Spatial-Temporal Residential Short-Term Load Forecasting via Graph Neural Networks
Electric load forecasting, especially short-term load forecasting, is of significant importance for the safe and efficient operation of power grids. With the wide adoption of advanced smart meters, more attention has been paid to short-term residential load forecasting. Most of the existing load for...
Saved in:
Published in | IEEE transactions on smart grid Vol. 12; no. 6; pp. 5373 - 5384 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electric load forecasting, especially short-term load forecasting, is of significant importance for the safe and efficient operation of power grids. With the wide adoption of advanced smart meters, more attention has been paid to short-term residential load forecasting. Most of the existing load forecasting methods are mainly focused on using temporal information of historical loads, and information of neighboring houses are generally ignored. However, houses in the same or neighboring areas may show similar consumption patterns due to shared conditions such as temperature, holiday impacts. Such information can be very helpful for machine learning based forecasting methods. In this paper, we propose to tackle the short-term residential load forecasting including both the individual load and aggregated load with a graph neural network based forecasting framework. The proposed framework can capture the hidden spatial dependencies of different houses without even any prior knowledge requirement on the geographic information for these houses. The proposed framework is evaluated on data sets of different residential houses from several areas. The experimental results demonstrate that the proposed framework can improve the residential forecasting accuracy by a wide margin compared with the baselines. |
---|---|
AbstractList | Electric load forecasting, especially short-term load forecasting, is of significant importance for the safe and efficient operation of power grids. With the wide adoption of advanced smart meters, more attention has been paid to short-term residential load forecasting. Most of the existing load forecasting methods are mainly focused on using temporal information of historical loads, and information of neighboring houses are generally ignored. However, houses in the same or neighboring areas may show similar consumption patterns due to shared conditions such as temperature, holiday impacts. Such information can be very helpful for machine learning based forecasting methods. In this paper, we propose to tackle the short-term residential load forecasting including both the individual load and aggregated load with a graph neural network based forecasting framework. The proposed framework can capture the hidden spatial dependencies of different houses without even any prior knowledge requirement on the geographic information for these houses. The proposed framework is evaluated on data sets of different residential houses from several areas. The experimental results demonstrate that the proposed framework can improve the residential forecasting accuracy by a wide margin compared with the baselines. |
Author | Boulet, Benoit Lin, Weixuan Wu, Di |
Author_xml | – sequence: 1 givenname: Weixuan orcidid: 0000-0002-4474-6950 surname: Lin fullname: Lin, Weixuan email: weixuan.lin@mail.mcgill.ca organization: Department of Electrical and Computer Engineering, McGill University, Montreal, OC, Canada – sequence: 2 givenname: Di orcidid: 0000-0001-7419-9903 surname: Wu fullname: Wu, Di email: di.wu5@mcgill.ca organization: Department of Electrical and Computer Engineering, McGill University, Montreal, OC, Canada – sequence: 3 givenname: Benoit orcidid: 0000-0002-3191-3967 surname: Boulet fullname: Boulet, Benoit email: benoit.boulet@mcgill.ca organization: Department of Electrical and Computer Engineering, McGill University, Montreal, OC, Canada |
BookMark | eNp9kE1Lw0AQQBepYK29C14CnlP3I9nsHqXYKpQKbT0vm83Ebk2zcTdV_PcmtPTgwbnMMDNvBt41GtSuBoRuCZ4QguXDZj2fUEzJhGHJUpJeoCGRiYwZ5mRwrlN2hcYh7HAXjDFO5RCt1o1ura7iDewb53UVrSDYAuq-Ga23zrfdyO-jhdNFNHMejA6trd-jL6ujudfNNlrCoQeX0H47_xFu0GWpqwDjUx6ht9nTZvocL17nL9PHRWyoyNoYRF7wHAALneQ5zwiUrKRZkRuaCSFBAJRGpyIXBS3SRCZlCZk0BmNDNSY5G6H7493Gu88DhFbt3MHX3UtFU8E4kwlh3RY-bhnvQvBQqsbbvfY_imDVy1OdPNXLUyd5HcL_IMa2nSVXt17b6j_w7ghaADj_kQkXnHP2Cx6Fftg |
CODEN | ITSGBQ |
CitedBy_id | crossref_primary_10_1007_s12145_024_01456_7 crossref_primary_10_1016_j_epsr_2024_110248 crossref_primary_10_1016_j_engappai_2022_105358 crossref_primary_10_1002_tee_23810 crossref_primary_10_3389_fenrg_2022_986146 crossref_primary_10_1109_JIOT_2023_3300695 crossref_primary_10_1109_TPWRS_2023_3299637 crossref_primary_10_1109_ACCESS_2022_3160710 crossref_primary_10_1016_j_enbuild_2024_114206 crossref_primary_10_3390_en15218308 crossref_primary_10_1016_j_compeleceng_2024_109715 crossref_primary_10_32604_ee_2023_025666 crossref_primary_10_1109_ACCESS_2022_3208894 crossref_primary_10_1016_j_apenergy_2023_122544 crossref_primary_10_1016_j_egyai_2022_100141 crossref_primary_10_1016_j_neunet_2025_107268 crossref_primary_10_1016_j_eswa_2023_121313 crossref_primary_10_1016_j_ijepes_2024_110327 crossref_primary_10_1109_TTE_2024_3355094 crossref_primary_10_1016_j_energy_2024_131030 crossref_primary_10_2139_ssrn_4018990 crossref_primary_10_1016_j_seta_2024_104133 crossref_primary_10_1109_TIM_2023_3305655 crossref_primary_10_1109_TII_2024_3476542 crossref_primary_10_3389_fnbot_2024_1461403 crossref_primary_10_1016_j_energy_2024_131134 crossref_primary_10_3390_en18030687 crossref_primary_10_1017_dce_2023_10 crossref_primary_10_1109_TNSE_2024_3427672 crossref_primary_10_30724_1998_9903_2021_23_6_134_147 crossref_primary_10_1109_TPWRS_2023_3311795 crossref_primary_10_1016_j_ijepes_2024_110074 crossref_primary_10_1016_j_segan_2024_101304 crossref_primary_10_1109_TSG_2023_3253855 crossref_primary_10_3233_JIFS_231775 crossref_primary_10_3390_en16093636 crossref_primary_10_1109_TSG_2024_3452490 crossref_primary_10_1016_j_apenergy_2023_121705 crossref_primary_10_1016_j_jgsce_2023_205133 crossref_primary_10_1109_TSG_2024_3368419 crossref_primary_10_1016_j_epsr_2022_108145 crossref_primary_10_1109_TSG_2023_3321116 crossref_primary_10_1109_TIA_2022_3208874 crossref_primary_10_1109_TSG_2023_3237011 crossref_primary_10_1016_j_susoc_2023_03_003 crossref_primary_10_3390_en17153709 crossref_primary_10_1016_j_apenergy_2023_122087 crossref_primary_10_1016_j_epsr_2024_110265 crossref_primary_10_1016_j_heliyon_2024_e31237 crossref_primary_10_1016_j_enbuild_2025_115432 crossref_primary_10_1007_s11280_022_01122_2 crossref_primary_10_1016_j_eswa_2023_121737 crossref_primary_10_1016_j_enbuild_2023_113178 crossref_primary_10_1109_TII_2023_3280319 crossref_primary_10_1109_JIOT_2024_3362587 crossref_primary_10_1016_j_ijepes_2023_109620 crossref_primary_10_1016_j_ijepes_2022_108651 crossref_primary_10_3390_en16041988 crossref_primary_10_1007_s42835_022_01084_5 crossref_primary_10_1016_j_enbuild_2024_114261 crossref_primary_10_1016_j_ijepes_2025_110549 crossref_primary_10_1109_TII_2023_3268467 crossref_primary_10_1109_TII_2023_3292532 crossref_primary_10_32604_cmes_2023_025396 crossref_primary_10_1016_j_egyr_2022_06_122 crossref_primary_10_1049_gtd2_13142 crossref_primary_10_1109_ACCESS_2022_3218374 crossref_primary_10_3390_en17184583 crossref_primary_10_1109_TPWRS_2024_3431952 crossref_primary_10_3390_en18020227 crossref_primary_10_1093_ijlct_ctae283 crossref_primary_10_21833_ijaas_2024_05_025 crossref_primary_10_1109_TSG_2024_3481894 crossref_primary_10_1038_s44287_024_00018_9 crossref_primary_10_1002_ese3_1633 crossref_primary_10_1016_j_apenergy_2024_124978 crossref_primary_10_1016_j_epsr_2024_111294 crossref_primary_10_1007_s41060_025_00735_w crossref_primary_10_1016_j_apenergy_2023_120995 crossref_primary_10_1109_TPWRS_2024_3393926 crossref_primary_10_1016_j_resourpol_2023_103956 crossref_primary_10_1088_2634_4505_ad6a7f crossref_primary_10_1016_j_ijepes_2023_109771 crossref_primary_10_1016_j_asoc_2023_110629 crossref_primary_10_1109_TSG_2022_3208211 crossref_primary_10_1016_j_epsr_2023_109873 crossref_primary_10_1109_TIM_2025_3544349 |
Cites_doi | 10.1016/j.enbuild.2015.11.068 10.1080/10408340500526766 10.1109/TPWRS.2003.811010 10.1109/TITS.2019.2950416 10.1016/j.rser.2017.09.078 10.1609/aaai.v33i01.33014424 10.1109/TPWRS.2002.1007927 10.3390/en11040705 10.1109/TPAS.1971.293123 10.24963/ijcai.2019/264 10.1109/TPWRS.2005.846106 10.1109/59.99410 10.1007/978-3-319-71273-4_4 10.1016/j.energy.2019.05.230 10.1016/j.knosys.2018.03.022 10.1109/TNN.2008.2005605 10.1109/TPWRS.2012.2190109 10.1609/aaai.v33i01.33013656 10.1109/TSG.2017.2753802 10.1109/CVPR.2016.90 10.1109/ACCESS.2020.3009537 10.1111/j.1468-0394.2004.00272.x 10.1109/TNNLS.2020.2978386 10.1016/j.eswa.2014.03.053 10.1016/j.neucom.2020.07.061 10.1016/j.ijforecast.2015.11.011 10.1109/CVPR.2017.576 10.1109/TSG.2019.2933413 10.1109/TSTE.2018.2844102 10.1109/TPWRS.2017.2688178 10.1109/TPWRS.2010.2061877 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1109/TSG.2021.3093515 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1949-3061 |
EndPage | 5384 |
ExternalDocumentID | 10_1109_TSG_2021_3093515 9468666 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SP 7TB 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c287t-e8bd6bee08a4bb671ef3f27dbc27889e8eefca58b8d2d5494ffe79cc00c2a01b3 |
IEDL.DBID | RIE |
ISSN | 1949-3053 |
IngestDate | Mon Jun 30 09:52:13 EDT 2025 Tue Jul 01 02:29:07 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Wed Aug 27 02:26:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c287t-e8bd6bee08a4bb671ef3f27dbc27889e8eefca58b8d2d5494ffe79cc00c2a01b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4474-6950 0000-0001-7419-9903 0000-0002-3191-3967 |
PQID | 2583639413 |
PQPubID | 2040408 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_TSG_2021_3093515 proquest_journals_2583639413 crossref_primary_10_1109_TSG_2021_3093515 ieee_primary_9468666 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on smart grid |
PublicationTitleAbbrev | TSG |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | yu (ref31) 2017 ref35 ref13 ref34 ref12 wu (ref2) 2018 kechyn (ref37) 2018 ref15 ref14 wu (ref6) 0 ref33 ref11 ref10 atwood (ref29) 2016 ref1 ref17 dauphin (ref39) 2017; 70 ref16 ref19 ref18 (ref41) 2017 yu (ref38) 2015 cirstea (ref32) 2021 li (ref30) 2017 ref46 ref24 ref45 ref23 oord (ref36) 2016 ref26 ref47 ref25 ref20 ref42 ref22 ref21 ref43 shahidehpour (ref3) 2003 ref27 zhou (ref28) 2018 bengio (ref44) 2017; 1 ref8 ref7 baker (ref4) 1985 wu (ref5) 2014 ref9 ref40 |
References_xml | – ident: ref19 doi: 10.1016/j.enbuild.2015.11.068 – year: 2017 ident: ref30 publication-title: Diffusion convolutional recurrent neural network Data-driven traffic forecasting – ident: ref46 doi: 10.1080/10408340500526766 – year: 2017 ident: ref41 publication-title: OpenEI – year: 0 ident: ref6 article-title: Optimizing home energy management and electric vehicle charging with reinforcement learning publication-title: Proc 16th Adaptive Learn Ag – year: 2018 ident: ref2 publication-title: Machine Learning Algorithms and Applications for Sustainable Smart Grid – year: 2018 ident: ref28 publication-title: Graph neural networks A review of methods and applications – ident: ref9 doi: 10.1109/TPWRS.2003.811010 – ident: ref24 doi: 10.1109/TITS.2019.2950416 – ident: ref18 doi: 10.1016/j.rser.2017.09.078 – ident: ref34 doi: 10.1609/aaai.v33i01.33014424 – year: 2003 ident: ref3 publication-title: Market Operations in Electric Power Systems Forecasting Scheduling and Risk Management – ident: ref22 doi: 10.1109/TPWRS.2002.1007927 – ident: ref47 doi: 10.3390/en11040705 – start-page: 1 year: 2014 ident: ref5 article-title: Neighborhood level network aware electric vehicle charging management with mixed control strategy publication-title: Proc IEEE Int Electr Veh Conf (IEVC) – year: 2018 ident: ref37 publication-title: Sales forecasting using WaveNet within the framework of the Kaggle competition – ident: ref8 doi: 10.1109/TPAS.1971.293123 – ident: ref25 doi: 10.24963/ijcai.2019/264 – ident: ref10 doi: 10.1109/TPWRS.2005.846106 – ident: ref7 doi: 10.1109/59.99410 – ident: ref14 doi: 10.1007/978-3-319-71273-4_4 – ident: ref42 doi: 10.1016/j.energy.2019.05.230 – ident: ref35 doi: 10.1016/j.knosys.2018.03.022 – ident: ref26 doi: 10.1109/TNN.2008.2005605 – year: 2021 ident: ref32 publication-title: Graph attention recurrent neural networks for correlated time series forecasting – ident: ref20 doi: 10.1109/TPWRS.2012.2190109 – ident: ref23 doi: 10.1609/aaai.v33i01.33013656 – ident: ref16 doi: 10.1109/TSG.2017.2753802 – year: 2017 ident: ref31 publication-title: Spatio-temporal graph convolutional networks A deep learning framework for traffic forecasting – ident: ref40 doi: 10.1109/CVPR.2016.90 – ident: ref43 doi: 10.1109/ACCESS.2020.3009537 – volume: 1 year: 2017 ident: ref44 publication-title: Deep Learning – ident: ref15 doi: 10.1111/j.1468-0394.2004.00272.x – ident: ref27 doi: 10.1109/TNNLS.2020.2978386 – ident: ref13 doi: 10.1016/j.eswa.2014.03.053 – year: 1985 ident: ref4 publication-title: Load Forecasting for Scheduling Generation on a Large Interconnected System – ident: ref45 doi: 10.1016/j.neucom.2020.07.061 – volume: 70 start-page: 933 year: 2017 ident: ref39 article-title: Language modeling with gated convolutional networks publication-title: Proc 34th Int Conf Mach Learn – year: 2016 ident: ref36 publication-title: WaveNet A Generative Model for Raw Audio – year: 2015 ident: ref38 publication-title: Multi-scale context aggregation by dilated convolutions – start-page: 1993 year: 2016 ident: ref29 article-title: Diffusion-convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref1 doi: 10.1016/j.ijforecast.2015.11.011 – ident: ref33 doi: 10.1109/CVPR.2017.576 – ident: ref12 doi: 10.1109/TSG.2019.2933413 – ident: ref11 doi: 10.1109/TSTE.2018.2844102 – ident: ref17 doi: 10.1109/TPWRS.2017.2688178 – ident: ref21 doi: 10.1109/TPWRS.2010.2061877 |
SSID | ssj0000333629 |
Score | 2.6178854 |
Snippet | Electric load forecasting, especially short-term load forecasting, is of significant importance for the safe and efficient operation of power grids. With the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5373 |
SubjectTerms | Convolution Correlation Electric load forecasting Electric power grids Electrical loads Forecasting Graph neural networks Houses Load Load forecasting Load modeling Machine learning Neural networks Predictive models Residential energy Spatial dependencies spatial-temporal |
Title | Spatial-Temporal Residential Short-Term Load Forecasting via Graph Neural Networks |
URI | https://ieeexplore.ieee.org/document/9468666 https://www.proquest.com/docview/2583639413 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzjwGojxUg5ckOiWpm2aHhGCIcQ4wCbtVjWpIxCwIbZx4NfjpN2EACFuVZtUke0kdux8H8CxLchP0KkNQml4EEuBNKViG5B1hBJDZY2Ha-rdyqtBfD1Mhg04XdyFQURffIZt9-hz-eXYzNxRWSeLpSJ3ewmWKHCr7motzlN4FNFanPkkcuzS-Uk0z0ryrNO_71IsKMK2T_w5Dtwvu5CnVfmxFvsN5nIdevOhVXUlT-3ZVLfNxzfUxv-OfQPWak-TnVWmsQkNHG3B6hf8wSbcOUJiMsCgXwFUPbM7dPSdI_eS3T-Qa06f3l7YzbgomWPxNMXE1Umz98eCdR3WNXPoHtT4tionn2zD4PKif34V1CQLgaFgaRqg0qXUiFwVsdYyDdFGVqSlNoKEnKFCtKZIlFalKCmYjK3FNDOGcyMKHupoB5ZH4xHuAkuk0dxaIyNj4lRmCkuuMBVS6MjFkS3ozIWemxqB3BFhPOc-EuFZTmrKnZryWk0tOFn0eK3QN_5o23RSX7SrBd6Cg7le83p6TnKRqIhcM9rA937vtQ8r7t_VpcMDWJ6-zfCQvI-pPvJm9wkXFNZD |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT9wwEB1RONAeWiggtnzUBzhwyK7jJI5z6KHiaynLHmCRuIXYGQsE3a3Y3SL4Lf0r_W8dO9kVgqo3pN6ixE4U-9me5xm_AdiyBdkJOrVBKA0PYimQhlRsA0JHKDFU1ni5ppOubJ_H3y6Sixn4NT0Lg4g--Ayb7tL78suBGbutslYWS0Xmdh1CeYwP90TQhl-O9qg3t4U42O_ttoM6h0BgiAuMAlS6lBqRqyLWWqYh2siKtNRGEPnLUCFaUyRKq1KUxJViazHNjOHciIKHOqL3voE5sjMSUZ0Om-7g8Cii2T_zbuvYBRAk0cQPyrNW7-yQ2KcIm97V6LLuPln3fCKXF7O_X9IOPsDvSWNUkSw3zfFIN83jM53I_7W1FuB9bUuzrxX4F2EG-x_h3ROFxSU4dSmXaYgFvUqC65adoktQ2nc32dkVkQ96dPeddQZFyVyeUlMMXSQ4-3ldsEOn5s2cfgkV7lYB88NlOH-Vn1qB2f6gj6vAEmk0t9bIyJg4lZnCkitMhRQ6cky5Aa1JJ-em1lh3qT5uc8-1eJYTLHIHi7yGRQN2pjV-VPoi_yi75Hp5Wq7u4AasT3CU1xPQMBeJisj4JBPl099rfYb5du-kk3eOusdr8NZ9pzpiuQ6zo7sxbpCtNdKbHvIMLl8bNX8ACIc4OQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-Temporal+Residential+Short-Term+Load+Forecasting+via+Graph+Neural+Networks&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Lin%2C+Weixuan&rft.au=Wu%2C+Di&rft.au=Boulet%2C+Benoit&rft.date=2021-11-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=12&rft.issue=6&rft.spage=5373&rft.epage=5384&rft_id=info:doi/10.1109%2FTSG.2021.3093515&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2021_3093515 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |