList | This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic theory. Traditional approaches, such as the Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), to modeling elastic materials have primarily relied on discretization techniques and continuous constitutive model. However, accurately capturing fracture and crack development in elastoplastic materials poses significant challenges for these conventional models. Our approach integrates a Peridynamic‐based elastic model with a density constraint, enhancing stability and realism. We adopt the Von Mises yield criterion and a bond stretch criterion to simulate plastic deformation and fracture formation, respectively. The proposed method stabilizes the elastic model through a density‐based position constraint, while plasticity is modeled using the Von Mises yield criterion within the bond of particle paris. Fracturing and the generation of fine fragments are facilitated by the fracture criterion and the application of complementarity operations to the inter‐particle connections. Our experimental results demonstrate the efficacy of our framework in realistically depicting a wide range of material behaviors, including elasticity, plasticity, and fracturing, across various scenarios. This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic theory. Traditional approaches, such as the Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH), to modeling elastic materials have primarily relied on discretization techniques and continuous constitutive model. However, accurately capturing fracture and crack development in elastoplastic materials poses significant challenges for these conventional models. Our approach integrates a Peridynamic‐based elastic model with a density constraint, enhancing stability and realism. We adopt the Von Mises yield criterion and a bond stretch criterion to simulate plastic deformation and fracture formation, respectively. The proposed method stabilizes the elastic model through a density‐based position constraint, while plasticity is modeled using the Von Mises yield criterion within the bond of particle paris. Fracturing and the generation of fine fragments are facilitated by the fracture criterion and the application of complementarity operations to the inter‐particle connections. Our experimental results demonstrate the efficacy of our framework in realistically depicting a wide range of material behaviors, including elasticity, plasticity, and fracturing, across various scenarios. An experiment on the elasticity, plasticity and cutting of an elastoplastic dough. The dough is made to drop onto a wooden board, and collide with the rolling pin and the metal blade to exhibit the rendering effects of elasticity, plasticity and fracture within our particle framework. |
Author | Wang, Xiaokun Zhang, Yalan Guo, Yu Yao, Chao Wang, Haoping Ban, Xiaojuan Xu, Yanrui |
Author_xml | – sequence: 1 givenname: Haoping orcidid: 0009-0000-2422-9342 surname: Wang fullname: Wang, Haoping organization: University of Science and Technology Beijing – sequence: 2 givenname: Xiaokun orcidid: 0000-0002-4449-591X surname: Wang fullname: Wang, Xiaokun email: banxj@ustb.edu.cn organization: University of Science and Technology Beijing – sequence: 3 givenname: Yanrui orcidid: 0000-0002-2154-1178 surname: Xu fullname: Xu, Yanrui organization: University of Groningen – sequence: 4 givenname: Yalan orcidid: 0000-0002-8736-7125 surname: Zhang fullname: Zhang, Yalan organization: University of Science and Technology Beijing – sequence: 5 givenname: Chao orcidid: 0000-0001-5483-3225 surname: Yao fullname: Yao, Chao organization: University of Science and Technology Beijing – sequence: 6 givenname: Yu surname: Guo fullname: Guo, Yu organization: University of Science and Technology Beijing – sequence: 7 givenname: Xiaojuan surname: Ban fullname: Ban, Xiaojuan email: wangxiaokun@ustb.edu.cn organization: Liaoning Academy of Materials |
BookMark | eNp10M1Kw0AQB_BFKthWwUcIePGSul_J7h5LsSoU9KDibdlP2ZImdTdVcvMRfEafxMQWb15m5vCbGfhPwKhuagfAOYIzBCG-Mup9hjHFR2CMClrmFLOX0d9cohMwSWndyxIjOAbLBxeD7Wq1Ceb780ur5Gy2aayrQv2aNT5zlUptsx1qMKHtMlXbzEdl2l102WEznYJjr6rkzg59Cp6W14-L23x1f3O3mK9ygznHObMFFZoJxrk32uuSYOixJoyUQluqOdNaeGt0QRhD0HFXME8Mo1wJj4kjU3Cxv7uNzdvOpVaum12s-5eSQFFwASmFvbrcKxOblKLzchvDRsVOIiiHlGSfkhxS6mm-px-hct2_Ti7mz7_-B2yFa4E |
Cites_doi | 10.1145/2185520.2185558 10.1016/j.ijmecsci.2019.05.003 10.1016/S0022-5096(99)00029-0 10.1145/1015706.1015734 10.1007/s10659-008-9163-3 10.1145/1276377.1276397 10.1007/s10659-007-9125-1 10.1146/annurev.aa.30.090192.002551 10.1145/3306346.3322949 10.1016/j.compstruc.2004.11.026 10.2172/1160289 10.1016/j.cag.2014.08.006 10.1007/s10659-009-9234-0 10.1145/2766996 10.1145/2461912.2461984 10.1109/TVCG.2017.2755646 10.1145/3386569.3392431 10.1145/3072959.3073666 10.1145/3197517.3201293 10.1111/cgf.13520 10.1145/2461912.2461948 10.1111/cgf.13317 10.1145/3480142 10.1145/3072959.2990496 10.1007/b98874 10.1007/978-94-010-1906-4 10.1145/3522573 10.1145/2343483.2343501 10.1145/1028523.1028542 10.1016/j.cag.2023.09.007 10.1007/s41095‐023‐0368‐y |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.2242 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_2242 CAV2242 |
Genre | article |
GrantInformation_xml | – fundername: Basic and Applied Basic Research Foundation of Guangdong Province funderid: 2021A1515012285; 2022A1515110350; 2023A1515030177 – fundername: National Natural Science Foundation of China funderid: 62332017; U22A2022; 62376025 – fundername: National Key Research and Development Program of China funderid: 2022ZD0118001 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WRC WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX ADMLS AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2882-7d549b79788fcbfb6320f2b37369bd4b87bb9fdcb537710e8e57f3c748a9f23e3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Jul 26 02:28:52 EDT 2025 Tue Jul 01 02:42:24 EDT 2025 Wed Jan 22 17:14:55 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2882-7d549b79788fcbfb6320f2b37369bd4b87bb9fdcb537710e8e57f3c748a9f23e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2154-1178 0009-0000-2422-9342 0000-0001-5483-3225 0000-0002-8736-7125 0000-0002-4449-591X |
OpenAccessLink | https://pure.rug.nl/ws/files/1065127421/Computer_Animation_Virtual_-_2024_-_Wang_-_Peridynamic_based_modeling_of_elastoplasticity_and_fracture_dynamics.pdf |
PQID | 3095890440 |
PQPubID | 2034909 |
PageCount | 16 |
ParticipantIDs | proquest_journals_3095890440 crossref_primary_10_1002_cav_2242 wiley_primary_10_1002_cav_2242_CAV2242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July/August 2024 2024-07-00 20240701 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July/August 2024 |
PublicationDecade | 2020 |
PublicationPlace | Chichester |
PublicationPlace_xml | – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 99 2015; 34 2021; 4 2012 2000; 48 2017; 24 2004; 23 2020; 39 2019; 38 2007 2022; 41 2004 2024 2005; 83 2008; 93 2014; 45 2012; 31 1999 1992; 30 2023; 42 2023 2017; 36 2013; 32 2023; 116 2009; 9 2018 2019; 157 1975; 2 2014 2007; 88 2018; 37 2007; 26 e_1_2_11_10_1 Chen W (e_1_2_11_13_1) 2018 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 Hu Y (e_1_2_11_31_1) 2018; 37 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_2_1 Lu Z (e_1_2_11_15_1) 2023 Su H (e_1_2_11_32_1) 2022 Kee MH (e_1_2_11_26_1) 2023 Jiang C (e_1_2_11_30_1) 2015; 34 e_1_2_11_21_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_38_1 Joshuah W (e_1_2_11_34_1) 2020; 39 e_1_2_11_39_1 e_1_2_11_19_1 Becker M (e_1_2_11_3_1) 2009; 9 |
References_xml | – volume: 39 start-page: 31 issue: 4 year: 2020 end-page: 36 article-title: An implicit compressible SPH solver for snow simulation publication-title: ACM Trans Graph – volume: 88 start-page: 151 year: 2007 end-page: 184 article-title: Peridynamic states and constitutive modeling publication-title: J Elasticity – volume: 30 start-page: 543 issue: 1 year: 1992 end-page: 574 article-title: Smoothed particle hydrodynamics publication-title: Ann Rev Astronomy Astrophys – volume: 42 start-page: 225 year: 2023 end-page: 233 – volume: 157 start-page: 498 year: 2019 end-page: 511 article-title: A Total Lagrangian SPH method for modelling damage and failure in solids publication-title: Int J Mech Sci – year: 2007 – volume: 99 start-page: 85 year: 2010 end-page: 111 article-title: Linearized theory of peridynamic states publication-title: J Elasticity – volume: 32 start-page: 1 issue: 4 year: 2013 end-page: 10 article-title: A material point method for snow simulation publication-title: ACM Trans Graph – year: 2004; – year: 2023 article-title: Projective Peridynamic Modeling of Hyperelastic membranes with contact publication-title: IEEE Trans Vis Comput Graph – volume: 36 start-page: 1 issue: 3 year: 2017 end-page: 16 article-title: Quasi‐newton methods for real‐time simulation of hyperelastic materials publication-title: Acm Trans Graph – volume: 26 start-page: 16 issue: 3 year: 2007 article-title: A finite element method for animating large viscoplastic flow publication-title: ACM Trans Graph – volume: 37 start-page: 112 year: 2018 end-page: 124 – volume: 2 year: 1975 – volume: 23 start-page: 385 issue: 3 year: 2004 end-page: 392 article-title: A virtual node algorithm for changing mesh topology during simulation publication-title: ACM Trans Graph – volume: 37 start-page: 149 year: 2018 end-page: 160 – volume: 38 start-page: 1 issue: 4 year: 2019 end-page: 15 article-title: CD‐MPM: continuum damage material point methods for dynamic fracture animation publication-title: ACM Trans Graph – volume: 83 start-page: 1526 issue: 17‐18 year: 2005 end-page: 1535 article-title: A meshfree method based on the peridynamic model of solid mechanics publication-title: Comput Struct – year: 2014 – volume: 32 start-page: 1 issue: 4 year: 2013 end-page: 12 article-title: Position based fluids publication-title: ACM Trans Graph – year: 2012 – volume: 116 start-page: 437 year: 2023 end-page: 447 article-title: Simulating hyperelastic materials with anisotropic stiffness models in a particle‐based framework publication-title: Comput Graph – volume: 39 start-page: 31 issue: 4 year: 2020 end-page: 37 article-title: Anisompm: animating anisotropic damage mechanics publication-title: ACM Trans Graph – volume: 31 start-page: 1 issue: 4 year: 2012 end-page: 8 article-title: Versatile rigid‐fluid coupling for incompressible SPH publication-title: ACM Trans Graph – volume: 37 start-page: 1 issue: 4 year: 2018 end-page: 14 article-title: A moving least squares material point method with displacement discontinuity and two‐way rigid body coupling publication-title: ACM Trans Graph – volume: 9 start-page: 27 year: 2009 end-page: 34 article-title: Corotated SPH for deformable solids publication-title: Nph – volume: 36 start-page: 1 issue: 4 year: 2017 end-page: 13 article-title: Robust extended finite elements for complex cutting of deformables publication-title: ACM Trans Graph – volume: 41 start-page: 325 year: 2022 end-page: 341 – volume: 93 start-page: 13 year: 2008 end-page: 37 article-title: Convergence of peridynamics to classical elasticity theory publication-title: J Elasticity – volume: 41 start-page: 1 issue: 5 year: 2022 end-page: 20 article-title: Simulating brittle fracture with material points publication-title: ACM Trans Graph – volume: 24 start-page: 2589 issue: 9 year: 2017 end-page: 2599 article-title: Projective peridynamics for modeling versatile elastoplastic materials publication-title: IEEE Trans Vis Comput Graph – volume: 4 start-page: 1 issue: 3 year: 2021 end-page: 21 article-title: Fast corotated elastic SPH solids with implicit zero‐energy mode control publication-title: Proc ACM Comput Graph Interact Techn – year: 2024 article-title: Physics‐based fluid simulation in computer graphics: survey, research trends, and challenges publication-title: Comput Visual Media – start-page: 135 year: 2018 end-page: 148 – volume: 48 start-page: 175 issue: 1 year: 2000 end-page: 209 article-title: Reformulation of elasticity theory for discontinuities and long‐range forces publication-title: J Mech Phys Solids – year: 1999 – volume: 34 start-page: 1 issue: 4 year: 2015 end-page: 10 article-title: The affine particle‐in‐cell method publication-title: ACM Trans Graph – volume: 45 start-page: 86 year: 2014 end-page: 100 article-title: Fracture modeling in computer graphics publication-title: Comput Graph – ident: e_1_2_11_22_1 doi: 10.1145/2185520.2185558 – ident: e_1_2_11_8_1 doi: 10.1016/j.ijmecsci.2019.05.003 – ident: e_1_2_11_19_1 – ident: e_1_2_11_2_1 – ident: e_1_2_11_10_1 doi: 10.1016/S0022-5096(99)00029-0 – ident: e_1_2_11_20_1 doi: 10.1145/1015706.1015734 – ident: e_1_2_11_37_1 doi: 10.1007/s10659-008-9163-3 – ident: e_1_2_11_17_1 doi: 10.1145/1276377.1276397 – year: 2023 ident: e_1_2_11_15_1 article-title: Projective Peridynamic Modeling of Hyperelastic membranes with contact publication-title: IEEE Trans Vis Comput Graph – volume: 39 start-page: 31 issue: 4 year: 2020 ident: e_1_2_11_34_1 article-title: Anisompm: animating anisotropic damage mechanics publication-title: ACM Trans Graph – volume: 9 start-page: 27 year: 2009 ident: e_1_2_11_3_1 article-title: Corotated SPH for deformable solids publication-title: Nph – ident: e_1_2_11_11_1 doi: 10.1007/s10659-007-9125-1 – start-page: 112 volume-title: Computer graphics forum year: 2018 ident: e_1_2_11_13_1 – ident: e_1_2_11_23_1 doi: 10.1146/annurev.aa.30.090192.002551 – ident: e_1_2_11_33_1 doi: 10.1145/3306346.3322949 – ident: e_1_2_11_36_1 doi: 10.1016/j.compstruc.2004.11.026 – ident: e_1_2_11_38_1 doi: 10.2172/1160289 – ident: e_1_2_11_40_1 doi: 10.1016/j.cag.2014.08.006 – ident: e_1_2_11_12_1 doi: 10.1007/s10659-009-9234-0 – volume: 34 start-page: 1 issue: 4 year: 2015 ident: e_1_2_11_30_1 article-title: The affine particle‐in‐cell method publication-title: ACM Trans Graph doi: 10.1145/2766996 – ident: e_1_2_11_39_1 doi: 10.1145/2461912.2461984 – start-page: 225 volume-title: Computer graphics forum year: 2023 ident: e_1_2_11_26_1 – ident: e_1_2_11_14_1 doi: 10.1109/TVCG.2017.2755646 – ident: e_1_2_11_28_1 doi: 10.1145/3386569.3392431 – ident: e_1_2_11_21_1 doi: 10.1145/3072959.3073666 – volume: 37 start-page: 1 issue: 4 year: 2018 ident: e_1_2_11_31_1 article-title: A moving least squares material point method with displacement discontinuity and two‐way rigid body coupling publication-title: ACM Trans Graph doi: 10.1145/3197517.3201293 – ident: e_1_2_11_18_1 doi: 10.1111/cgf.13520 – ident: e_1_2_11_29_1 doi: 10.1145/2461912.2461948 – ident: e_1_2_11_9_1 – ident: e_1_2_11_5_1 doi: 10.1111/cgf.13317 – ident: e_1_2_11_6_1 doi: 10.1145/3480142 – ident: e_1_2_11_25_1 doi: 10.1145/3072959.2990496 – ident: e_1_2_11_24_1 doi: 10.1007/b98874 – ident: e_1_2_11_41_1 doi: 10.1007/978-94-010-1906-4 – ident: e_1_2_11_35_1 doi: 10.1145/3522573 – start-page: 325 volume-title: Computer graphics forum year: 2022 ident: e_1_2_11_32_1 – ident: e_1_2_11_16_1 doi: 10.1145/2343483.2343501 – ident: e_1_2_11_4_1 doi: 10.1145/1028523.1028542 – ident: e_1_2_11_27_1 doi: 10.1016/j.cag.2023.09.007 – ident: e_1_2_11_7_1 doi: 10.1007/s41095‐023‐0368‐y |
SSID | ssj0026210 |
Score | 2.3506062 |
Snippet | This paper introduces a particle‐based framework for simulating the behavior of elastoplastic materials and the formation of fractures, grounded in Peridynamic... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Constitutive models Constraints Density Elastic deformation elastoplastic simulation Elastoplasticity Finite element method fracture Fractures Fracturing Mathematical models Modelling peridynamic Plastic deformation Smooth particle hydrodynamics Stability criteria Yield criteria |
Title | Peridynamic‐based modeling of elastoplasticity and fracture dynamics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.2242 https://www.proquest.com/docview/3095890440 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LS8NAEMcX8aQH32K1ygriLW3dRx7HUixFUERsKXgI-4QitKVJPHjyI_gZ_STOZpNWBUG8JLBkIZns7vwmmf0PQhfaqoRZSQOt4k7AgLgDUf5zZVzAmkzj0LjNybd34WDIbsZ8XGVVur0wXh9i-cHNzYxyvXYTXMisvRINVeKlBf7HLb8uVcvx0MNSOYqExAsRcBYGLkqodWc7pF13_O6JVnj5FVJLL9PfRk_1_fnkkudWkcuWev0h3fi_B9hBWxV84q4fLbtozUz30OZokhW-NdtH_XsYktqXqf94e3dOTuOyXA74ODyz2ABu57O5O04UIDwWU42t22tVLAyuemYHaNi_fuwNgqrWQqBICdkaAkUZQUwZWyWtDCnpWCJpRMNEaibjSMrEaiU5jQBKTGx4ZKmKWCwSS6ihh2h9OpuaI4SN4NxcESMZUYB7RliIWrSy0Ey44KqBzmu7p3MvqZF68WSSgk1SZ5MGatYvJK0mVZZSwME4cTWyG-iytOyv_dNed-TOx3-98ARtEMAVn4jbROv5ojCngBu5PCsH1ic15dM3 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6KHtSDb7FaNYJ4S1t3s3ngqRRL1baItKUHIWRfUIS29OHBkz_B3-gvcTbbtCoI4iWBJQPJZGbnm92dbwAupBaRpzl1pQjLroeI203SPVePJTgn09BXpji52fLrHe-ux3o5uM5qYSw_xGLBzXhGOl8bBzcL0qUla6hIXooYgHD-XTUNvdN86nHBHUV8YqkImOe7Jk_ImGfLpJRJfo9FS4D5Faamcaa2BU_ZG9rjJc_F2ZQXxesP8sZ_fsI2bM7xp1OxBrMDOTXYhY1ufzKzo5M9qD2gVUrbqf7j7d3EOemkHXMwzDlD7ShE3NPhyFz7AlG8kwyko0251WysnLnkZB86tZt2te7O2y24gqQ4W2KuyANMK0MtuOY-JWVNOA2oH3Hp8TDgPNJScEYDxCUqVCzQVARemESaUEUPYGUwHKhDcFTCmLoiintEIOJTicbERQqNw4QlTOThPFN8PLKsGrHlTyYx6iQ2OslDIfsj8dyvJjFFRBhGpk12Hi5T1f4qH1crXXM_-uuDZ7BWbzcbceO2dX8M6wTRiz2XW4CV6XimThB9TPlpamWfawPXUg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EQfTgW6xWjSDe0tZ95HEsraG-ShFbCh5C9gVFaEubevDkT_A3-kuczSatCoJ4SWDJQDKZ2fkmmfkGoXOpRUg1J64UQc2lgLjdJPvnSlkCezIJPGWak-_bXqtLb_qsn1dVml4Yyw8x_-BmPCPbr42Dj6WuLkhDRfJSgfgD2-8K9WqBsejmw5w6CnvYMhEw6rkmTSiIZ2u4Wkh-D0ULfPkVpWZhJtpET8UN2uqS58os5RXx-oO78X9PsIU2cvTp1K25bKMlNdxB673BdGZXp7so6oBNSjun_uPt3UQ56WTzciDIOSPtKMDb6WhsjgMBGN5JhtLRptlqNlFOLjndQ93o6rHRcvNhC67AGcqWkClyH5LKQAuuuUdwTWNOfOKFXFIe-JyHWgrOiA-oRAWK-ZoInwZJqDFRZB8tD0dDdYAclTCmLrHiFAvAeyrRkLZIoWEZs4SJEjor9B6PLadGbNmTcQw6iY1OSqhcvJA496ppTAAPBqEZkl1CF5lmf5WPG_WeOR_-9cJTtNppRvHddfv2CK1hgC62KLeMltPJTB0D9Ej5SWZjnyka1go |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peridynamic%E2%80%90based+modeling+of+elastoplasticity+and+fracture+dynamics&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Wang%2C+Haoping&rft.au=Wang%2C+Xiaokun&rft.au=Xu%2C+Yanrui&rft.au=Zhang%2C+Yalan&rft.date=2024-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=35&rft.issue=4&rft_id=info:doi/10.1002%2Fcav.2242&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |