Large Incidence-free Sets in Geometries

Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are sets such that $(X \times Y) \cap I = \emptyset$. Let $\alpha(\Pi)$ denote this value. We concentrate on the case where $P$ is the point set of...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 19; no. 4
Main Authors De Winter, Stefaan, Schillewaert, Jeroen, Verstraete, Jacques
Format Journal Article
LanguageEnglish
Published 08.11.2012
Online AccessGet full text

Cover

Loading…
Abstract Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are sets such that $(X \times Y) \cap I = \emptyset$. Let $\alpha(\Pi)$ denote this value. We concentrate on the case where $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$. In the case that $\Pi$ is the projective plane $\mathsf{PG}(2,q)$, where $P$ is the set of points and $L$ is the set of lines of the projective plane, Haemers proved that maximal arcs in projective planes together with the set of lines not intersecting the maximal arc determine $\alpha(\mathsf{PG}(2,q))$ when $q$ is an even power of $2$. Therefore, in those cases,\[ \alpha(\Pi) = q(q - \sqrt{q} + 1)^2.\] We give both a short combinatorial proof and a linear algebraic proof of this result, and consider the analogous problem in generalized polygons. More generally, if $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$, where $1 \leq k \leq n - 1$, and $\Pi_q = (P,L,I)$, then we show as $q \rightarrow \infty$ that \[ \frac{1}{4}q^{(k + 2)(n - k)} \lesssim \alpha(\Pi) \lesssim q^{(k + 2)(n - k)}.\] The upper bounds are proved by combinatorial and spectral techniques. This leaves the open question as to the smallest possible value of $\alpha(\Pi)$ for each value of $k$. We prove that if for each $N \in \mathbb N$, $\Pi_N$ is a partial linear space with $N$ points and $N$ lines, then $\alpha(\Pi_N) \gtrsim \frac{1}{e}N^{3/2}$ as $N \rightarrow \infty$.
AbstractList Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are sets such that $(X \times Y) \cap I = \emptyset$. Let $\alpha(\Pi)$ denote this value. We concentrate on the case where $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$. In the case that $\Pi$ is the projective plane $\mathsf{PG}(2,q)$, where $P$ is the set of points and $L$ is the set of lines of the projective plane, Haemers proved that maximal arcs in projective planes together with the set of lines not intersecting the maximal arc determine $\alpha(\mathsf{PG}(2,q))$ when $q$ is an even power of $2$. Therefore, in those cases,\[ \alpha(\Pi) = q(q - \sqrt{q} + 1)^2.\] We give both a short combinatorial proof and a linear algebraic proof of this result, and consider the analogous problem in generalized polygons. More generally, if $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$, where $1 \leq k \leq n - 1$, and $\Pi_q = (P,L,I)$, then we show as $q \rightarrow \infty$ that \[ \frac{1}{4}q^{(k + 2)(n - k)} \lesssim \alpha(\Pi) \lesssim q^{(k + 2)(n - k)}.\] The upper bounds are proved by combinatorial and spectral techniques. This leaves the open question as to the smallest possible value of $\alpha(\Pi)$ for each value of $k$. We prove that if for each $N \in \mathbb N$, $\Pi_N$ is a partial linear space with $N$ points and $N$ lines, then $\alpha(\Pi_N) \gtrsim \frac{1}{e}N^{3/2}$ as $N \rightarrow \infty$.
Author Schillewaert, Jeroen
De Winter, Stefaan
Verstraete, Jacques
Author_xml – sequence: 1
  givenname: Stefaan
  surname: De Winter
  fullname: De Winter, Stefaan
– sequence: 2
  givenname: Jeroen
  surname: Schillewaert
  fullname: Schillewaert, Jeroen
– sequence: 3
  givenname: Jacques
  surname: Verstraete
  fullname: Verstraete, Jacques
BookMark eNpNj8tKAzEUQINUsK39h9mIq2huYh53KUXbwoALdT1ckxsZsRlJZuPfi4-Fq3NWB85KLMpUWIgNqCvjtXHXOhg4EUtQ3suA2i3--ZlYtfamFGhEuxSXPdVX7g4ljolLZJkrc_fIc-vG0u14OvJcR27n4jTTe-PNH9fi-f7uabuX_cPusL3tZdTBzzJmYkUq3uRkfYioswXDGJgAODlNzmcwyVqNOWmklJHRGSDKqMILmbW4-O3GOrVWOQ8fdTxS_RxADT93w_ed-QKlGEIl
CitedBy_id crossref_primary_10_1007_s00454_019_00117_7
crossref_primary_10_1145_3470865
crossref_primary_10_1137_16M1057656
crossref_primary_10_1016_j_ejc_2017_01_001
crossref_primary_10_1137_20M1379745
crossref_primary_10_1002_jcd_21925
crossref_primary_10_4153_S0008439521001004
crossref_primary_10_1017_S0963548321000249
crossref_primary_10_1137_19M1279903
crossref_primary_10_1016_j_jcta_2018_03_015
crossref_primary_10_1016_j_ejc_2018_04_010
crossref_primary_10_1112_blms_12446
crossref_primary_10_1016_j_disc_2012_11_016
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/2831
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_2831
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
C1A
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c287t-cfae0a0c4fd578c92f513e98ea11ed62a67f13d5529fd29adf9e9631aaf908ba3
ISSN 1077-8926
IngestDate Fri Aug 23 01:51:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c287t-cfae0a0c4fd578c92f513e98ea11ed62a67f13d5529fd29adf9e9631aaf908ba3
ParticipantIDs crossref_primary_10_37236_2831
PublicationCentury 2000
PublicationDate 2012-11-08
PublicationDateYYYYMMDD 2012-11-08
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-08
  day: 08
PublicationDecade 2010
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2012
SSID ssj0012995
Score 2.1470706
Snippet Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are...
SourceID crossref
SourceType Aggregation Database
Title Large Incidence-free Sets in Geometries
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gigiPvFZchA8RZPNq3sUqZZivbSF3sokmQVBU0kjggd_u7ObZ6Xg4xLCkk02-Xa_md3szMfYhQY2Dml8Q4Cm8ohNCIPQdDwHQktaUki1Djl49Htjtz_xJrWUnI4uycKr6GNpXMl_UKUywlVFyf4B2eqmVEDnhC8dCWE6_grjB7WNWw3xXBnUlCkijf5M73G9x9mLlsuaNx1Q1S26tfRNI3EENZBmyaCThtRq80i8kRTiHcMMJdS9aagCwZ_xHYqwnz6mszqwTC3EZSlgLr_Xh0gZoOYag811sF2TFq2AbJngRdLqJWUll4pGn3GXUbQTcC0iQ26NXdug8r_7N9NUbRikqYquOFXVVtkaJ1pRfDb47Fb_jMiwevkO07xd62yrfN61qtbwPBouxGiHbRe-v3GTA7nLVjDZY5uDKnHufJ9dakiNRUgNBanxlBg1pAdsfNcd3fbMQsvCjGhOmpmRBLTAilwZE0dGgkvPdlB0EGwbY5-DH0jbiT2PCxlzAbEUSNxoA0hhdUJwDlkrmSV4xAwPIyAWtUMLHVeiJAaOQHuuvu_FgXvM2uV7Tl_zlCXThe938tMFp2yj7gVnrJWlb3hOvlcWtvUn_wIKoTAz
link.rule.ids 315,783,787,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Incidence-free+Sets+in+Geometries&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=De+Winter%2C+Stefaan&rft.au=Schillewaert%2C+Jeroen&rft.au=Verstraete%2C+Jacques&rft.date=2012-11-08&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=19&rft.issue=4&rft_id=info:doi/10.37236%2F2831&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_2831
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon