Efficient micromagnetic–elastic simulations based on a perturbed Lagrangian function

Micromagnetic simulations require the numerically challenging preservation of the Euclidean norm during the whole simulation. This can be accomplished by applying a priori length preserving methods, renormalization algorithms, or penalization strategies. The latter one includes both the penalty meth...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 134; no. 10
Main Authors Reichel, Maximilian, Niekamp, Rainer, Schröder, Jörg
Format Journal Article
LanguageEnglish
Published 14.09.2023
Online AccessGet full text

Cover

Loading…
Abstract Micromagnetic simulations require the numerically challenging preservation of the Euclidean norm during the whole simulation. This can be accomplished by applying a priori length preserving methods, renormalization algorithms, or penalization strategies. The latter one includes both the penalty method and the Lagrangian multiplier. The penalty method requires the definition of a penalty parameter during the initiation of the simulation which, depending on its size, can lead to an unsatisfied constraint or stiff and difficult to solve systems of equations. The Lagrange multiplier always penalizes in problem-dependent intensity, hence, an additional degree of freedom is added to the system of equations to the drawback of higher computational costs. This paper proposes a method that utilizes a perturbed Lagrangian multiplier and an element level static condensation to condensate the additional degree of freedom. This guarantees fast simulations, and no parameter fitting in advance. Suitable numerical examples are conducted to prove the workability of the outlined scheme and to highlight the efficiency compared to the non-condensed formulation.
AbstractList Micromagnetic simulations require the numerically challenging preservation of the Euclidean norm during the whole simulation. This can be accomplished by applying a priori length preserving methods, renormalization algorithms, or penalization strategies. The latter one includes both the penalty method and the Lagrangian multiplier. The penalty method requires the definition of a penalty parameter during the initiation of the simulation which, depending on its size, can lead to an unsatisfied constraint or stiff and difficult to solve systems of equations. The Lagrange multiplier always penalizes in problem-dependent intensity, hence, an additional degree of freedom is added to the system of equations to the drawback of higher computational costs. This paper proposes a method that utilizes a perturbed Lagrangian multiplier and an element level static condensation to condensate the additional degree of freedom. This guarantees fast simulations, and no parameter fitting in advance. Suitable numerical examples are conducted to prove the workability of the outlined scheme and to highlight the efficiency compared to the non-condensed formulation.
Author Schröder, Jörg
Niekamp, Rainer
Reichel, Maximilian
Author_xml – sequence: 1
  givenname: Maximilian
  surname: Reichel
  fullname: Reichel, Maximilian
  organization: Institute of Mechanics, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
– sequence: 2
  givenname: Rainer
  surname: Niekamp
  fullname: Niekamp, Rainer
  email: rainer.niekamp@uni-due.de
  organization: Institute of Mechanics, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
– sequence: 3
  givenname: Jörg
  surname: Schröder
  fullname: Schröder, Jörg
  email: j.schroeder@uni-due.de
  organization: Institute of Mechanics, University of Duisburg-Essen, Universitätsstr. 15, 45141 Essen, Germany
BookMark eNotUM1KAzEYDFLBbfXgG-QsbM2Xn25ylFKtUPCiXpdvs0mJdLNlkz148x18Q5_ErfY0MzAMMzMns9hHR8gtsCWwlbhXSwbK8EpckAKYNmWlFJuRgjEOpTaVuSLzlD4YA9DCFOR9432wwcVMu2CHvsN9dDnYn69vd8A0MZpCNx4whz4m2mByLe0jRXp0Qx6HZpI73A8Y9wEj9WO0J-c1ufR4SO7mjAvy9rh5XW_L3cvT8_phV1quq1x6sUKndAMcuKmEaZpKrKSSvPXGomktghO8lcaCnXYIrsFpxqRwUhjppViQu__cZEP-61gfh9Dh8FkDq0-P1Ko-PyJ-AbUmVlU
CODEN JAPIAU
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AJDQP
DOI 10.1063/5.0159273
DatabaseName AIP Open Access Journals
DatabaseTitleList
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID jap
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: 405553726
  funderid: 10.13039/501100001659
GroupedDBID -DZ
-~X
.DC
2-P
29J
4.4
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
ID FETCH-LOGICAL-c287t-f36ae58b12129739bb7364542df9ca9dca1e32d49c1c5503281e80043e4394f43
IEDL.DBID AJDQP
ISSN 0021-8979
IngestDate Fri Jun 21 00:10:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Published open access through an agreement with Technische Informationsbibliothek 28359
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c287t-f36ae58b12129739bb7364542df9ca9dca1e32d49c1c5503281e80043e4394f43
ORCID 0000-0002-0778-5168
0000-0002-4708-6804
0000-0001-7960-9553
OpenAccessLink http://dx.doi.org/10.1063/5.0159273
PageCount 12
ParticipantIDs scitation_primary_10_1063_5_0159273
PublicationCentury 2000
PublicationDate 20230914
PublicationDateYYYYMMDD 2023-09-14
PublicationDate_xml – month: 09
  year: 2023
  text: 20230914
  day: 14
PublicationDecade 2020
PublicationTitle Journal of applied physics
PublicationYear 2023
References Yi, Xu (c21) 2014
Bjørk, Poulsen, Nielsen, Insinga (c46) 2021
Schröder, Reichel, Birk (c38) 2022
Miehe, Ethiraj (c25) 2012
Kittel (c2) 1949
Xiao, Lo Conte, Chen, Liang, Sepulveda, Bokor, Carman, Candler (c43) 2018
Shepherd, Miles, Heil, Mihajlović (c49) 2019
Chen, Konrad (c53) 1997
Bolyachkin, Sepehri-Amin, Suzuki, Tajiri, Takahashi, Srinivasan, Ho, Yuan, Seki, Ajan, Hono (c9) 2022
Sridhar, Keip, Miehe (c20) 2015
Sepehri-Amin, Ohkubo, Gruber, Schrefl, Hono (c11) 2014
Fischbacher, Kovacs, Gusenbauer, Oezelt, Exl, Bance, Schrefl (c12) 2018
Exl, Mauser, Schaffer, Schrefl, Suess (c32) 2021
Liang, Keller, Sepulveda, Bur, Sun, Wetzlar, Carman (c44) 2014
d’Aquino, Serpico, Miano (c47) 2005
Gilbert (c7) 2004
Abert, Exl, Selke, Drews, Schrefl (c52) 2013
Muscas, Jönsson, Serrano, Vallin, Kamalakar (c50) 2021
Zhang, Zhang, Pei (c16) 2016
Korelc (c36) 1997
Ohmer, Yi, Gutfleisch, Xu (c18) 2022
Reichel, Schröder, Xu (c34) 2023
Birk, Reichel, Schröder (c39) 2022
Alouges (c28) 2008
Fidler, Schrefl (c23) 2000
Reichel, Xu, Schröder (c27) 2022
Szambolics, Buda-Prejbeanu, Toussaint, Fruchart (c17) 2008
Wang, Zhang (c15) 2013
Dornisch, Schrade, Xu, Keip, Müller (c22) 2018
Yi, Gutfleisch, Xu (c10) 2016
Süss, Schrefl, Fidler (c24) 2000
Bur, Wu, Hockel, Hsu, Kim, Chung, Wong, Wang, Carman (c51) 2011
Kovacs, Exl, Kornell, Fischbacher, Hovorka, Gusenbauer, Breth, Oezelt, Praetorius, Suess, Schrefl (c31) 2022
Bartels, Prohl (c48) 2006
Landis (c13) 2008
Soderžnik, Sepehri-Amin, Sasaki, Ohkubo, Takada, Sato, Kaneko, Kato, Schrefl, Hono (c8) 2017
Korelc (c37) 2002
Vansteenkiste, Leliaert, Dvornik, Helsen, Garcia-Sanchez, Van Waeyenberge (c30) 2014
References_xml – start-page: 331
  year: 2012
  ident: c25
  article-title: A geometrically consistent incremental variational formulation for phase field models in micromagnetics
  publication-title: Comput. Methods Appl. Mech. Eng.
  contributor:
    fullname: Ethiraj
– start-page: 1058
  year: 2019
  ident: c49
  article-title: An adaptive step implicit midpoint rule for the time integration of Newton’s linearisations of non-linear problems with applications in micromagnetics
  publication-title: J. Sci. Comput.
  contributor:
    fullname: Mihajlović
– start-page: 3597
  year: 2013
  ident: c15
  article-title: A real-space phase field model for the domain evolution of ferromagnetic materials
  publication-title: Int. J. Solids Struct.
  contributor:
    fullname: Zhang
– start-page: 3282
  year: 2000
  ident: c24
  article-title: Micromagnetics simulation of high energy density permanent magnets
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Fidler
– start-page: 435701
  year: 2014
  ident: c44
  article-title: Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model
  publication-title: Nanotechnology
  contributor:
    fullname: Carman
– start-page: 68
  year: 2017
  ident: c8
  article-title: Magnetization reversal of exchange-coupled and exchange-decoupled Nd-Fe-B magnets observed by magneto-optical Kerr effect microscopy
  publication-title: Acta Mater.
  contributor:
    fullname: Hono
– start-page: 176
  year: 2013
  ident: c52
  article-title: Numerical methods for the stray-field calculation: A comparison of recently developed algorithms
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Schrefl
– start-page: 033903
  year: 2016
  ident: c10
  article-title: Micromagnetic simulations on the grain shape effect in Nd-Fe-B magnets
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Xu
– start-page: 1031
  year: 2018
  ident: c22
  article-title: Coupled phase field simulations of ferroelectric and ferromagnetic layers in multiferroic heterostructures
  publication-title: Arch. Appl. Mech.
  contributor:
    fullname: Müller
– start-page: 3443
  year: 2004
  ident: c7
  article-title: A phenomenological theory of damping in ferromagnetic materials
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Gilbert
– start-page: 253
  year: 2008
  ident: c17
  article-title: A constrainded finite element formulation for the Landau-Lifshitz-Gilbert equations
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Fruchart
– start-page: R135
  year: 2000
  ident: c23
  article-title: Micromagnetic modelling-the current state of the art
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Schrefl
– start-page: 231
  year: 1997
  ident: c36
  article-title: Automatic generation of finite-element code by simultaneous optimization of expressions
  publication-title: Theor. Comput. Sci.
  contributor:
    fullname: Korelc
– start-page: 29
  year: 2014
  ident: c11
  article-title: Micromagnetic simulations on the grain size dependence of coercivity in anisotropic Nd-Fe-B sintered magnets
  publication-title: Scr. Mater.
  contributor:
    fullname: Hono
– start-page: 187
  year: 2008
  ident: c28
  article-title: A new finite element scheme for Landau-Lifchitz equations
  publication-title: Discrete Contin. Dyn. Syst.-S
  contributor:
    fullname: Alouges
– start-page: 363
  year: 2015
  ident: c20
  article-title: Computational homogenization in micro-magneto-elasticity
  publication-title: Proc. Appl. Math. Mech.
  contributor:
    fullname: Miehe
– start-page: 123903
  year: 2011
  ident: c51
  article-title: Strain-induced magnetization change in patterned ferromagnetic nickel nanostructures
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Carman
– start-page: 111365
  year: 2022
  ident: c18
  article-title: Phase-field modelling of paramagnetic austenite–ferromagnetic martensite transformation coupled with mechanics and micromagnetics
  publication-title: Int. J. Solids Struct.
  contributor:
    fullname: Xu
– start-page: 168057
  year: 2021
  ident: c46
  article-title: Magtense: A micromagnetic framework using the analytical demagnetization tensor
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Insinga
– start-page: 3059
  year: 2008
  ident: c13
  article-title: A continuum thermodynamics formulation for micro-magneto-mechanics with applications to ferromagnetic shape memory alloys
  publication-title: J. Mech. Phys. Solids
  contributor:
    fullname: Landis
– start-page: 541
  year: 1949
  ident: c2
  article-title: Physical theory of ferromagnetic domains
  publication-title: Rev. Mod. Phys.
  contributor:
    fullname: Kittel
– start-page: 183903
  year: 2022
  ident: c27
  article-title: A comparative study of finite element schemes for micromagnetic mechanically coupled simulations
  publication-title: J. Appl. Phys.
  contributor:
    fullname: Schröder
– start-page: 312
  year: 2002
  ident: c37
  article-title: Multi-language and multi-environment generation of nonlinear finite element codes
  publication-title: Eng. Comput.
  contributor:
    fullname: Korelc
– start-page: 168951
  year: 2022
  ident: c31
  article-title: Magnetostatics and micromagnetics with physics informed neural networks
  publication-title: J. Magn. Magn. Mater.
  contributor:
    fullname: Schrefl
– start-page: 663
  year: 1997
  ident: c53
  article-title: A review of finite element open boundary techniques for static and quasi-static electromagnetic field problems
  publication-title: IEEE Trans. Magn.
  contributor:
    fullname: Konrad
– start-page: 110586
  year: 2021
  ident: c32
  article-title: Prediction of magnetization dynamics in a reduced dimensional feature space setting utilizing a low-rank kernel method
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Suess
– start-page: 107133
  year: 2014
  ident: c30
  article-title: The design and verification of MuMax3
  publication-title: AIP Adv.
  contributor:
    fullname: Van Waeyenberge
– start-page: 20140517
  year: 2014
  ident: c21
  article-title: A constraint-free phase field model for ferromagnetic domain evolution
  publication-title: Proc. R. Soc. A
  contributor:
    fullname: Xu
– start-page: 6043
  year: 2021
  ident: c50
  article-title: Ultralow magnetostrictive flexible ferromagnetic nanowires
  publication-title: Nanoscale
  contributor:
    fullname: Kamalakar
– start-page: e202200016
  year: 2023
  ident: c34
  article-title: Efficient micromagnetic finite element simulations using a perturbed Lagrange multiplier method
  publication-title: Proc. Appl. Math. Mech.
  contributor:
    fullname: Xu
– start-page: 214
  year: 2016
  ident: c16
  article-title: A finite element based real-space phase field model for domain evolution of ferromagnetic materials
  publication-title: Comput. Mater. Sci.
  contributor:
    fullname: Pei
– start-page: 141
  year: 2022
  ident: c38
  article-title: An efficient numerical scheme for the Fe-approximation of magnetic stray fields in infinite domains
  publication-title: Comput. Mech.
  contributor:
    fullname: Birk
– start-page: 5207
  year: 2018
  ident: c43
  article-title: Bi-directional coupling in strain-mediated multiferroic heterostructures with magnetic domains and domain wall motion
  publication-title: Sci. Rep.
  contributor:
    fullname: Candler
– start-page: 193002
  year: 2018
  ident: c12
  article-title: Micromagnetics of rare-earth efficient permanent magnets
  publication-title: J. Phys. D: Appl. Phys.
  contributor:
    fullname: Schrefl
– start-page: 1405
  year: 2006
  ident: c48
  article-title: Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation
  publication-title: SIAM J. Numer. Anal.
  contributor:
    fullname: Prohl
– start-page: 730
  year: 2005
  ident: c47
  article-title: Geometrical integration of Landau-Lifshitz-Gilbert equation based on the mid-point rule
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Miano
– start-page: 117744
  year: 2022
  ident: c9
  article-title: Transmission electron microscopy image based micromagnetic simulations for optimizing nanostructure of FePt-X heat-assisted magnetic recording media
  publication-title: Acta Mater.
  contributor:
    fullname: Hono
– start-page: 115362
  year: 2022
  ident: c39
  article-title: Magnetostatic simulations with consideration of exterior domains using the scaled boundary finite element method
  publication-title: Comput. Methods Appl. Mech. Eng.
  contributor:
    fullname: Schröder
SSID ssj0011839
Score 2.4806132
Snippet Micromagnetic simulations require the numerically challenging preservation of the Euclidean norm during the whole simulation. This can be accomplished by...
SourceID scitation
SourceType Publisher
Title Efficient micromagnetic–elastic simulations based on a perturbed Lagrangian function
URI http://dx.doi.org/10.1063/5.0159273
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NS8NAEIaH2iLag2i1-M1CvQab7CbZPRZtKUVFwUpvYT-Lh6alrXf_g__QX-JsEksvgrcENpcdss8s78w7ADfU_2Exnn5d2WUBEk8HkhsVGGuiNOKSJ0Uf9-NTMhyz0SSe1KDzh4Kf0FtvqxkLpOwONKJUdKM6NHqj-5fnjVjgIV9WcoQBF6n4NRDa_rgJe4iUUt3eAsjgEA6qzI_0ylAdQc3mLWhu-QG2YLeox9SrY3jrF9YOSAQyK0rm5DT37Ybfn18W8118Iqv3WTV6a0U8iwyZ50SShV0iRRS-PsgpgmiK8SeeXn7lCYwH_de7YVCNQAg0XmXWgaOJtDFXIRJGpFQolXrdkEXGCS2F0TK0NDJM6FDjXYNGPLTcq3vWd7w6RttQz-e5PQWineFah0I7yZjSRjpMriTnLuUxT5Q8g85mh7JFaXWRFRJ1QrM4q_bx_F-rLmDfj2X3dRUhu4T6evlhrxDea3VdBe8HOgaWeA
link.rule.ids 315,783,787,27902,27936,27937,76737
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3fTsIwFMZPFGKUC6Oo8b9N9HbCtm5rL4lCEIFoAoa7pWs7gpGxMLj3HXxDn8TTMZFL77akS5qu2-803znfAbhzzRfm4d-vLurUQuJJSzAVWUorJ3CYYH5ex93r--0h7Yy8UZGbY2phcBLZvZikuYj_LtJasYDWB8acy_TPcMB3a8Zw0-PI320oB6bfSgnKjc7j68taRjD4X-V42BbjAf-1Ftp8uAK7CJuV7r2BltYB7BcxIWms5nAIWzqpQmXDKbAKO3mmpsyO4K2Zmz4gK8g0T6YT48QUIn5_fmmMhPGKZJNp0ZQrI4ZSiswSIkiq58iXCG-7YoyIGuPOIIZrZuQxDFvNwUPbKpojWBIPOQsrdn2hPRbZyB4euDyKAqMoUkfFXAqupLC16yjKpS3xFOI6zNbM6H7a1MLG1D2BUjJL9CkQGSsmpc1lLCiNpBIxhl2CsThgHvMjcQa36xUK05UJRpiL174bemGxjuf_GnUDu-1Brxt2n_rPF7Bnmreb7AubXkJpMV_qK0T8IrouXuQPPGajhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+micromagnetic%E2%80%93elastic+simulations+based+on+a+perturbed+Lagrangian+function&rft.jtitle=Journal+of+applied+physics&rft.au=Reichel%2C+Maximilian&rft.au=Niekamp%2C+Rainer&rft.au=Schr%C3%B6der%2C+J%C3%B6rg&rft.date=2023-09-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=134&rft.issue=10&rft_id=info:doi/10.1063%2F5.0159273&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon