Large Incidence-free Sets in Geometries
Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are sets such that $(X \times Y) \cap I = \emptyset$. Let $\alpha(\Pi)$ denote this value. We concentrate on the case where $P$ is the point set of...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 19; no. 4 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
08.11.2012
|
Online Access | Get full text |
Cover
Loading…
Abstract | Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are sets such that $(X \times Y) \cap I = \emptyset$. Let $\alpha(\Pi)$ denote this value. We concentrate on the case where $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$. In the case that $\Pi$ is the projective plane $\mathsf{PG}(2,q)$, where $P$ is the set of points and $L$ is the set of lines of the projective plane, Haemers proved that maximal arcs in projective planes together with the set of lines not intersecting the maximal arc determine $\alpha(\mathsf{PG}(2,q))$ when $q$ is an even power of $2$. Therefore, in those cases,\[ \alpha(\Pi) = q(q - \sqrt{q} + 1)^2.\] We give both a short combinatorial proof and a linear algebraic proof of this result, and consider the analogous problem in generalized polygons. More generally, if $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$, where $1 \leq k \leq n - 1$, and $\Pi_q = (P,L,I)$, then we show as $q \rightarrow \infty$ that \[ \frac{1}{4}q^{(k + 2)(n - k)} \lesssim \alpha(\Pi) \lesssim q^{(k + 2)(n - k)}.\] The upper bounds are proved by combinatorial and spectral techniques. This leaves the open question as to the smallest possible value of $\alpha(\Pi)$ for each value of $k$. We prove that if for each $N \in \mathbb N$, $\Pi_N$ is a partial linear space with $N$ points and $N$ lines, then $\alpha(\Pi_N) \gtrsim \frac{1}{e}N^{3/2}$ as $N \rightarrow \infty$. |
---|---|
AbstractList | Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are sets such that $(X \times Y) \cap I = \emptyset$. Let $\alpha(\Pi)$ denote this value. We concentrate on the case where $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$. In the case that $\Pi$ is the projective plane $\mathsf{PG}(2,q)$, where $P$ is the set of points and $L$ is the set of lines of the projective plane, Haemers proved that maximal arcs in projective planes together with the set of lines not intersecting the maximal arc determine $\alpha(\mathsf{PG}(2,q))$ when $q$ is an even power of $2$. Therefore, in those cases,\[ \alpha(\Pi) = q(q - \sqrt{q} + 1)^2.\] We give both a short combinatorial proof and a linear algebraic proof of this result, and consider the analogous problem in generalized polygons. More generally, if $P$ is the point set of $\mathsf{PG}(n,q)$ and $L$ is the set of $k$-spaces in $\mathsf{PG}(n,q)$, where $1 \leq k \leq n - 1$, and $\Pi_q = (P,L,I)$, then we show as $q \rightarrow \infty$ that \[ \frac{1}{4}q^{(k + 2)(n - k)} \lesssim \alpha(\Pi) \lesssim q^{(k + 2)(n - k)}.\] The upper bounds are proved by combinatorial and spectral techniques. This leaves the open question as to the smallest possible value of $\alpha(\Pi)$ for each value of $k$. We prove that if for each $N \in \mathbb N$, $\Pi_N$ is a partial linear space with $N$ points and $N$ lines, then $\alpha(\Pi_N) \gtrsim \frac{1}{e}N^{3/2}$ as $N \rightarrow \infty$. |
Author | Schillewaert, Jeroen De Winter, Stefaan Verstraete, Jacques |
Author_xml | – sequence: 1 givenname: Stefaan surname: De Winter fullname: De Winter, Stefaan – sequence: 2 givenname: Jeroen surname: Schillewaert fullname: Schillewaert, Jeroen – sequence: 3 givenname: Jacques surname: Verstraete fullname: Verstraete, Jacques |
BookMark | eNpNj8tKAzEUQINUsK39h9mIq2huYh53KUXbwoALdT1ckxsZsRlJZuPfi4-Fq3NWB85KLMpUWIgNqCvjtXHXOhg4EUtQ3suA2i3--ZlYtfamFGhEuxSXPdVX7g4ljolLZJkrc_fIc-vG0u14OvJcR27n4jTTe-PNH9fi-f7uabuX_cPusL3tZdTBzzJmYkUq3uRkfYioswXDGJgAODlNzmcwyVqNOWmklJHRGSDKqMILmbW4-O3GOrVWOQ8fdTxS_RxADT93w_ed-QKlGEIl |
CitedBy_id | crossref_primary_10_1007_s00454_019_00117_7 crossref_primary_10_1145_3470865 crossref_primary_10_1137_16M1057656 crossref_primary_10_1016_j_ejc_2017_01_001 crossref_primary_10_1137_20M1379745 crossref_primary_10_1002_jcd_21925 crossref_primary_10_4153_S0008439521001004 crossref_primary_10_1017_S0963548321000249 crossref_primary_10_1137_19M1279903 crossref_primary_10_1016_j_jcta_2018_03_015 crossref_primary_10_1016_j_ejc_2018_04_010 crossref_primary_10_1112_blms_12446 crossref_primary_10_1016_j_disc_2012_11_016 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.37236/2831 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1077-8926 |
ExternalDocumentID | 10_37236_2831 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAFWJ AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV C1A CITATION E3Z EBS EJD FRP GROUPED_DOAJ H13 KWQ M~E OK1 P2P REM RNS TR2 XSB |
ID | FETCH-LOGICAL-c287t-cfae0a0c4fd578c92f513e98ea11ed62a67f13d5529fd29adf9e9631aaf908ba3 |
ISSN | 1077-8926 |
IngestDate | Fri Aug 23 01:51:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c287t-cfae0a0c4fd578c92f513e98ea11ed62a67f13d5529fd29adf9e9631aaf908ba3 |
ParticipantIDs | crossref_primary_10_37236_2831 |
PublicationCentury | 2000 |
PublicationDate | 2012-11-08 |
PublicationDateYYYYMMDD | 2012-11-08 |
PublicationDate_xml | – month: 11 year: 2012 text: 2012-11-08 day: 08 |
PublicationDecade | 2010 |
PublicationTitle | The Electronic journal of combinatorics |
PublicationYear | 2012 |
SSID | ssj0012995 |
Score | 2.1470706 |
Snippet | Let $\Pi = (P,L,I)$ denote a rank two geometry. In this paper, we are interested in the largest value of $|X||Y|$ where $X \subset P$ and $Y \subset L$ are... |
SourceID | crossref |
SourceType | Aggregation Database |
Title | Large Incidence-free Sets in Geometries |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60gigiPvFZchA8RZPNq3sUqZZivbSF3sokmQVBU0kjggd_u7ObZ6Xg4xLCkk02-Xa_md3szMfYhQY2Dml8Q4Cm8ohNCIPQdDwHQktaUki1Djl49Htjtz_xJrWUnI4uycKr6GNpXMl_UKUywlVFyf4B2eqmVEDnhC8dCWE6_grjB7WNWw3xXBnUlCkijf5M73G9x9mLlsuaNx1Q1S26tfRNI3EENZBmyaCThtRq80i8kRTiHcMMJdS9aagCwZ_xHYqwnz6mszqwTC3EZSlgLr_Xh0gZoOYag811sF2TFq2AbJngRdLqJWUll4pGn3GXUbQTcC0iQ26NXdug8r_7N9NUbRikqYquOFXVVtkaJ1pRfDb47Fb_jMiwevkO07xd62yrfN61qtbwPBouxGiHbRe-v3GTA7nLVjDZY5uDKnHufJ9dakiNRUgNBanxlBg1pAdsfNcd3fbMQsvCjGhOmpmRBLTAilwZE0dGgkvPdlB0EGwbY5-DH0jbiT2PCxlzAbEUSNxoA0hhdUJwDlkrmSV4xAwPIyAWtUMLHVeiJAaOQHuuvu_FgXvM2uV7Tl_zlCXThe938tMFp2yj7gVnrJWlb3hOvlcWtvUn_wIKoTAz |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+Incidence-free+Sets+in+Geometries&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=De+Winter%2C+Stefaan&rft.au=Schillewaert%2C+Jeroen&rft.au=Verstraete%2C+Jacques&rft.date=2012-11-08&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=19&rft.issue=4&rft_id=info:doi/10.37236%2F2831&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_2831 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon |