An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries
Practical lithium–sulfur batteries are severely hindered by parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates. The solvation structure of LiPSs is pivotal in dictating the reaction kinetics. Herein, an encapsulating LiPS electrolyte (EPSE) is propo...
Saved in:
Published in | Chem Vol. 8; no. 4; pp. 1083 - 1098 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
14.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Practical lithium–sulfur batteries are severely hindered by parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates. The solvation structure of LiPSs is pivotal in dictating the reaction kinetics. Herein, an encapsulating LiPS electrolyte (EPSE) is proposed to suppress parasitic reactions based on a nano-heterogeneous solvation structure design of LiPSs. In EPSE, with di-isopropyl sulfide (DIPS) as a co-solvent, soluble LiPSs are encapsulated into two concentric solvent shells with different solvating power and reduction stability. Reduction-stable DIPS in the outer solvent shell significantly suppresses the parasitic reactions between encapsulated LiPSs and lithium metal. A 1.2 Ah pouch cell under demanding conditions undergoes 103 cycles in the EPSE. This work provides two crucial criteria for constructing EPSE, that is, poor solvating power and high reduction stability of the solvent in outer solvent shell, and it opens up new frontiers in modulating the solvation structure of LiPSs toward long-cycling lithium–sulfur batteries.
[Display omitted]
•A nano-heterogeneous solvation structure of lithium polysulfides is investigated•An encapsulating LiPS electrolyte (EPSE) is designed for lithium–sulfur batteries•A 1.2 Ah pouch cell under demanding conditions undergoes 103 cycles in an EPSE•Two crucial criteria for constructing the EPSE are proposed
The pursuit of a zero-carbon and wireless society necessitates the development of high-energy-density and long-cycling batteries as the power source for portable electronics, electric vehicles, and so on. The lithium–sulfur battery is a promising high-energy-density battery system. However, parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates severely hinder the lifespans of practical lithium–sulfur batteries, and rational electrolyte design is imperative. Herein, an encapsulating LiPS electrolyte (EPSE) is designed based on an insightful understanding of the solvation structure of LiPSs, which mitigates the parasitic reaction kinetics and significantly improves the cycle life of practical lithium–sulfur batteries. This opens up new frontiers in electrolyte design toward long-cycling lithium–sulfur batteries.
An encapsulating LiPS electrolyte (EPSE) is proposed for suppression of parasitic reactions based on a nano-heterogeneous solvation structure design of LiPSs. In the EPSE with di-isopropyl sulfide (DIPS) as a co-solvent, soluble LiPSs are encapsulated into two concentric solvent shells with different solvating power and reduction stability. Reduction-stable DIPS in the outer solvent shell significantly suppresses the parasitic reactions between encapsulated LiPSs and lithium metal. This work opens up new frontiers in electrolyte engineering toward long-cycling lithium–sulfur batteries. |
---|---|
AbstractList | Practical lithium–sulfur batteries are severely hindered by parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates. The solvation structure of LiPSs is pivotal in dictating the reaction kinetics. Herein, an encapsulating LiPS electrolyte (EPSE) is proposed to suppress parasitic reactions based on a nano-heterogeneous solvation structure design of LiPSs. In EPSE, with di-isopropyl sulfide (DIPS) as a co-solvent, soluble LiPSs are encapsulated into two concentric solvent shells with different solvating power and reduction stability. Reduction-stable DIPS in the outer solvent shell significantly suppresses the parasitic reactions between encapsulated LiPSs and lithium metal. A 1.2 Ah pouch cell under demanding conditions undergoes 103 cycles in the EPSE. This work provides two crucial criteria for constructing EPSE, that is, poor solvating power and high reduction stability of the solvent in outer solvent shell, and it opens up new frontiers in modulating the solvation structure of LiPSs toward long-cycling lithium–sulfur batteries.
[Display omitted]
•A nano-heterogeneous solvation structure of lithium polysulfides is investigated•An encapsulating LiPS electrolyte (EPSE) is designed for lithium–sulfur batteries•A 1.2 Ah pouch cell under demanding conditions undergoes 103 cycles in an EPSE•Two crucial criteria for constructing the EPSE are proposed
The pursuit of a zero-carbon and wireless society necessitates the development of high-energy-density and long-cycling batteries as the power source for portable electronics, electric vehicles, and so on. The lithium–sulfur battery is a promising high-energy-density battery system. However, parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates severely hinder the lifespans of practical lithium–sulfur batteries, and rational electrolyte design is imperative. Herein, an encapsulating LiPS electrolyte (EPSE) is designed based on an insightful understanding of the solvation structure of LiPSs, which mitigates the parasitic reaction kinetics and significantly improves the cycle life of practical lithium–sulfur batteries. This opens up new frontiers in electrolyte design toward long-cycling lithium–sulfur batteries.
An encapsulating LiPS electrolyte (EPSE) is proposed for suppression of parasitic reactions based on a nano-heterogeneous solvation structure design of LiPSs. In the EPSE with di-isopropyl sulfide (DIPS) as a co-solvent, soluble LiPSs are encapsulated into two concentric solvent shells with different solvating power and reduction stability. Reduction-stable DIPS in the outer solvent shell significantly suppresses the parasitic reactions between encapsulated LiPSs and lithium metal. This work opens up new frontiers in electrolyte engineering toward long-cycling lithium–sulfur batteries. |
Author | Zhang, Xue-Qiang Shi, Peng Hou, Li-Peng Li, Bo-Quan Zhang, Qiang Yao, Nan Jin, Cheng-Bin Huang, Jia-Qi Chen, Xiang |
Author_xml | – sequence: 1 givenname: Li-Peng surname: Hou fullname: Hou, Li-Peng organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China – sequence: 2 givenname: Xue-Qiang surname: Zhang fullname: Zhang, Xue-Qiang email: zhangxq@bit.edu.cn organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P.R. China – sequence: 3 givenname: Nan surname: Yao fullname: Yao, Nan organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China – sequence: 4 givenname: Xiang surname: Chen fullname: Chen, Xiang organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China – sequence: 5 givenname: Bo-Quan surname: Li fullname: Li, Bo-Quan organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P.R. China – sequence: 6 givenname: Peng surname: Shi fullname: Shi, Peng organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China – sequence: 7 givenname: Cheng-Bin surname: Jin fullname: Jin, Cheng-Bin organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China – sequence: 8 givenname: Jia-Qi surname: Huang fullname: Huang, Jia-Qi organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P.R. China – sequence: 9 givenname: Qiang surname: Zhang fullname: Zhang, Qiang email: zhang-qiang@mails.tsinghua.edu.cn organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China |
BookMark | eNqFkMtKAzEYhYNUsNa-gYt5gRlzm5sLoRRvUHCjC1chk_yxKdOZIUmF7nwH39AnMUMVxIWu_p_DOQfOd4omXd8BQucEZwST4mKTqTVsB5dRTElGaIYpO0JTynOS1rTmkx__CZp7v8EYk4qSMsdT9LzoEuiUHPyulcF2L0lrw9rutunQt_soGqshgRZUcFEIkJjeJYOTKlgl22_3x9v76N25pJEhgLPgz9Cxka2H-dedoaeb68flXbp6uL1fLlapolUZ0sYUhWRMgSxyDho3jNNcUl0qBiWudVlQYiRn2tQaWF2VDaPM8KIpG14RStkMXR56leu9d2CEsiFO6bvgpG0FwWLkJDbiwEmMnAShInKKYf4rPDi7lW7_X-zqEIM47NWCE17ZiBG0dZGU0L39u-ATdpGJ1Q |
CitedBy_id | crossref_primary_10_1016_j_jpowsour_2025_236682 crossref_primary_10_1016_j_jorganchem_2025_123531 crossref_primary_10_1002_slct_202301207 crossref_primary_10_1016_j_jechem_2023_01_035 crossref_primary_10_1515_revce_2023_0059 crossref_primary_10_1002_ange_202318785 crossref_primary_10_1002_ange_202400343 crossref_primary_10_1016_j_matlet_2024_137835 crossref_primary_10_1002_batt_202400544 crossref_primary_10_1021_acsenergylett_4c03177 crossref_primary_10_1002_aenm_202500026 crossref_primary_10_1021_acsami_4c12880 crossref_primary_10_1002_ange_202307802 crossref_primary_10_1016_j_partic_2024_01_011 crossref_primary_10_1016_j_cej_2023_147315 crossref_primary_10_1007_s43938_024_00045_w crossref_primary_10_1002_anie_202201406 crossref_primary_10_1039_D2NR01815B crossref_primary_10_1002_smtd_202300662 crossref_primary_10_1002_anie_202423046 crossref_primary_10_1021_jacs_4c02603 crossref_primary_10_1021_acsenergylett_4c00519 crossref_primary_10_1002_smll_202406972 crossref_primary_10_1039_D3TA02347H crossref_primary_10_1021_acsaem_2c03306 crossref_primary_10_1021_acs_chemrev_1c00904 crossref_primary_10_1021_acs_chemrev_2c00739 crossref_primary_10_1021_acsenergylett_4c02535 crossref_primary_10_1016_j_est_2023_110087 crossref_primary_10_1002_advs_202301006 crossref_primary_10_1002_eem2_12688 crossref_primary_10_1021_acsami_2c12114 crossref_primary_10_1038_s44286_024_00115_4 crossref_primary_10_1002_anie_202303363 crossref_primary_10_1002_anie_202307802 crossref_primary_10_1016_j_ensm_2025_104009 crossref_primary_10_1002_ange_202423046 crossref_primary_10_1002_ange_202201406 crossref_primary_10_1016_j_ensm_2023_03_020 crossref_primary_10_1021_jacs_4c09363 crossref_primary_10_1002_anie_202318785 crossref_primary_10_1021_jacs_3c10260 crossref_primary_10_1002_advs_202305315 crossref_primary_10_1039_D3CS00151B crossref_primary_10_1002_ange_202309968 crossref_primary_10_1002_adfm_202304619 crossref_primary_10_1002_aenm_202402609 crossref_primary_10_1007_s41918_023_00188_4 crossref_primary_10_1016_j_ensm_2024_103664 crossref_primary_10_1016_j_nxmate_2024_100395 crossref_primary_10_1039_D3EE04183B crossref_primary_10_1021_acsami_2c18594 crossref_primary_10_1002_adma_202201555 crossref_primary_10_1002_sus2_191 crossref_primary_10_1080_15567036_2023_2259836 crossref_primary_10_1002_smll_202405148 crossref_primary_10_1016_j_chempr_2022_07_004 crossref_primary_10_1002_advs_202415436 crossref_primary_10_1002_cjoc_202300638 crossref_primary_10_1016_j_cclet_2022_108033 crossref_primary_10_1016_j_jechem_2022_09_029 crossref_primary_10_1002_anie_202309968 crossref_primary_10_1002_adma_202401263 crossref_primary_10_1002_aenm_202402996 crossref_primary_10_1021_acsami_2c06934 crossref_primary_10_1016_j_mser_2025_100955 crossref_primary_10_1002_aenm_202402506 crossref_primary_10_1002_smll_202301755 crossref_primary_10_1039_D4GC05507A crossref_primary_10_1016_j_jechem_2022_05_017 crossref_primary_10_1002_batt_202200457 crossref_primary_10_1002_ange_202303363 crossref_primary_10_1016_j_jechem_2024_01_072 crossref_primary_10_1021_prechem_3c00030 crossref_primary_10_1039_D3TA00096F crossref_primary_10_1002_batt_202300324 crossref_primary_10_1038_s41467_023_44527_x crossref_primary_10_1016_j_apsusc_2023_159115 crossref_primary_10_1002_adma_202205284 crossref_primary_10_1016_j_apenergy_2024_125162 crossref_primary_10_1002_adfm_202304541 crossref_primary_10_1002_aenm_202403828 crossref_primary_10_1002_cey2_283 crossref_primary_10_1016_j_jpowsour_2022_232144 crossref_primary_10_1002_anie_202400343 crossref_primary_10_1002_ente_202201110 crossref_primary_10_1021_acs_chemrev_3c00919 crossref_primary_10_1002_adma_202411197 crossref_primary_10_1016_j_cclet_2025_110862 crossref_primary_10_1002_adfm_202211818 crossref_primary_10_1002_marc_202200760 crossref_primary_10_2139_ssrn_4133339 crossref_primary_10_1016_j_jallcom_2024_174681 crossref_primary_10_1016_j_oneear_2022_02_009 crossref_primary_10_1002_adma_202409521 crossref_primary_10_1016_j_ensm_2022_10_053 crossref_primary_10_1039_D3TA03366J crossref_primary_10_1016_j_jcis_2023_12_057 crossref_primary_10_1016_j_jechem_2022_06_035 crossref_primary_10_1021_acsnano_4c05002 crossref_primary_10_1016_j_cej_2025_159330 crossref_primary_10_1016_j_ensm_2022_07_035 crossref_primary_10_1360_SSC_2022_0181 crossref_primary_10_1021_acsami_3c00977 crossref_primary_10_1002_smll_202206375 crossref_primary_10_1002_adfm_202312550 crossref_primary_10_1016_j_apsusc_2022_154704 crossref_primary_10_1002_aenm_202302378 crossref_primary_10_1039_D3EE01841E crossref_primary_10_1016_j_nantod_2024_102393 crossref_primary_10_1016_j_ensm_2023_103040 crossref_primary_10_1016_j_cej_2024_149535 crossref_primary_10_1021_acsenergylett_3c00826 crossref_primary_10_1002_batt_202400155 crossref_primary_10_1021_acssuschemeng_4c10154 crossref_primary_10_1016_j_jechem_2022_08_014 crossref_primary_10_1016_j_joule_2024_03_021 crossref_primary_10_1016_j_cej_2024_155807 crossref_primary_10_1021_acs_nanolett_2c02258 crossref_primary_10_1039_D2TA09295F |
Cites_doi | 10.1002/aenm.201802207 10.1002/anie.202103470 10.1107/S0021889811038970 10.1038/s41560-018-0214-0 10.1002/jcc.22885 10.1016/j.mattod.2020.10.021 10.1021/acs.chemmater.8b03944 10.1016/j.electacta.2012.03.081 10.1002/cphc.200700552 10.1038/nmat3191 10.1016/j.joule.2020.01.001 10.1016/j.jechem.2021.07.010 10.1002/anie.202108882 10.1016/j.joule.2020.02.006 10.1016/j.ensm.2016.09.003 10.1021/acs.jpcc.8b10175 10.1002/aenm.201401801 10.1038/s41560-020-0648-z 10.1016/0263-7855(96)00018-5 10.1149/1945-7111/ab7a81 10.1080/00268978400101201 10.1021/acs.chemmater.7b00068 10.1021/acscentsci.0c00449 10.1021/acs.chemmater.7b02105 10.1039/C8CS00826D 10.1002/anie.202007159 10.1006/jcph.1995.1039 10.1002/aenm.202100332 10.1021/acs.jpclett.6b00228 10.1039/C6CC05881G 10.1021/ac2032244 10.1093/nar/gkx312 10.1021/jacs.6b12358 10.1021/ja308170k 10.1149/2.0981714jes 10.1021/acsenergylett.7b00886 10.1038/ncomms2513 10.1149/2.111308jes 10.1002/anie.201810132 10.1038/nenergy.2016.114 10.1002/aenm.201803096 10.1021/acs.chemmater.9b03885 10.1039/D0EE03181J 10.1021/ct600252r 10.1063/1.328693 10.1039/C6CP06889H 10.1002/adma.201901125 10.1016/j.electacta.2004.01.093 10.1016/j.ensm.2017.01.003 10.1038/s41560-021-00852-3 10.1002/jcc.21224 10.1103/PhysRevA.31.1695 10.1038/ncomms2163 10.1021/cr500062v 10.1149/1.3148721 10.1039/D0EE02088E 10.1149/1.1806394 10.1021/acs.nanolett.5b04166 10.1016/j.joule.2021.06.009 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. |
Copyright_xml | – notice: 2021 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.chempr.2021.12.023 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2451-9294 |
EndPage | 1098 |
ExternalDocumentID | 10_1016_j_chempr_2021_12_023 S2451929421006549 |
GroupedDBID | 0R~ AACTN AAEDW AALRI AAVLU AAXUO ABMAC ABVKL ACGFS ADJPV AFTJW ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB O9- OK1 AAMRU AAYWO AAYXX ABDGV ABJNI ACVFH ADBBV ADCNI ADVLN AEUPX AFPUW AGCQF AIGII AITUG AKAPO AKBMS AKRWK AKYEP APXCP CITATION EJD SSZ |
ID | FETCH-LOGICAL-c287t-bf66a33cea654ed0b3425a2d7c3e709d7621fa43df9de3987b323f46b7b481223 |
ISSN | 2451-9294 |
IngestDate | Thu Apr 24 22:57:17 EDT 2025 Tue Jul 01 01:02:49 EDT 2025 Thu Jul 20 20:09:11 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | encapsulating lithium polysulfide electrolyte solvent shell solvation structure di-isopropyl sulfide SDG7: Affordable and clean energy lithium–sulfur battery |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c287t-bf66a33cea654ed0b3425a2d7c3e709d7621fa43df9de3987b323f46b7b481223 |
PageCount | 16 |
ParticipantIDs | crossref_citationtrail_10_1016_j_chempr_2021_12_023 crossref_primary_10_1016_j_chempr_2021_12_023 elsevier_sciencedirect_doi_10_1016_j_chempr_2021_12_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-14 |
PublicationDateYYYYMMDD | 2022-04-14 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | Chem |
PublicationYear | 2022 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Tikekar, Choudhury, Tu, Archer (bib4) 2016; 1 Bruce, Freunberger, Hardwick, Tarascon (bib1) 2011; 11 Peng, Huang, Liu, Cheng, Xu, Zhao, Wei, Zhang (bib25) 2017; 139 Yanagi, Ueno, Ando, Li, Matsumae, Liu, Dokko, Watanabe (bib24) 2020; 167 Chen, Hou, Li, Yan, Zhu, Guan (bib42) 2017; 8 Li, Zhou, Wang, Lu (bib28) 2019; 9 Bhargav, He, Gupta, Manthiram (bib10) 2020; 4 Zhao, Li, Zhang, Huang, Zhang (bib12) 2020; 6 Steudel, Chivers (bib26) 2019; 48 Han, Chen, Cao, Rajput, Murugesan, Shi, Pan, Zhang, Liu, Persson, Mueller (bib38) 2017; 29 Xiao, Li, Bi, Cai, Dunn, Glossmann, Liu, Osaka, Sugiura, Wu (bib7) 2020; 5 Dodda, Cabeza de Vaca, Tirado-Rives, Jorgensen (bib50) 2017; 45 Zhang, Heim, Song, Bartlett, Li (bib6) 2017; 2 Köddermann, Paschek, Ludwig (bib53) 2007; 8 Plimpton (bib49) 1995; 117 Hoover (bib58) 1985; 31 Shi, Li, Sun, Chen (bib16) 2021; 11 Pascal, Wujcik, Wang, Balsara, Prendergast (bib31) 2017; 19 Cheng, Yan, Huang, Li, Zhu, Zhao, Zhang, Zhu, Yang, Zhang (bib5) 2017; 6 Xin, Gu, Zhao, Yin, Zhou, Guo, Wan (bib13) 2012; 134 Dörfler, Althues, Härtel, Abendroth, Schumm, Kaskel (bib11) 2020; 4 Zhao, Xu, Zhao, Amine (bib22) 2020; 59 Zhang, Peng, Zhao, Chen, Zhao, Li (bib34) 2018; 57 Dibden, Smith, Zhou, Garcia-Araez, Owen (bib35) 2016; 52 Liu, Elias, Meng, Aurbach, Zou, Xia, Pang (bib19) 2021; 5 Suo, Hu, Li, Armand, Chen (bib20) 2013; 4 Niu, Liu, Lochala, Anderson, Cao, Gross, Xu, Zhang, Whittingham, Xiao, Liu (bib47) 2021; 6 Park, Ronneburg, Risse, Ballauff, Kanduč, Dzubiella (bib30) 2019; 123 Ye, Zhao, Hou, Chen, Zhang, Li (bib46) 2022; 66 Mikhaylik, Akridge (bib3) 2004; 151 Andersen, Rajput, Han, Pan, Govind, Persson, Mueller, Murugesan (bib29) 2019; 31 Li, Jiang, Lai, Zhao, Lu (bib27) 2019; 31 Dokko, Tachikawa, Yamauchi, Tsuchiya, Yamazaki, Takashima, Park, Ueno, Seki, Serizawa, Watanabe (bib23) 2013; 160 Kim, Jung, Lim (bib39) 2004; 50 Humphrey, Dalke, Schulten (bib56) 1996; 14 Hou, Zhang, Li, Zhang (bib8) 2021; 45 Gupta, Bhargav, Manthiram (bib9) 2019; 9 Chung, Manthiram (bib40) 2019; 31 Zheng, Ye, Guo (bib17) 2021; 14 Rajput, Murugesan, Shin, Han, Lau, Chen, Liu, Curtiss, Mueller, Persson (bib32) 2017; 29 Zou, Lu (bib37) 2016; 7 Zhang, Liu, Wang, Zhao, Luo, Yu (bib18) 2021; 60 Aurbach, Pollak, Elazari, Salitra, Kelley, Affinito (bib43) 2009; 156 Manthiram, Fu, Chung, Zu, Su (bib2) 2014; 114 Cuisinier, Hart, Balasubramanian, Garsuch, Nazar (bib33) 2015; 5 Weller, Thieme, Härtel, Althues, Kaskel (bib45) 2017; 164 Jensen, Jorgensen (bib52) 2006; 2 Su, Manthiram (bib14) 2012; 3 Momma, Izumi (bib55) 2011; 44 Lu, Chen (bib51) 2012; 33 Barchasz, Molton, Duboc, Leprêtre, Patoux, Alloin (bib36) 2012; 84 Zhang, Jin, Nan, Hou, Li, Chen (bib41) 2021; 60 Parrinello, Rahman (bib57) 1981; 52 Shi, Bak, Shadike, Wang, Niu, Northrup, Lee, Baranovskiy, Anderson, Qin (bib48) 2020; 13 Pang, Shyamsunder, Narayanan, Kwok, Curtiss, Nazar (bib21) 2018; 3 Yuan, Peng, Hou, Huang, Chen, Wang, Cheng, Wei, Zhang (bib15) 2016; 16 Martínez, Andrade, Birgin, Martínez (bib54) 2009; 30 Nosé (bib59) 1984; 52 Zhang (bib44) 2012; 70 Ye (10.1016/j.chempr.2021.12.023_bib46) 2022; 66 Lu (10.1016/j.chempr.2021.12.023_bib51) 2012; 33 Dibden (10.1016/j.chempr.2021.12.023_bib35) 2016; 52 Zhang (10.1016/j.chempr.2021.12.023_bib44) 2012; 70 Gupta (10.1016/j.chempr.2021.12.023_bib9) 2019; 9 Zhao (10.1016/j.chempr.2021.12.023_bib12) 2020; 6 Niu (10.1016/j.chempr.2021.12.023_bib47) 2021; 6 Chen (10.1016/j.chempr.2021.12.023_bib42) 2017; 8 Manthiram (10.1016/j.chempr.2021.12.023_bib2) 2014; 114 Bhargav (10.1016/j.chempr.2021.12.023_bib10) 2020; 4 Xin (10.1016/j.chempr.2021.12.023_bib13) 2012; 134 Tikekar (10.1016/j.chempr.2021.12.023_bib4) 2016; 1 Jensen (10.1016/j.chempr.2021.12.023_bib52) 2006; 2 Martínez (10.1016/j.chempr.2021.12.023_bib54) 2009; 30 Zhang (10.1016/j.chempr.2021.12.023_bib18) 2021; 60 Pang (10.1016/j.chempr.2021.12.023_bib21) 2018; 3 Liu (10.1016/j.chempr.2021.12.023_bib19) 2021; 5 Li (10.1016/j.chempr.2021.12.023_bib28) 2019; 9 Kim (10.1016/j.chempr.2021.12.023_bib39) 2004; 50 Plimpton (10.1016/j.chempr.2021.12.023_bib49) 1995; 117 Zhang (10.1016/j.chempr.2021.12.023_bib34) 2018; 57 Suo (10.1016/j.chempr.2021.12.023_bib20) 2013; 4 Rajput (10.1016/j.chempr.2021.12.023_bib32) 2017; 29 Hoover (10.1016/j.chempr.2021.12.023_bib58) 1985; 31 Chung (10.1016/j.chempr.2021.12.023_bib40) 2019; 31 Steudel (10.1016/j.chempr.2021.12.023_bib26) 2019; 48 Cheng (10.1016/j.chempr.2021.12.023_bib5) 2017; 6 Zou (10.1016/j.chempr.2021.12.023_bib37) 2016; 7 Dörfler (10.1016/j.chempr.2021.12.023_bib11) 2020; 4 Dokko (10.1016/j.chempr.2021.12.023_bib23) 2013; 160 Zhang (10.1016/j.chempr.2021.12.023_bib6) 2017; 2 Andersen (10.1016/j.chempr.2021.12.023_bib29) 2019; 31 Peng (10.1016/j.chempr.2021.12.023_bib25) 2017; 139 Köddermann (10.1016/j.chempr.2021.12.023_bib53) 2007; 8 Zhang (10.1016/j.chempr.2021.12.023_bib41) 2021; 60 Dodda (10.1016/j.chempr.2021.12.023_bib50) 2017; 45 Shi (10.1016/j.chempr.2021.12.023_bib48) 2020; 13 Hou (10.1016/j.chempr.2021.12.023_bib8) 2021; 45 Zheng (10.1016/j.chempr.2021.12.023_bib17) 2021; 14 Humphrey (10.1016/j.chempr.2021.12.023_bib56) 1996; 14 Aurbach (10.1016/j.chempr.2021.12.023_bib43) 2009; 156 Barchasz (10.1016/j.chempr.2021.12.023_bib36) 2012; 84 Mikhaylik (10.1016/j.chempr.2021.12.023_bib3) 2004; 151 Xiao (10.1016/j.chempr.2021.12.023_bib7) 2020; 5 Yuan (10.1016/j.chempr.2021.12.023_bib15) 2016; 16 Parrinello (10.1016/j.chempr.2021.12.023_bib57) 1981; 52 Han (10.1016/j.chempr.2021.12.023_bib38) 2017; 29 Pascal (10.1016/j.chempr.2021.12.023_bib31) 2017; 19 Momma (10.1016/j.chempr.2021.12.023_bib55) 2011; 44 Bruce (10.1016/j.chempr.2021.12.023_bib1) 2011; 11 Zhao (10.1016/j.chempr.2021.12.023_bib22) 2020; 59 Shi (10.1016/j.chempr.2021.12.023_bib16) 2021; 11 Su (10.1016/j.chempr.2021.12.023_bib14) 2012; 3 Li (10.1016/j.chempr.2021.12.023_bib27) 2019; 31 Nosé (10.1016/j.chempr.2021.12.023_bib59) 1984; 52 Yanagi (10.1016/j.chempr.2021.12.023_bib24) 2020; 167 Park (10.1016/j.chempr.2021.12.023_bib30) 2019; 123 Cuisinier (10.1016/j.chempr.2021.12.023_bib33) 2015; 5 Weller (10.1016/j.chempr.2021.12.023_bib45) 2017; 164 |
References_xml | – volume: 5 start-page: 2323 year: 2021 end-page: 2364 ident: bib19 article-title: Electrolyte solutions design for lithium-sulfur batteries publication-title: Joule – volume: 70 start-page: 344 year: 2012 end-page: 348 ident: bib44 article-title: Role of LiNO publication-title: Electrochim. Acta – volume: 31 start-page: 2308 year: 2019 end-page: 2319 ident: bib29 article-title: Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane publication-title: Chem. Mater. – volume: 5 start-page: 1401801 year: 2015 ident: bib33 article-title: Radical or not radical: revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes publication-title: Adv. Energy Mater. – volume: 29 start-page: 9023 year: 2017 end-page: 9029 ident: bib38 article-title: Effects of anion mobility on electrochemical behaviors of lithium-sulfur batteries publication-title: Chem. Mater. – volume: 45 start-page: 62 year: 2021 end-page: 76 ident: bib8 article-title: Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries publication-title: Mater. Today – volume: 139 start-page: 8458 year: 2017 end-page: 8466 ident: bib25 article-title: Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 10186 year: 2019 end-page: 10196 ident: bib27 article-title: Designing effective solvent–catalyst interface for catalytic sulfur conversion in lithium-sulfur batteries publication-title: Chem. Mater. – volume: 164 start-page: A3766 year: 2017 end-page: A3771 ident: bib45 article-title: Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application publication-title: J. Electrochem. Soc. – volume: 6 start-page: 1095 year: 2020 end-page: 1104 ident: bib12 article-title: A perspective toward practical lithium-sulfur batteries publication-title: ACS Cent. Sci. – volume: 1 start-page: 16114 year: 2016 ident: bib4 article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries publication-title: Nat. Energy – volume: 114 start-page: 11751 year: 2014 end-page: 11787 ident: bib2 article-title: Rechargeable lithium-sulfur batteries publication-title: Chem. Rev. – volume: 14 start-page: 1835 year: 2021 end-page: 1853 ident: bib17 article-title: Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries publication-title: Energy Environ. Sci. – volume: 31 start-page: 1901125 year: 2019 ident: bib40 article-title: Current status and future prospects of metal–sulfur batteries publication-title: Adv. Mater. – volume: 7 start-page: 1518 year: 2016 end-page: 1525 ident: bib37 article-title: Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study publication-title: J. Phys. Chem. Lett. – volume: 156 start-page: A694 year: 2009 end-page: A702 ident: bib43 article-title: On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries publication-title: J. Electrochem. Soc. – volume: 4 start-page: 539 year: 2020 end-page: 554 ident: bib11 article-title: Challenges and key parameters of lithium-sulfur batteries on pouch cell level publication-title: Joule – volume: 31 start-page: 1695 year: 1985 end-page: 1697 ident: bib58 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys. Rev. A Gen. Phys. – volume: 8 start-page: 194 year: 2017 end-page: 201 ident: bib42 article-title: Towards stable lithium-sulfur batteries: mechanistic insights into electrolyte decomposition on lithium metal anode publication-title: Energy Storage Mater. – volume: 11 start-page: 19 year: 2011 end-page: 29 ident: bib1 article-title: Li–O publication-title: Nat. Mater. – volume: 19 start-page: 1441 year: 2017 end-page: 1448 ident: bib31 article-title: Thermodynamic origins of the solvent-dependent stability of lithium polysulfides from first principles publication-title: Phys. Chem. Chem. Phys. – volume: 50 start-page: 889 year: 2004 end-page: 892 ident: bib39 article-title: The effect of solvent component on the discharge performance of lithium-sulfur cell containing various organic electrolytes publication-title: Electrochim. Acta – volume: 151 start-page: A1969 year: 2004 end-page: A1976 ident: bib3 article-title: Polysulfide shuttle study in the Li/S battery system publication-title: J. Electrochem. Soc. – volume: 6 start-page: 723 year: 2021 end-page: 732 ident: bib47 article-title: Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries publication-title: Nat. Energy – volume: 52 start-page: 7182 year: 1981 end-page: 7190 ident: bib57 article-title: Polymorphic transitions in single crystals: A new molecular dynamics method publication-title: J. Appl. Phys. – volume: 59 start-page: 17634 year: 2020 end-page: 17640 ident: bib22 article-title: Beyond the polysulfide shuttle and lithium dendrite formation: addressing the sluggish sulfur redox kinetics for practical high-energy Li–S batteries publication-title: Angew. Chem. Int. Ed. – volume: 9 start-page: 1803096 year: 2019 ident: bib9 article-title: Highly solvating electrolytes for lithium-sulfur batteries publication-title: Adv. Energy Mater. – volume: 52 start-page: 12885 year: 2016 end-page: 12888 ident: bib35 article-title: Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram publication-title: Chem. Commun. – volume: 11 start-page: 2100332 year: 2021 ident: bib16 article-title: Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives publication-title: Adv. Energy Mater. – volume: 29 start-page: 3375 year: 2017 end-page: 3379 ident: bib32 article-title: Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions publication-title: Chem. Mater. – volume: 60 start-page: 26622 year: 2021 end-page: 26629 ident: bib18 article-title: Engineering oversaturated Fe-N publication-title: Angew. Chem. Int. Ed. Engl. – volume: 3 start-page: 1166 year: 2012 ident: bib14 article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer publication-title: Nat. Commun. – volume: 84 start-page: 3973 year: 2012 end-page: 3980 ident: bib36 article-title: Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification publication-title: Anal. Chem. – volume: 16 start-page: 519 year: 2016 end-page: 527 ident: bib15 article-title: Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts publication-title: Nano Lett – volume: 44 start-page: 1272 year: 2011 end-page: 1276 ident: bib55 article-title: Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data publication-title: J. Appl. Crystallogr. – volume: 134 start-page: 18510 year: 2012 end-page: 18513 ident: bib13 article-title: Smaller sulfur molecules promise better lithium-sulfur batteries publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 783 year: 2018 end-page: 791 ident: bib21 article-title: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries publication-title: Nat. Energy – volume: 57 start-page: 16732 year: 2018 end-page: 16736 ident: bib34 article-title: The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 2696 year: 2017 end-page: 2705 ident: bib6 article-title: New insights into mossy Li induced anode degradation and its formation mechanism in Li–S batteries publication-title: ACS Energy Lett – volume: 33 start-page: 580 year: 2012 end-page: 592 ident: bib51 article-title: Multiwfn: A multifunctional wavefunction analyzer publication-title: J. Comput. Chem. – volume: 6 start-page: 18 year: 2017 end-page: 25 ident: bib5 article-title: The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection publication-title: Energy Storage Mater – volume: 30 start-page: 2157 year: 2009 end-page: 2164 ident: bib54 article-title: Packmol: A package for building initial configurations for molecular dynamics simulations publication-title: J. Comput. Chem. – volume: 9 start-page: 1802207 year: 2019 ident: bib28 article-title: Solvent-mediated Li publication-title: Adv. Energy Mater. – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: bib49 article-title: Fast parallel algorithms for short-range molecular-dynamics publication-title: J. Comput. Phys. – volume: 123 start-page: 10167 year: 2019 end-page: 10177 ident: bib30 article-title: Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species publication-title: J. Phys. Chem. C – volume: 167 start-page: 070531 year: 2020 ident: bib24 article-title: Effects of polysulfide solubility and Li ion transport on performance of Li–S batteries using sparingly solvating electrolytes publication-title: J. Electrochem. Soc. – volume: 60 start-page: 15503 year: 2021 end-page: 15509 ident: bib41 article-title: Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. – volume: 66 start-page: 24 year: 2022 end-page: 29 ident: bib46 article-title: Evaluation on a 400 wh kg publication-title: J. Energy Chem. – volume: 2 start-page: 1499 year: 2006 end-page: 1509 ident: bib52 article-title: Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions publication-title: J. Chem. Theory Comput. – volume: 52 start-page: 255 year: 1984 end-page: 268 ident: bib59 article-title: A molecular dynamics method for simulations in the canonical ensemble publication-title: Mol. Phys. – volume: 4 start-page: 285 year: 2020 end-page: 291 ident: bib10 article-title: Lithium-sulfur batteries: attaining the critical metrics publication-title: Joule – volume: 48 start-page: 3279 year: 2019 end-page: 3319 ident: bib26 article-title: The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries publication-title: Chem. Soc. Rev. – volume: 45 start-page: W331 year: 2017 end-page: W336 ident: bib50 article-title: Ligpargen web server: an automatic opls-aa parameter generator for organic ligands publication-title: Nucleic Acids Res – volume: 160 start-page: A1304 year: 2013 end-page: A1310 ident: bib23 article-title: Solvate ionic liquid electrolyte for Li–S batteries publication-title: J. Electrochem. Soc. – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: bib56 article-title: Vmd: visual molecular dynamics publication-title: J. Mol. Graph. – volume: 5 start-page: 561 year: 2020 end-page: 568 ident: bib7 article-title: Understanding and applying coulombic efficiency in lithium metal batteries publication-title: Nat. Energy – volume: 4 start-page: 1481 year: 2013 ident: bib20 article-title: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries publication-title: Nat. Commun. – volume: 8 start-page: 2464 year: 2007 end-page: 2470 ident: bib53 article-title: Molecular dynamic simulations of ionic liquids: A reliable description of structure, thermodynamics and dynamics publication-title: ChemPhysChem – volume: 13 start-page: 3620 year: 2020 end-page: 3632 ident: bib48 article-title: Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells publication-title: Energy Environ. Sci. – volume: 9 start-page: 1802207 year: 2019 ident: 10.1016/j.chempr.2021.12.023_bib28 article-title: Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium–sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802207 – volume: 60 start-page: 15503 year: 2021 ident: 10.1016/j.chempr.2021.12.023_bib41 article-title: Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202103470 – volume: 44 start-page: 1272 year: 2011 ident: 10.1016/j.chempr.2021.12.023_bib55 article-title: Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811038970 – volume: 3 start-page: 783 year: 2018 ident: 10.1016/j.chempr.2021.12.023_bib21 article-title: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries publication-title: Nat. Energy doi: 10.1038/s41560-018-0214-0 – volume: 33 start-page: 580 year: 2012 ident: 10.1016/j.chempr.2021.12.023_bib51 article-title: Multiwfn: A multifunctional wavefunction analyzer publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 45 start-page: 62 year: 2021 ident: 10.1016/j.chempr.2021.12.023_bib8 article-title: Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries publication-title: Mater. Today doi: 10.1016/j.mattod.2020.10.021 – volume: 31 start-page: 2308 year: 2019 ident: 10.1016/j.chempr.2021.12.023_bib29 article-title: Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b03944 – volume: 70 start-page: 344 year: 2012 ident: 10.1016/j.chempr.2021.12.023_bib44 article-title: Role of LiNO3 in rechargeable lithium/sulfur battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.081 – volume: 8 start-page: 2464 year: 2007 ident: 10.1016/j.chempr.2021.12.023_bib53 article-title: Molecular dynamic simulations of ionic liquids: A reliable description of structure, thermodynamics and dynamics publication-title: ChemPhysChem doi: 10.1002/cphc.200700552 – volume: 11 start-page: 19 year: 2011 ident: 10.1016/j.chempr.2021.12.023_bib1 article-title: Li–O2 and Li–S batteries with high energy storage publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 4 start-page: 285 year: 2020 ident: 10.1016/j.chempr.2021.12.023_bib10 article-title: Lithium-sulfur batteries: attaining the critical metrics publication-title: Joule doi: 10.1016/j.joule.2020.01.001 – volume: 66 start-page: 24 year: 2022 ident: 10.1016/j.chempr.2021.12.023_bib46 article-title: Evaluation on a 400 wh kg−1 lithium–sulfur pouch cell publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.07.010 – volume: 60 start-page: 26622 year: 2021 ident: 10.1016/j.chempr.2021.12.023_bib18 article-title: Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202108882 – volume: 4 start-page: 539 year: 2020 ident: 10.1016/j.chempr.2021.12.023_bib11 article-title: Challenges and key parameters of lithium-sulfur batteries on pouch cell level publication-title: Joule doi: 10.1016/j.joule.2020.02.006 – volume: 6 start-page: 18 year: 2017 ident: 10.1016/j.chempr.2021.12.023_bib5 article-title: The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2016.09.003 – volume: 123 start-page: 10167 year: 2019 ident: 10.1016/j.chempr.2021.12.023_bib30 article-title: Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b10175 – volume: 5 start-page: 1401801 year: 2015 ident: 10.1016/j.chempr.2021.12.023_bib33 article-title: Radical or not radical: revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401801 – volume: 5 start-page: 561 year: 2020 ident: 10.1016/j.chempr.2021.12.023_bib7 article-title: Understanding and applying coulombic efficiency in lithium metal batteries publication-title: Nat. Energy doi: 10.1038/s41560-020-0648-z – volume: 14 start-page: 33 year: 1996 ident: 10.1016/j.chempr.2021.12.023_bib56 article-title: Vmd: visual molecular dynamics publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 167 start-page: 070531 year: 2020 ident: 10.1016/j.chempr.2021.12.023_bib24 article-title: Effects of polysulfide solubility and Li ion transport on performance of Li–S batteries using sparingly solvating electrolytes publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ab7a81 – volume: 52 start-page: 255 year: 1984 ident: 10.1016/j.chempr.2021.12.023_bib59 article-title: A molecular dynamics method for simulations in the canonical ensemble publication-title: Mol. Phys. doi: 10.1080/00268978400101201 – volume: 29 start-page: 3375 year: 2017 ident: 10.1016/j.chempr.2021.12.023_bib32 article-title: Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b00068 – volume: 6 start-page: 1095 year: 2020 ident: 10.1016/j.chempr.2021.12.023_bib12 article-title: A perspective toward practical lithium-sulfur batteries publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c00449 – volume: 29 start-page: 9023 year: 2017 ident: 10.1016/j.chempr.2021.12.023_bib38 article-title: Effects of anion mobility on electrochemical behaviors of lithium-sulfur batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02105 – volume: 48 start-page: 3279 year: 2019 ident: 10.1016/j.chempr.2021.12.023_bib26 article-title: The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00826D – volume: 59 start-page: 17634 year: 2020 ident: 10.1016/j.chempr.2021.12.023_bib22 article-title: Beyond the polysulfide shuttle and lithium dendrite formation: addressing the sluggish sulfur redox kinetics for practical high-energy Li–S batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202007159 – volume: 117 start-page: 1 year: 1995 ident: 10.1016/j.chempr.2021.12.023_bib49 article-title: Fast parallel algorithms for short-range molecular-dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 11 start-page: 2100332 year: 2021 ident: 10.1016/j.chempr.2021.12.023_bib16 article-title: Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100332 – volume: 7 start-page: 1518 year: 2016 ident: 10.1016/j.chempr.2021.12.023_bib37 article-title: Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00228 – volume: 52 start-page: 12885 year: 2016 ident: 10.1016/j.chempr.2021.12.023_bib35 article-title: Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram publication-title: Chem. Commun. doi: 10.1039/C6CC05881G – volume: 84 start-page: 3973 year: 2012 ident: 10.1016/j.chempr.2021.12.023_bib36 article-title: Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification publication-title: Anal. Chem. doi: 10.1021/ac2032244 – volume: 45 start-page: W331 year: 2017 ident: 10.1016/j.chempr.2021.12.023_bib50 article-title: Ligpargen web server: an automatic opls-aa parameter generator for organic ligands publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx312 – volume: 139 start-page: 8458 year: 2017 ident: 10.1016/j.chempr.2021.12.023_bib25 article-title: Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12358 – volume: 134 start-page: 18510 year: 2012 ident: 10.1016/j.chempr.2021.12.023_bib13 article-title: Smaller sulfur molecules promise better lithium-sulfur batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308170k – volume: 164 start-page: A3766 year: 2017 ident: 10.1016/j.chempr.2021.12.023_bib45 article-title: Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application publication-title: J. Electrochem. Soc. doi: 10.1149/2.0981714jes – volume: 2 start-page: 2696 year: 2017 ident: 10.1016/j.chempr.2021.12.023_bib6 article-title: New insights into mossy Li induced anode degradation and its formation mechanism in Li–S batteries publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.7b00886 – volume: 4 start-page: 1481 year: 2013 ident: 10.1016/j.chempr.2021.12.023_bib20 article-title: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries publication-title: Nat. Commun. doi: 10.1038/ncomms2513 – volume: 160 start-page: A1304 year: 2013 ident: 10.1016/j.chempr.2021.12.023_bib23 article-title: Solvate ionic liquid electrolyte for Li–S batteries publication-title: J. Electrochem. Soc. doi: 10.1149/2.111308jes – volume: 57 start-page: 16732 year: 2018 ident: 10.1016/j.chempr.2021.12.023_bib34 article-title: The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201810132 – volume: 1 start-page: 16114 year: 2016 ident: 10.1016/j.chempr.2021.12.023_bib4 article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2016.114 – volume: 9 start-page: 1803096 year: 2019 ident: 10.1016/j.chempr.2021.12.023_bib9 article-title: Highly solvating electrolytes for lithium-sulfur batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803096 – volume: 31 start-page: 10186 year: 2019 ident: 10.1016/j.chempr.2021.12.023_bib27 article-title: Designing effective solvent–catalyst interface for catalytic sulfur conversion in lithium-sulfur batteries publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03885 – volume: 14 start-page: 1835 year: 2021 ident: 10.1016/j.chempr.2021.12.023_bib17 article-title: Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries publication-title: Energy Environ. Sci. doi: 10.1039/D0EE03181J – volume: 2 start-page: 1499 year: 2006 ident: 10.1016/j.chempr.2021.12.023_bib52 article-title: Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions publication-title: J. Chem. Theory Comput. doi: 10.1021/ct600252r – volume: 52 start-page: 7182 year: 1981 ident: 10.1016/j.chempr.2021.12.023_bib57 article-title: Polymorphic transitions in single crystals: A new molecular dynamics method publication-title: J. Appl. Phys. doi: 10.1063/1.328693 – volume: 19 start-page: 1441 year: 2017 ident: 10.1016/j.chempr.2021.12.023_bib31 article-title: Thermodynamic origins of the solvent-dependent stability of lithium polysulfides from first principles publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP06889H – volume: 31 start-page: 1901125 year: 2019 ident: 10.1016/j.chempr.2021.12.023_bib40 article-title: Current status and future prospects of metal–sulfur batteries publication-title: Adv. Mater. doi: 10.1002/adma.201901125 – volume: 50 start-page: 889 year: 2004 ident: 10.1016/j.chempr.2021.12.023_bib39 article-title: The effect of solvent component on the discharge performance of lithium-sulfur cell containing various organic electrolytes publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.01.093 – volume: 8 start-page: 194 year: 2017 ident: 10.1016/j.chempr.2021.12.023_bib42 article-title: Towards stable lithium-sulfur batteries: mechanistic insights into electrolyte decomposition on lithium metal anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.01.003 – volume: 6 start-page: 723 year: 2021 ident: 10.1016/j.chempr.2021.12.023_bib47 article-title: Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries publication-title: Nat. Energy doi: 10.1038/s41560-021-00852-3 – volume: 30 start-page: 2157 year: 2009 ident: 10.1016/j.chempr.2021.12.023_bib54 article-title: Packmol: A package for building initial configurations for molecular dynamics simulations publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 31 start-page: 1695 year: 1985 ident: 10.1016/j.chempr.2021.12.023_bib58 article-title: Canonical dynamics: equilibrium phase-space distributions publication-title: Phys. Rev. A Gen. Phys. doi: 10.1103/PhysRevA.31.1695 – volume: 3 start-page: 1166 year: 2012 ident: 10.1016/j.chempr.2021.12.023_bib14 article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer publication-title: Nat. Commun. doi: 10.1038/ncomms2163 – volume: 114 start-page: 11751 year: 2014 ident: 10.1016/j.chempr.2021.12.023_bib2 article-title: Rechargeable lithium-sulfur batteries publication-title: Chem. Rev. doi: 10.1021/cr500062v – volume: 156 start-page: A694 year: 2009 ident: 10.1016/j.chempr.2021.12.023_bib43 article-title: On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.3148721 – volume: 13 start-page: 3620 year: 2020 ident: 10.1016/j.chempr.2021.12.023_bib48 article-title: Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells publication-title: Energy Environ. Sci. doi: 10.1039/D0EE02088E – volume: 151 start-page: A1969 year: 2004 ident: 10.1016/j.chempr.2021.12.023_bib3 article-title: Polysulfide shuttle study in the Li/S battery system publication-title: J. Electrochem. Soc. doi: 10.1149/1.1806394 – volume: 16 start-page: 519 year: 2016 ident: 10.1016/j.chempr.2021.12.023_bib15 article-title: Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts publication-title: Nano Lett doi: 10.1021/acs.nanolett.5b04166 – volume: 5 start-page: 2323 year: 2021 ident: 10.1016/j.chempr.2021.12.023_bib19 article-title: Electrolyte solutions design for lithium-sulfur batteries publication-title: Joule doi: 10.1016/j.joule.2021.06.009 |
SSID | ssj0001821750 |
Score | 2.539066 |
Snippet | Practical lithium–sulfur batteries are severely hindered by parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS)... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1083 |
SubjectTerms | di-isopropyl sulfide encapsulating lithium polysulfide electrolyte lithium–sulfur battery solvation structure solvent shell |
Title | An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries |
URI | https://dx.doi.org/10.1016/j.chempr.2021.12.023 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4EDojxEC1Q5cFu5SmxvHscVAlVUQoBasT1FduyorbbZVZUcyon_wD_kl_AltpO0XRXKJYq8Y-cxX-a14xlC3kGpmDhLDJXQDVRogTOtS5rOQlkkUmWF6hJkP8cHx-LTYrYYAvrd7pJa7Rc_Nu4r-R-uYgx8bXfJ3oOz_aIYwDn4iyM4jOM_8XheTXE7Eo5um9EGnx829elZc0HXq-UVBsszbaau0c3yqrb1vd2-KLDGUft8B97OaC6nqiu56ZMLfRWDUxfj7VJtG-vO0y_GKb5x6HnRGPoVqOt_OZErJ8iHZAIr7RY9mQs8wGdtKxyKQT4xMYsorCsxFqbpCDNiJBij0ParcUo2Cm3v6VsC3MYSzveB2It1W6-VRV24lvFBYfk_6W_osT670Ceuned2lbxdJY9YjlUeki0Gh4JNyNb88Nv3wyEel8I56xr69s_ld1p26YC3b2izJTOyTo6ekifOrQjmFiPb5IGpnpHHo2KTz8nJvAquoSXYgJZghJYAaAl6tHjq3z9_WZwEPU5ekOOPH47eH1DXWIMWcJBrqso4lpwXRsYzYXSoOCS3ZDopuEnCTENBRqUUXJeZNjxLE8UZL0WsEiVgEDL-kkyqVWVekSAyKk0jTMtCKTBLxbyQaVwaA-LE8B3C_UvKC1d1vm1-sszv4tIOof2sta268hf6xL__3FmO1iLMgas7Z-7e80qvyaPhW3hDJvVlY97CLK3VnkPUH3H8kbM |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+encapsulating+lithium-polysulfide+electrolyte+for+practical+lithium%E2%80%93sulfur+batteries&rft.jtitle=Chem&rft.au=Hou%2C+Li-Peng&rft.au=Zhang%2C+Xue-Qiang&rft.au=Yao%2C+Nan&rft.au=Chen%2C+Xiang&rft.date=2022-04-14&rft.issn=2451-9294&rft.volume=8&rft.issue=4&rft.spage=1083&rft.epage=1098&rft_id=info:doi/10.1016%2Fj.chempr.2021.12.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chempr_2021_12_023 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9294&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9294&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9294&client=summon |