Nonlinear optimization filters for stochastic time‐varying convex optimization
We look at a stochastic time‐varying optimization problem and we formulate online algorithms to find and track its optimizers in expectation. The algorithms are derived from the intuition that standard prediction and correction steps can be seen as a nonlinear dynamical system and a measurement equa...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 34; no. 12; pp. 8065 - 8089 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.08.2024
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We look at a stochastic time‐varying optimization problem and we formulate online algorithms to find and track its optimizers in expectation. The algorithms are derived from the intuition that standard prediction and correction steps can be seen as a nonlinear dynamical system and a measurement equation, respectively, yielding the notion of nonlinear filter design. The optimization algorithms are then based on an extended Kalman filter in the unconstrained case, and on a bilinear matrix inequality condition in the constrained case. Some special cases and variations are discussed, notably the case of parametric filters, yielding certificates based on LPV analysis and, if one wishes, matrix sum‐of‐squares relaxations. Supporting numerical results are presented from real data sets in ride‐hailing scenarios. The results are encouraging, especially when predictions are accurate, a case which is often encountered in practice when historical data is abundant. |
---|---|
AbstractList | We look at a stochastic time-varying optimization problem and we formulate online algorithms to find and track its optimizers in expectation. The algorithms are derived from the intuition that standard prediction and correction steps can be seen as a nonlinear dynamical system and a measurement equation, respectively, yielding the notion of nonlinear filter design. The optimization algorithms are then based on an extended Kalman filter in the unconstrained case, and on a bilinear matrix inequality condition in the constrained case. Some special cases and variations are discussed, notably the case of parametric filters, yielding certificates based on LPV analysis and, if one wishes, matrix sum-of-squares relaxations. Supporting numerical results are presented from real data sets in ride-hailing scenarios. The results are encouraging, especially when predictions are accurate, a case which is often encountered in practice when historical data is abundant. |
Author | Massioni, Paolo Simonetto, Andrea |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0003-2923-3361 surname: Simonetto fullname: Simonetto, Andrea email: andrea.simonetto@ensta-paris.fr organization: Institut Polytechnique de Paris – sequence: 2 givenname: Paolo orcidid: 0000-0001-8620-9507 surname: Massioni fullname: Massioni, Paolo organization: UMR5505 |
BackLink | https://hal.science/hal-03967845$$DView record in HAL |
BookMark | eNp10MtKAzEUBuAgFWyr4CMMuNHF1FzmkixLUSuUKqLrkKaJTZkmNZm21pWP4DP6JGYcEVy4Ssj5cvj5e6BjnVUAnCI4QBDiS2_loCQUHoAugoylCBPWae4ZSynD5Aj0QlhCGGc464L7qbOVsUr4xK1rszJvojbOJtpUtfIh0c4noXZyIUJtZBKF-nz_2Aq_N_Y5kc5u1eufn8fgUIsqqJOfsw-erq8eR-N0cndzOxpOUokphWkBiUAsz6UkaoaZlBplDMmS6jwrlCZ5ATOENBXzWRlTY1hiJBAlLCdqPseE9MFFu3chKr72ZhUjcScMHw8nvHmDhBUlzfItivastWvvXjYq1HzpNt7GeJzAssgxREWjzlslvQvBK_27FkHedMtjt7zpNtK0pTtTqf2_jj9MR9_-C-NHfLg |
Cites_doi | 10.1137/21M1398598 10.1109/TSG.2016.2571982 10.1016/j.inffus.2019.12.004 10.1109/TSP.2022.3188208 10.1016/j.automatica.2020.109311 10.1287/opre.2015.1408 10.1090/pcms/025/03 10.1137/15M1009597 10.23919/ACC.2018.8431231 10.1007/s10107-005-0684-2 10.1109/TAC.2023.3248487 10.1016/j.ifacol.2020.12.2508 10.1109/JPROC.2020.3003156 10.1007/978-0-387-87821-8 10.1109/TAC.2012.2203215 10.1007/978-1-4419-8853-9 10.1109/ACCESS.2019.2924469 10.1016/j.trc.2019.09.021 10.1080/00207170500114865 10.1109/TAC.2017.2760256 10.1109/TAC.2023.3297504 10.1017/CBO9780511804441 10.1080/00207179.2020.1745286 10.1016/j.sigpro.2023.109089 10.1109/MSP.2020.2968813 10.1109/TSP.2017.2728498 10.1109/MCS.2022.3157115 10.1109/TCNS.2019.2906916 10.1007/s10107-016-1030-6 10.1109/TSP.2016.2568161 10.1109/TSP.2018.2890368 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. 2024 John Wiley & Sons, Ltd. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. – notice: 2024 John Wiley & Sons, Ltd. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 1XC |
DOI | 10.1002/rnc.7380 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1099-1239 |
EndPage | 8089 |
ExternalDocumentID | oai_HAL_hal_03967845v1 10_1002_rnc_7380 RNC7380 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SC 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 L7M L~C L~D 1XC |
ID | FETCH-LOGICAL-c2880-603a1955cc3eb29ccf1491c78f546ef3560411f8adb792320721a183953edd233 |
IEDL.DBID | DR2 |
ISSN | 1049-8923 |
IngestDate | Wed Jun 11 06:20:34 EDT 2025 Wed Aug 13 06:00:57 EDT 2025 Tue Jul 01 01:03:16 EDT 2025 Wed Jun 11 08:26:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2880-603a1955cc3eb29ccf1491c78f546ef3560411f8adb792320721a183953edd233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8620-9507 0000-0003-2923-3361 |
PQID | 3076520161 |
PQPubID | 1026344 |
PageCount | 25 |
ParticipantIDs | hal_primary_oai_HAL_hal_03967845v1 proquest_journals_3076520161 crossref_primary_10_1002_rnc_7380 wiley_primary_10_1002_rnc_7380_RNC7380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2024 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: August 2024 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2019; 7 2022; 70 2021; 123 2019; 32 2017; 65 2009 2020; 37 2020; 58 2018; 63 2005 2019; 108 2011; 12 2022; 42 2004 2021; 94 2020; 108 2018; 9 2021; 59 2023; 68 2013; 58 2023 2020; 53 2022 2021 2020 2019; 67 2015; 63 2023; 210 1987 2016; 64 2018 2017; 162 2015 2013 2024; 69 2006; 107 2016; 26 2005; 78 e_1_2_12_4_1 e_1_2_12_3_1 e_1_2_12_6_1 e_1_2_12_5_1 e_1_2_12_19_1 e_1_2_12_18_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_16_1 e_1_2_12_38_1 e_1_2_12_39_1 Flaxman A (e_1_2_12_12_1) 2005 Cutler J (e_1_2_12_8_1) 2021 e_1_2_12_42_1 e_1_2_12_44_1 e_1_2_12_22_1 Zhang J (e_1_2_12_24_1) 2022 e_1_2_12_43_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_45_1 e_1_2_12_25_1 e_1_2_12_26_1 Rakhlin A (e_1_2_12_40_1) 2013 Duchi J (e_1_2_12_13_1) 2011; 12 Polyak BT (e_1_2_12_10_1) 1987 Jadbabaie A (e_1_2_12_41_1) 2015 Farajtabar M (e_1_2_12_21_1) 2020 e_1_2_12_27_1 e_1_2_12_28_1 e_1_2_12_29_1 e_1_2_12_30_1 e_1_2_12_31_1 e_1_2_12_32_1 e_1_2_12_33_1 e_1_2_12_34_1 e_1_2_12_35_1 e_1_2_12_36_1 e_1_2_12_37_1 e_1_2_12_15_1 e_1_2_12_14_1 Aljundi R (e_1_2_12_20_1) 2019 e_1_2_12_11_1 e_1_2_12_7_1 e_1_2_12_9_1 |
References_xml | – volume: 108 start-page: 2032 issue: 11 year: 2020 end-page: 2048 article-title: Time‐varying convex optimization: time‐structured algorithms and applications publication-title: Proc IEEE – volume: 63 start-page: 1973 issue: 7 year: 2018 end-page: 1986 article-title: Prediction‐correction interior‐point method for time‐varying convex optimization publication-title: IEEE Trans Automat Contr – volume: 53 start-page: 1998 issue: 2 year: 2020 end-page: 2003 article-title: Stability of uncertain piecewise‐affine systems with parametric dependence publication-title: IFAC‐PapersOnLine – year: 2009 – volume: 210 year: 2023 article-title: Extrapolation‐based prediction‐correction methods for time‐varying convex optimization publication-title: Signal Process – volume: 58 start-page: 52 year: 2020 end-page: 68 article-title: Continual learning for robotics: definition, framework, learning strategies, opportunities and challenges publication-title: Inform Fusion – volume: 7 start-page: 84536 year: 2019 end-page: 84544 article-title: New models for future problems solving by using ZND method, correction strategy and extrapolation formulas publication-title: IEEE Access – volume: 59 start-page: 4615 issue: 6 year: 2021 end-page: 4645 article-title: Convex synthesis of accelerated gradient algorithms publication-title: SIAM J Control Optim – volume: 94 start-page: 2956 issue: 11 year: 2021 end-page: 2979 article-title: Robust and structure exploiting optimisation algorithms: an integral quadratic constraint approach publication-title: Int J Control – year: 1987 – volume: 67 start-page: 1338 issue: 5 year: 2019 end-page: 1352 article-title: Online learning with inexact proximal online gradient descent algorithms publication-title: IEEE Trans Signal Process – volume: 123 year: 2021 article-title: Proximal gradient flow and Douglas–Rachford splitting dynamics: global exponential stability via integral quadratic constraints publication-title: Automatica – year: 2021 – volume: 69 start-page: 689 issue: 1 year: 2024 end-page: 696 article-title: Internal model‐based online optimization publication-title: IEEE Trans Automat Contr – volume: 162 start-page: 83 issue: 1 year: 2017 end-page: 112 article-title: Minimizing finite sums with the stochastic average gradient publication-title: Math Programm – volume: 37 start-page: 71 year: 2020 end-page: 83 article-title: Optimization and learning with information streams: time‐varying algorithms and applications publication-title: IEEE Signal Process Mag – start-page: 26347 year: 2022 end-page: 26361 – volume: 63 start-page: 1227 issue: 5 year: 2015 end-page: 1244 article-title: Non‐stationary stochastic optimization publication-title: Oper Res – volume: 68 start-page: 7911 issue: 12 year: 2023 end-page: 7918 article-title: The gradient tracking is a distributed integral action publication-title: IEEE Trans Automat Contr – year: 2018 – volume: 108 start-page: 269 year: 2019 end-page: 288 article-title: On the needs for MaaS platforms to handle competition in ridesharing mobility publication-title: Transport Res Pt C: Emerg Technol – volume: 64 start-page: 4576 issue: 17 year: 2016 end-page: 4591 article-title: A class of prediction‐correction methods for time‐varying convex optimization publication-title: IEEE Trans Signal Process – volume: 9 start-page: 942 issue: 2 year: 2018 end-page: 952 article-title: Optimal power flow pursuit publication-title: IEEE Trans Smart Grid – start-page: 398 year: 2015 end-page: 406 – volume: 58 start-page: 3 issue: 1 year: 2013 end-page: 18 article-title: Network integrity in Mobile robotic networks publication-title: IEEE Trans Automat Contr – volume: 107 start-page: 189 issue: 1 year: 2006 end-page: 211 article-title: Matrix sum‐of‐squares relaxations for robust semi‐definite programs publication-title: Math Program – start-page: 385 year: 2005 end-page: 394 – volume: 7 start-page: 422 issue: 1 year: 2019 end-page: 432 article-title: Online optimization as a feedback controller: stability and tracking publication-title: IEEE Trans Control Netw Syst – year: 2022 – year: 2020 – start-page: 597 year: 2018 end-page: 603 – year: 2004 – volume: 12 start-page: 2121 year: 2011 end-page: 2159 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – year: 2023 – volume: 65 start-page: 5481 issue: 20 year: 2017 end-page: 5494 article-title: Prediction‐correction algorithms for time‐varying constrained optimization publication-title: IEEE Trans Signal Process – start-page: 3762 year: 2020 end-page: 3773 – volume: 26 start-page: 57 issue: 1 year: 2016 end-page: 95 article-title: Analysis and Design of Optimization Algorithms via integral quadratic constraints publication-title: SIAM J Optim – volume: 70 start-page: 3582 year: 2022 end-page: 3597 article-title: Streaming solutions for time‐varying optimization problems publication-title: IEEE Trans Signal Process – volume: 32 year: 2019 – volume: 42 start-page: 58 issue: 3 year: 2022 end-page: 72 article-title: The analysis of optimization algorithms: a sissipativity approach publication-title: IEEE Control Syst Mag – volume: 78 start-page: 600 issue: 8 year: 2005 end-page: 611 article-title: SOS‐based solution approach to polynomial LPV system analysis and synthesis problems publication-title: Int J Contr – year: 2013 – start-page: 398 volume-title: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, PMLR No. 38 year: 2015 ident: e_1_2_12_41_1 – ident: e_1_2_12_32_1 doi: 10.1137/21M1398598 – volume-title: COLT year: 2013 ident: e_1_2_12_40_1 – ident: e_1_2_12_4_1 doi: 10.1109/TSG.2016.2571982 – ident: e_1_2_12_22_1 doi: 10.1016/j.inffus.2019.12.004 – ident: e_1_2_12_5_1 doi: 10.1109/TSP.2022.3188208 – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: e_1_2_12_20_1 – ident: e_1_2_12_31_1 doi: 10.1016/j.automatica.2020.109311 – ident: e_1_2_12_27_1 doi: 10.1287/opre.2015.1408 – volume-title: Advances in Neural Information Processing Systems year: 2021 ident: e_1_2_12_8_1 – ident: e_1_2_12_15_1 doi: 10.1090/pcms/025/03 – ident: e_1_2_12_28_1 doi: 10.1137/15M1009597 – ident: e_1_2_12_29_1 doi: 10.23919/ACC.2018.8431231 – ident: e_1_2_12_38_1 doi: 10.1007/s10107-005-0684-2 – ident: e_1_2_12_35_1 – ident: e_1_2_12_36_1 doi: 10.1109/TAC.2023.3248487 – ident: e_1_2_12_39_1 doi: 10.1016/j.ifacol.2020.12.2508 – ident: e_1_2_12_3_1 doi: 10.1109/JPROC.2020.3003156 – ident: e_1_2_12_46_1 doi: 10.1007/978-0-387-87821-8 – ident: e_1_2_12_6_1 doi: 10.1109/TAC.2012.2203215 – ident: e_1_2_12_42_1 doi: 10.1007/978-1-4419-8853-9 – ident: e_1_2_12_23_1 – ident: e_1_2_12_19_1 doi: 10.1109/ACCESS.2019.2924469 – ident: e_1_2_12_44_1 doi: 10.1016/j.trc.2019.09.021 – start-page: 3762 volume-title: International Conference on Artificial Intelligence and Statistics year: 2020 ident: e_1_2_12_21_1 – ident: e_1_2_12_37_1 doi: 10.1080/00207170500114865 – ident: e_1_2_12_11_1 doi: 10.1109/TAC.2017.2760256 – ident: e_1_2_12_17_1 doi: 10.1109/TAC.2023.3297504 – ident: e_1_2_12_9_1 – volume-title: Introduction to Optimization year: 1987 ident: e_1_2_12_10_1 – ident: e_1_2_12_43_1 doi: 10.1017/CBO9780511804441 – ident: e_1_2_12_33_1 doi: 10.1080/00207179.2020.1745286 – ident: e_1_2_12_16_1 doi: 10.1016/j.sigpro.2023.109089 – ident: e_1_2_12_2_1 doi: 10.1109/MSP.2020.2968813 – ident: e_1_2_12_7_1 – ident: e_1_2_12_18_1 doi: 10.1109/TSP.2017.2728498 – start-page: 385 volume-title: Proceedings of the ACM‐SIAM Symposium on Discrete Algorithms; 2005 year: 2005 ident: e_1_2_12_12_1 – start-page: 26347 volume-title: International Conference on Machine Learning year: 2022 ident: e_1_2_12_24_1 – ident: e_1_2_12_34_1 doi: 10.1109/MCS.2022.3157115 – ident: e_1_2_12_30_1 doi: 10.1109/TCNS.2019.2906916 – ident: e_1_2_12_14_1 doi: 10.1007/s10107-016-1030-6 – ident: e_1_2_12_45_1 doi: 10.1109/TSP.2016.2568161 – ident: e_1_2_12_25_1 – volume: 12 start-page: 2121 year: 2011 ident: e_1_2_12_13_1 article-title: Adaptive subgradient methods for online learning and stochastic optimization publication-title: J Mach Learn Res – ident: e_1_2_12_26_1 doi: 10.1109/TSP.2018.2890368 |
SSID | ssj0009924 |
Score | 2.4171116 |
Snippet | We look at a stochastic time‐varying optimization problem and we formulate online algorithms to find and track its optimizers in expectation. The algorithms... We look at a stochastic time-varying optimization problem and we formulate online algorithms to find and track its optimizers in expectation. The algorithms... |
SourceID | hal proquest crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 8065 |
SubjectTerms | Algorithms Convexity Design optimization dissipativity Extended Kalman filter Filter design (mathematics) Mathematics Nonlinear filters Optimization and Control stochastic Optimization time‐varying Optimization |
Title | Nonlinear optimization filters for stochastic time‐varying convex optimization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frnc.7380 https://www.proquest.com/docview/3076520161 https://hal.science/hal-03967845 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bS8MwFMeD7kkfvIvVKVHEt25tmizN4xiOITpkOBj4UNq0ZSJushvikx_Bz-gn8Zym3UUQxKdC26RtTk_yO-3JP4Rc-tJPGU9cCHL8yOaaKVs5kWNLpgFeZSz9CD_o37VrrS6_6YlenlWJc2GMPsT8gxt6RtZfo4OH0bi6EA0dgf9Iz8dwHVO1kIc6C-Uopcx6tgDAtg8QU-jOOqxaFFwZidb7mAe5BJnLqJqNNc1t8ljcpUkxea5MJ1FFv_8QcPzfY-yQrRxBad28M7tkLRnskc0lYcJ9ct82VYcjOoQ-5SWfrEnTJ_y5PqZAuhSoUfdDlHmmuED918fnDO4CitMsk_1tpeQB6TavHxotO197wdYMXNquOV7oKiG09iD2VlqnEEq5GiwreC1JPQAl7rqpH8YRKhAylFkLkbaEl8Qx87xDUhoMB8kRodIRKY-1YqHkXOgw8jEGElCFTKEGxyLnhR2CVyOxERgxZRZA6wTYOha5AAPND6Mmdqt-G-A-x1Mw4HIxcy1SLuwX5J44DqAPqwmGYGuRq8wQv14k6LQbuD3-64knZIMB45h8wDIpTUbT5BQYZRKdZW_jN3_p4o8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xHIADO6KsBgG3tIljN8mBA2pBBUqFEEjcTOIkKkIU1Jb1xCfwH_wKX8GXMJMFChISFw6cIiW2Y3s84zej8TPAmuu4MReRhU6OGxhCc8_wzMA0HK4RvDqh4wYU0D9olGsnYu9UnvbBS34WJuWH-Ai4kWYk9poUnALSpU_W0DYqkGO7ZpZRuR893KG_1tncraJw1znf2T6u1IzsSgFDc1ypRtm0fcuTUmsbXUpP6xg9BEtjh6UoR7GN-7-wrNj1w4CI9Tixh_kEIqQdhSGn6Cfa-0G6QJyI-qtHn1xVnpfeoIuQ23Cxbs50a_JS3tMve19_kzIve2BtLzhOdredMXjN5yVNarko3nSDon78Rhn5TyZuHEYzlM22UrWYgL6oNQkjPdyLU3DYSMfit9kVms3L7Dwqi88pf6DDEMwzBMa66ROTNcMS0dvT8y0OG6uzJFn__kvNaTj5kyHNwEDrqhXNAnNMGYtQe9x3hJDaD1xy8yQ24cTYglmAlVzw6jplEVEpXzRXKA1F0ijAKq6Ij89E-13bqit6Z9oeYgohb60CLOQLRmXGpqPQTJclJ-xegI1E8j_-RB01KvSc-23BZRiqHR_UVX23sT8PwxwhXZr-uAAD3fZNtIiQrBssJarA4Oyvl9A7fXA9kg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtswFD7qmDSNi21sQxQKmGnbXcBx7CS-2EXVUrXAKoRWqXde4iQCIQpqCwOu9gh7jr3K3mJPsnPyA2XSpN30gqtIie3YPj_-jnX8GeB9GISZkKmLQU4YO9IK7WgecycQFsFrkARhTBv6n_t-dyD3hmpYg5_VWZiCH-Juw40sI_fXZOAXSbZzTxo6RvsJvJCXCZX76c03DNcmn3ptlO0HITq7X1pdp7xRwLECFdXxuRe5WilrPYwotbUZBgiuxf4q6aeZh8u_dN0sjJKYePUEkYdFhCGUlyaJoM1PdPdPpc81XRPRPrqnqtK6uEAXEbcTYt2K6JaLnaqnD5a-J8eUeDmDamexcb64dV7Cr2paipyW0-3Labxtb_9ijHwc8_YKXpQYmzULo1iCWjp6DYszzItv4LBfDCUas3N0mmflaVSWnVD2wIQhlGcIi-1xRDzWDEukv7__uMJRY3WWp-pfP6j5FgZzGdIyLIzOR-kKsICrTCZWiyiQUtkoDinIU9hEkGELvA5bldzNRcEhYgq2aGFQGoakUYd3qBB3n4n0u9s8MPSOexoRhVRXbh0alb6Y0tVMDDppXwlC7nX4mAv-nz8xR_0WPVf_t-AmPDtsd8xBr7-_Bs8F4rki97EBC9PxZbqOeGwab-SGwODrvDXoD2YdPEE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+optimization+filters+for+stochastic+time%E2%80%90varying+convex+optimization&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Simonetto%2C+Andrea&rft.au=Massioni%2C+Paolo&rft.date=2024-08-01&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=34&rft.issue=12&rft.spage=8065&rft.epage=8089&rft_id=info:doi/10.1002%2Frnc.7380&rft.externalDBID=10.1002%252Frnc.7380&rft.externalDocID=RNC7380 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |