Spatial-Temporal Residential Short-Term Load Forecasting via Graph Neural Networks

Electric load forecasting, especially short-term load forecasting, is of significant importance for the safe and efficient operation of power grids. With the wide adoption of advanced smart meters, more attention has been paid to short-term residential load forecasting. Most of the existing load for...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on smart grid Vol. 12; no. 6; pp. 5373 - 5384
Main Authors Lin, Weixuan, Wu, Di, Boulet, Benoit
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electric load forecasting, especially short-term load forecasting, is of significant importance for the safe and efficient operation of power grids. With the wide adoption of advanced smart meters, more attention has been paid to short-term residential load forecasting. Most of the existing load forecasting methods are mainly focused on using temporal information of historical loads, and information of neighboring houses are generally ignored. However, houses in the same or neighboring areas may show similar consumption patterns due to shared conditions such as temperature, holiday impacts. Such information can be very helpful for machine learning based forecasting methods. In this paper, we propose to tackle the short-term residential load forecasting including both the individual load and aggregated load with a graph neural network based forecasting framework. The proposed framework can capture the hidden spatial dependencies of different houses without even any prior knowledge requirement on the geographic information for these houses. The proposed framework is evaluated on data sets of different residential houses from several areas. The experimental results demonstrate that the proposed framework can improve the residential forecasting accuracy by a wide margin compared with the baselines.
AbstractList Electric load forecasting, especially short-term load forecasting, is of significant importance for the safe and efficient operation of power grids. With the wide adoption of advanced smart meters, more attention has been paid to short-term residential load forecasting. Most of the existing load forecasting methods are mainly focused on using temporal information of historical loads, and information of neighboring houses are generally ignored. However, houses in the same or neighboring areas may show similar consumption patterns due to shared conditions such as temperature, holiday impacts. Such information can be very helpful for machine learning based forecasting methods. In this paper, we propose to tackle the short-term residential load forecasting including both the individual load and aggregated load with a graph neural network based forecasting framework. The proposed framework can capture the hidden spatial dependencies of different houses without even any prior knowledge requirement on the geographic information for these houses. The proposed framework is evaluated on data sets of different residential houses from several areas. The experimental results demonstrate that the proposed framework can improve the residential forecasting accuracy by a wide margin compared with the baselines.
Author Boulet, Benoit
Lin, Weixuan
Wu, Di
Author_xml – sequence: 1
  givenname: Weixuan
  orcidid: 0000-0002-4474-6950
  surname: Lin
  fullname: Lin, Weixuan
  email: weixuan.lin@mail.mcgill.ca
  organization: Department of Electrical and Computer Engineering, McGill University, Montreal, OC, Canada
– sequence: 2
  givenname: Di
  orcidid: 0000-0001-7419-9903
  surname: Wu
  fullname: Wu, Di
  email: di.wu5@mcgill.ca
  organization: Department of Electrical and Computer Engineering, McGill University, Montreal, OC, Canada
– sequence: 3
  givenname: Benoit
  orcidid: 0000-0002-3191-3967
  surname: Boulet
  fullname: Boulet, Benoit
  email: benoit.boulet@mcgill.ca
  organization: Department of Electrical and Computer Engineering, McGill University, Montreal, OC, Canada
BookMark eNp9kE1Lw0AQQBepYK29C14CnlP3I9nsHqXYKpQKbT0vm83Ebk2zcTdV_PcmtPTgwbnMMDNvBt41GtSuBoRuCZ4QguXDZj2fUEzJhGHJUpJeoCGRiYwZ5mRwrlN2hcYh7HAXjDFO5RCt1o1ura7iDewb53UVrSDYAuq-Ga23zrfdyO-jhdNFNHMejA6trd-jL6ujudfNNlrCoQeX0H47_xFu0GWpqwDjUx6ht9nTZvocL17nL9PHRWyoyNoYRF7wHAALneQ5zwiUrKRZkRuaCSFBAJRGpyIXBS3SRCZlCZk0BmNDNSY5G6H7493Gu88DhFbt3MHX3UtFU8E4kwlh3RY-bhnvQvBQqsbbvfY_imDVy1OdPNXLUyd5HcL_IMa2nSVXt17b6j_w7ghaADj_kQkXnHP2Cx6Fftg
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1007_s12145_024_01456_7
crossref_primary_10_1016_j_epsr_2024_110248
crossref_primary_10_1016_j_engappai_2022_105358
crossref_primary_10_1002_tee_23810
crossref_primary_10_3389_fenrg_2022_986146
crossref_primary_10_1109_JIOT_2023_3300695
crossref_primary_10_1109_TPWRS_2023_3299637
crossref_primary_10_1109_ACCESS_2022_3160710
crossref_primary_10_1016_j_enbuild_2024_114206
crossref_primary_10_3390_en15218308
crossref_primary_10_1016_j_compeleceng_2024_109715
crossref_primary_10_32604_ee_2023_025666
crossref_primary_10_1109_ACCESS_2022_3208894
crossref_primary_10_1016_j_apenergy_2023_122544
crossref_primary_10_1016_j_egyai_2022_100141
crossref_primary_10_1016_j_neunet_2025_107268
crossref_primary_10_1016_j_eswa_2023_121313
crossref_primary_10_1016_j_ijepes_2024_110327
crossref_primary_10_1109_TTE_2024_3355094
crossref_primary_10_1016_j_energy_2024_131030
crossref_primary_10_2139_ssrn_4018990
crossref_primary_10_1016_j_seta_2024_104133
crossref_primary_10_1109_TIM_2023_3305655
crossref_primary_10_1109_TII_2024_3476542
crossref_primary_10_3389_fnbot_2024_1461403
crossref_primary_10_1016_j_energy_2024_131134
crossref_primary_10_3390_en18030687
crossref_primary_10_1017_dce_2023_10
crossref_primary_10_1109_TNSE_2024_3427672
crossref_primary_10_30724_1998_9903_2021_23_6_134_147
crossref_primary_10_1109_TPWRS_2023_3311795
crossref_primary_10_1016_j_ijepes_2024_110074
crossref_primary_10_1016_j_segan_2024_101304
crossref_primary_10_1109_TSG_2023_3253855
crossref_primary_10_3233_JIFS_231775
crossref_primary_10_3390_en16093636
crossref_primary_10_1109_TSG_2024_3452490
crossref_primary_10_1016_j_apenergy_2023_121705
crossref_primary_10_1016_j_jgsce_2023_205133
crossref_primary_10_1109_TSG_2024_3368419
crossref_primary_10_1016_j_epsr_2022_108145
crossref_primary_10_1109_TSG_2023_3321116
crossref_primary_10_1109_TIA_2022_3208874
crossref_primary_10_1109_TSG_2023_3237011
crossref_primary_10_1016_j_susoc_2023_03_003
crossref_primary_10_3390_en17153709
crossref_primary_10_1016_j_apenergy_2023_122087
crossref_primary_10_1016_j_epsr_2024_110265
crossref_primary_10_1016_j_heliyon_2024_e31237
crossref_primary_10_1016_j_enbuild_2025_115432
crossref_primary_10_1007_s11280_022_01122_2
crossref_primary_10_1016_j_eswa_2023_121737
crossref_primary_10_1016_j_enbuild_2023_113178
crossref_primary_10_1109_TII_2023_3280319
crossref_primary_10_1109_JIOT_2024_3362587
crossref_primary_10_1016_j_ijepes_2023_109620
crossref_primary_10_1016_j_ijepes_2022_108651
crossref_primary_10_3390_en16041988
crossref_primary_10_1007_s42835_022_01084_5
crossref_primary_10_1016_j_enbuild_2024_114261
crossref_primary_10_1016_j_ijepes_2025_110549
crossref_primary_10_1109_TII_2023_3268467
crossref_primary_10_1109_TII_2023_3292532
crossref_primary_10_32604_cmes_2023_025396
crossref_primary_10_1016_j_egyr_2022_06_122
crossref_primary_10_1049_gtd2_13142
crossref_primary_10_1109_ACCESS_2022_3218374
crossref_primary_10_3390_en17184583
crossref_primary_10_1109_TPWRS_2024_3431952
crossref_primary_10_3390_en18020227
crossref_primary_10_1093_ijlct_ctae283
crossref_primary_10_21833_ijaas_2024_05_025
crossref_primary_10_1109_TSG_2024_3481894
crossref_primary_10_1038_s44287_024_00018_9
crossref_primary_10_1002_ese3_1633
crossref_primary_10_1016_j_apenergy_2024_124978
crossref_primary_10_1016_j_epsr_2024_111294
crossref_primary_10_1007_s41060_025_00735_w
crossref_primary_10_1016_j_apenergy_2023_120995
crossref_primary_10_1109_TPWRS_2024_3393926
crossref_primary_10_1016_j_resourpol_2023_103956
crossref_primary_10_1088_2634_4505_ad6a7f
crossref_primary_10_1016_j_ijepes_2023_109771
crossref_primary_10_1016_j_asoc_2023_110629
crossref_primary_10_1109_TSG_2022_3208211
crossref_primary_10_1016_j_epsr_2023_109873
crossref_primary_10_1109_TIM_2025_3544349
Cites_doi 10.1016/j.enbuild.2015.11.068
10.1080/10408340500526766
10.1109/TPWRS.2003.811010
10.1109/TITS.2019.2950416
10.1016/j.rser.2017.09.078
10.1609/aaai.v33i01.33014424
10.1109/TPWRS.2002.1007927
10.3390/en11040705
10.1109/TPAS.1971.293123
10.24963/ijcai.2019/264
10.1109/TPWRS.2005.846106
10.1109/59.99410
10.1007/978-3-319-71273-4_4
10.1016/j.energy.2019.05.230
10.1016/j.knosys.2018.03.022
10.1109/TNN.2008.2005605
10.1109/TPWRS.2012.2190109
10.1609/aaai.v33i01.33013656
10.1109/TSG.2017.2753802
10.1109/CVPR.2016.90
10.1109/ACCESS.2020.3009537
10.1111/j.1468-0394.2004.00272.x
10.1109/TNNLS.2020.2978386
10.1016/j.eswa.2014.03.053
10.1016/j.neucom.2020.07.061
10.1016/j.ijforecast.2015.11.011
10.1109/CVPR.2017.576
10.1109/TSG.2019.2933413
10.1109/TSTE.2018.2844102
10.1109/TPWRS.2017.2688178
10.1109/TPWRS.2010.2061877
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2021.3093515
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 5384
ExternalDocumentID 10_1109_TSG_2021_3093515
9468666
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c287t-e8bd6bee08a4bb671ef3f27dbc27889e8eefca58b8d2d5494ffe79cc00c2a01b3
IEDL.DBID RIE
ISSN 1949-3053
IngestDate Mon Jun 30 09:52:13 EDT 2025
Tue Jul 01 02:29:07 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Wed Aug 27 02:26:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c287t-e8bd6bee08a4bb671ef3f27dbc27889e8eefca58b8d2d5494ffe79cc00c2a01b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4474-6950
0000-0001-7419-9903
0000-0002-3191-3967
PQID 2583639413
PQPubID 2040408
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TSG_2021_3093515
proquest_journals_2583639413
crossref_primary_10_1109_TSG_2021_3093515
ieee_primary_9468666
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References yu (ref31) 2017
ref35
ref13
ref34
ref12
wu (ref2) 2018
kechyn (ref37) 2018
ref15
ref14
wu (ref6) 0
ref33
ref11
ref10
atwood (ref29) 2016
ref1
ref17
dauphin (ref39) 2017; 70
ref16
ref19
ref18
(ref41) 2017
yu (ref38) 2015
cirstea (ref32) 2021
li (ref30) 2017
ref46
ref24
ref45
ref23
oord (ref36) 2016
ref26
ref47
ref25
ref20
ref42
ref22
ref21
ref43
shahidehpour (ref3) 2003
ref27
zhou (ref28) 2018
bengio (ref44) 2017; 1
ref8
ref7
baker (ref4) 1985
wu (ref5) 2014
ref9
ref40
References_xml – ident: ref19
  doi: 10.1016/j.enbuild.2015.11.068
– year: 2017
  ident: ref30
  publication-title: Diffusion convolutional recurrent neural network Data-driven traffic forecasting
– ident: ref46
  doi: 10.1080/10408340500526766
– year: 2017
  ident: ref41
  publication-title: OpenEI
– year: 0
  ident: ref6
  article-title: Optimizing home energy management and electric vehicle charging with reinforcement learning
  publication-title: Proc 16th Adaptive Learn Ag
– year: 2018
  ident: ref2
  publication-title: Machine Learning Algorithms and Applications for Sustainable Smart Grid
– year: 2018
  ident: ref28
  publication-title: Graph neural networks A review of methods and applications
– ident: ref9
  doi: 10.1109/TPWRS.2003.811010
– ident: ref24
  doi: 10.1109/TITS.2019.2950416
– ident: ref18
  doi: 10.1016/j.rser.2017.09.078
– ident: ref34
  doi: 10.1609/aaai.v33i01.33014424
– year: 2003
  ident: ref3
  publication-title: Market Operations in Electric Power Systems Forecasting Scheduling and Risk Management
– ident: ref22
  doi: 10.1109/TPWRS.2002.1007927
– ident: ref47
  doi: 10.3390/en11040705
– start-page: 1
  year: 2014
  ident: ref5
  article-title: Neighborhood level network aware electric vehicle charging management with mixed control strategy
  publication-title: Proc IEEE Int Electr Veh Conf (IEVC)
– year: 2018
  ident: ref37
  publication-title: Sales forecasting using WaveNet within the framework of the Kaggle competition
– ident: ref8
  doi: 10.1109/TPAS.1971.293123
– ident: ref25
  doi: 10.24963/ijcai.2019/264
– ident: ref10
  doi: 10.1109/TPWRS.2005.846106
– ident: ref7
  doi: 10.1109/59.99410
– ident: ref14
  doi: 10.1007/978-3-319-71273-4_4
– ident: ref42
  doi: 10.1016/j.energy.2019.05.230
– ident: ref35
  doi: 10.1016/j.knosys.2018.03.022
– ident: ref26
  doi: 10.1109/TNN.2008.2005605
– year: 2021
  ident: ref32
  publication-title: Graph attention recurrent neural networks for correlated time series forecasting
– ident: ref20
  doi: 10.1109/TPWRS.2012.2190109
– ident: ref23
  doi: 10.1609/aaai.v33i01.33013656
– ident: ref16
  doi: 10.1109/TSG.2017.2753802
– year: 2017
  ident: ref31
  publication-title: Spatio-temporal graph convolutional networks A deep learning framework for traffic forecasting
– ident: ref40
  doi: 10.1109/CVPR.2016.90
– ident: ref43
  doi: 10.1109/ACCESS.2020.3009537
– volume: 1
  year: 2017
  ident: ref44
  publication-title: Deep Learning
– ident: ref15
  doi: 10.1111/j.1468-0394.2004.00272.x
– ident: ref27
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref13
  doi: 10.1016/j.eswa.2014.03.053
– year: 1985
  ident: ref4
  publication-title: Load Forecasting for Scheduling Generation on a Large Interconnected System
– ident: ref45
  doi: 10.1016/j.neucom.2020.07.061
– volume: 70
  start-page: 933
  year: 2017
  ident: ref39
  article-title: Language modeling with gated convolutional networks
  publication-title: Proc 34th Int Conf Mach Learn
– year: 2016
  ident: ref36
  publication-title: WaveNet A Generative Model for Raw Audio
– year: 2015
  ident: ref38
  publication-title: Multi-scale context aggregation by dilated convolutions
– start-page: 1993
  year: 2016
  ident: ref29
  article-title: Diffusion-convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref1
  doi: 10.1016/j.ijforecast.2015.11.011
– ident: ref33
  doi: 10.1109/CVPR.2017.576
– ident: ref12
  doi: 10.1109/TSG.2019.2933413
– ident: ref11
  doi: 10.1109/TSTE.2018.2844102
– ident: ref17
  doi: 10.1109/TPWRS.2017.2688178
– ident: ref21
  doi: 10.1109/TPWRS.2010.2061877
SSID ssj0000333629
Score 2.6178854
Snippet Electric load forecasting, especially short-term load forecasting, is of significant importance for the safe and efficient operation of power grids. With the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5373
SubjectTerms Convolution
Correlation
Electric load forecasting
Electric power grids
Electrical loads
Forecasting
Graph neural networks
Houses
Load
Load forecasting
Load modeling
Machine learning
Neural networks
Predictive models
Residential energy
Spatial dependencies
spatial-temporal
Title Spatial-Temporal Residential Short-Term Load Forecasting via Graph Neural Networks
URI https://ieeexplore.ieee.org/document/9468666
https://www.proquest.com/docview/2583639413
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzjwGojxUg5ckOiWpm2aHhGCIcQ4wCbtVjWpIxCwIbZx4NfjpN2EACFuVZtUke0kdux8H8CxLchP0KkNQml4EEuBNKViG5B1hBJDZY2Ha-rdyqtBfD1Mhg04XdyFQURffIZt9-hz-eXYzNxRWSeLpSJ3ewmWKHCr7motzlN4FNFanPkkcuzS-Uk0z0ryrNO_71IsKMK2T_w5Dtwvu5CnVfmxFvsN5nIdevOhVXUlT-3ZVLfNxzfUxv-OfQPWak-TnVWmsQkNHG3B6hf8wSbcOUJiMsCgXwFUPbM7dPSdI_eS3T-Qa06f3l7YzbgomWPxNMXE1Umz98eCdR3WNXPoHtT4tionn2zD4PKif34V1CQLgaFgaRqg0qXUiFwVsdYyDdFGVqSlNoKEnKFCtKZIlFalKCmYjK3FNDOGcyMKHupoB5ZH4xHuAkuk0dxaIyNj4lRmCkuuMBVS6MjFkS3ozIWemxqB3BFhPOc-EuFZTmrKnZryWk0tOFn0eK3QN_5o23RSX7SrBd6Cg7le83p6TnKRqIhcM9rA937vtQ8r7t_VpcMDWJ6-zfCQvI-pPvJm9wkXFNZD
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB1RONAeWiggtnzUBzhwyK7jJI5z6KHiaynLHmCRuIXYGQsE3a3Y3SL4Lf0r_W8dO9kVgqo3pN6ixE4U-9me5xm_AdiyBdkJOrVBKA0PYimQhlRsA0JHKDFU1ni5ppOubJ_H3y6Sixn4NT0Lg4g--Ayb7tL78suBGbutslYWS0Xmdh1CeYwP90TQhl-O9qg3t4U42O_ttoM6h0BgiAuMAlS6lBqRqyLWWqYh2siKtNRGEPnLUCFaUyRKq1KUxJViazHNjOHciIKHOqL3voE5sjMSUZ0Om-7g8Cii2T_zbuvYBRAk0cQPyrNW7-yQ2KcIm97V6LLuPln3fCKXF7O_X9IOPsDvSWNUkSw3zfFIN83jM53I_7W1FuB9bUuzrxX4F2EG-x_h3ROFxSU4dSmXaYgFvUqC65adoktQ2nc32dkVkQ96dPeddQZFyVyeUlMMXSQ4-3ldsEOn5s2cfgkV7lYB88NlOH-Vn1qB2f6gj6vAEmk0t9bIyJg4lZnCkitMhRQ6cky5Aa1JJ-em1lh3qT5uc8-1eJYTLHIHi7yGRQN2pjV-VPoi_yi75Hp5Wq7u4AasT3CU1xPQMBeJisj4JBPl099rfYb5du-kk3eOusdr8NZ9pzpiuQ6zo7sxbpCtNdKbHvIMLl8bNX8ACIc4OQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-Temporal+Residential+Short-Term+Load+Forecasting+via+Graph+Neural+Networks&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Lin%2C+Weixuan&rft.au=Wu%2C+Di&rft.au=Boulet%2C+Benoit&rft.date=2021-11-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=12&rft.issue=6&rft.spage=5373&rft.epage=5384&rft_id=info:doi/10.1109%2FTSG.2021.3093515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2021_3093515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon