An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries

Practical lithium–sulfur batteries are severely hindered by parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates. The solvation structure of LiPSs is pivotal in dictating the reaction kinetics. Herein, an encapsulating LiPS electrolyte (EPSE) is propo...

Full description

Saved in:
Bibliographic Details
Published inChem Vol. 8; no. 4; pp. 1083 - 1098
Main Authors Hou, Li-Peng, Zhang, Xue-Qiang, Yao, Nan, Chen, Xiang, Li, Bo-Quan, Shi, Peng, Jin, Cheng-Bin, Huang, Jia-Qi, Zhang, Qiang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 14.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Practical lithium–sulfur batteries are severely hindered by parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates. The solvation structure of LiPSs is pivotal in dictating the reaction kinetics. Herein, an encapsulating LiPS electrolyte (EPSE) is proposed to suppress parasitic reactions based on a nano-heterogeneous solvation structure design of LiPSs. In EPSE, with di-isopropyl sulfide (DIPS) as a co-solvent, soluble LiPSs are encapsulated into two concentric solvent shells with different solvating power and reduction stability. Reduction-stable DIPS in the outer solvent shell significantly suppresses the parasitic reactions between encapsulated LiPSs and lithium metal. A 1.2 Ah pouch cell under demanding conditions undergoes 103 cycles in the EPSE. This work provides two crucial criteria for constructing EPSE, that is, poor solvating power and high reduction stability of the solvent in outer solvent shell, and it opens up new frontiers in modulating the solvation structure of LiPSs toward long-cycling lithium–sulfur batteries. [Display omitted] •A nano-heterogeneous solvation structure of lithium polysulfides is investigated•An encapsulating LiPS electrolyte (EPSE) is designed for lithium–sulfur batteries•A 1.2 Ah pouch cell under demanding conditions undergoes 103 cycles in an EPSE•Two crucial criteria for constructing the EPSE are proposed The pursuit of a zero-carbon and wireless society necessitates the development of high-energy-density and long-cycling batteries as the power source for portable electronics, electric vehicles, and so on. The lithium–sulfur battery is a promising high-energy-density battery system. However, parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates severely hinder the lifespans of practical lithium–sulfur batteries, and rational electrolyte design is imperative. Herein, an encapsulating LiPS electrolyte (EPSE) is designed based on an insightful understanding of the solvation structure of LiPSs, which mitigates the parasitic reaction kinetics and significantly improves the cycle life of practical lithium–sulfur batteries. This opens up new frontiers in electrolyte design toward long-cycling lithium–sulfur batteries. An encapsulating LiPS electrolyte (EPSE) is proposed for suppression of parasitic reactions based on a nano-heterogeneous solvation structure design of LiPSs. In the EPSE with di-isopropyl sulfide (DIPS) as a co-solvent, soluble LiPSs are encapsulated into two concentric solvent shells with different solvating power and reduction stability. Reduction-stable DIPS in the outer solvent shell significantly suppresses the parasitic reactions between encapsulated LiPSs and lithium metal. This work opens up new frontiers in electrolyte engineering toward long-cycling lithium–sulfur batteries.
AbstractList Practical lithium–sulfur batteries are severely hindered by parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates. The solvation structure of LiPSs is pivotal in dictating the reaction kinetics. Herein, an encapsulating LiPS electrolyte (EPSE) is proposed to suppress parasitic reactions based on a nano-heterogeneous solvation structure design of LiPSs. In EPSE, with di-isopropyl sulfide (DIPS) as a co-solvent, soluble LiPSs are encapsulated into two concentric solvent shells with different solvating power and reduction stability. Reduction-stable DIPS in the outer solvent shell significantly suppresses the parasitic reactions between encapsulated LiPSs and lithium metal. A 1.2 Ah pouch cell under demanding conditions undergoes 103 cycles in the EPSE. This work provides two crucial criteria for constructing EPSE, that is, poor solvating power and high reduction stability of the solvent in outer solvent shell, and it opens up new frontiers in modulating the solvation structure of LiPSs toward long-cycling lithium–sulfur batteries. [Display omitted] •A nano-heterogeneous solvation structure of lithium polysulfides is investigated•An encapsulating LiPS electrolyte (EPSE) is designed for lithium–sulfur batteries•A 1.2 Ah pouch cell under demanding conditions undergoes 103 cycles in an EPSE•Two crucial criteria for constructing the EPSE are proposed The pursuit of a zero-carbon and wireless society necessitates the development of high-energy-density and long-cycling batteries as the power source for portable electronics, electric vehicles, and so on. The lithium–sulfur battery is a promising high-energy-density battery system. However, parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS) intermediates severely hinder the lifespans of practical lithium–sulfur batteries, and rational electrolyte design is imperative. Herein, an encapsulating LiPS electrolyte (EPSE) is designed based on an insightful understanding of the solvation structure of LiPSs, which mitigates the parasitic reaction kinetics and significantly improves the cycle life of practical lithium–sulfur batteries. This opens up new frontiers in electrolyte design toward long-cycling lithium–sulfur batteries. An encapsulating LiPS electrolyte (EPSE) is proposed for suppression of parasitic reactions based on a nano-heterogeneous solvation structure design of LiPSs. In the EPSE with di-isopropyl sulfide (DIPS) as a co-solvent, soluble LiPSs are encapsulated into two concentric solvent shells with different solvating power and reduction stability. Reduction-stable DIPS in the outer solvent shell significantly suppresses the parasitic reactions between encapsulated LiPSs and lithium metal. This work opens up new frontiers in electrolyte engineering toward long-cycling lithium–sulfur batteries.
Author Zhang, Xue-Qiang
Shi, Peng
Hou, Li-Peng
Li, Bo-Quan
Zhang, Qiang
Yao, Nan
Jin, Cheng-Bin
Huang, Jia-Qi
Chen, Xiang
Author_xml – sequence: 1
  givenname: Li-Peng
  surname: Hou
  fullname: Hou, Li-Peng
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
– sequence: 2
  givenname: Xue-Qiang
  surname: Zhang
  fullname: Zhang, Xue-Qiang
  email: zhangxq@bit.edu.cn
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P.R. China
– sequence: 3
  givenname: Nan
  surname: Yao
  fullname: Yao, Nan
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
– sequence: 4
  givenname: Xiang
  surname: Chen
  fullname: Chen, Xiang
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
– sequence: 5
  givenname: Bo-Quan
  surname: Li
  fullname: Li, Bo-Quan
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P.R. China
– sequence: 6
  givenname: Peng
  surname: Shi
  fullname: Shi, Peng
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
– sequence: 7
  givenname: Cheng-Bin
  surname: Jin
  fullname: Jin, Cheng-Bin
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
– sequence: 8
  givenname: Jia-Qi
  surname: Huang
  fullname: Huang, Jia-Qi
  organization: Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, P.R. China
– sequence: 9
  givenname: Qiang
  surname: Zhang
  fullname: Zhang, Qiang
  email: zhang-qiang@mails.tsinghua.edu.cn
  organization: Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
BookMark eNqFkMtKAzEYhYNUsNa-gYt5gRlzm5sLoRRvUHCjC1chk_yxKdOZIUmF7nwH39AnMUMVxIWu_p_DOQfOd4omXd8BQucEZwST4mKTqTVsB5dRTElGaIYpO0JTynOS1rTmkx__CZp7v8EYk4qSMsdT9LzoEuiUHPyulcF2L0lrw9rutunQt_soGqshgRZUcFEIkJjeJYOTKlgl22_3x9v76N25pJEhgLPgz9Cxka2H-dedoaeb68flXbp6uL1fLlapolUZ0sYUhWRMgSxyDho3jNNcUl0qBiWudVlQYiRn2tQaWF2VDaPM8KIpG14RStkMXR56leu9d2CEsiFO6bvgpG0FwWLkJDbiwEmMnAShInKKYf4rPDi7lW7_X-zqEIM47NWCE17ZiBG0dZGU0L39u-ATdpGJ1Q
CitedBy_id crossref_primary_10_1016_j_jpowsour_2025_236682
crossref_primary_10_1016_j_jorganchem_2025_123531
crossref_primary_10_1002_slct_202301207
crossref_primary_10_1016_j_jechem_2023_01_035
crossref_primary_10_1515_revce_2023_0059
crossref_primary_10_1002_ange_202318785
crossref_primary_10_1002_ange_202400343
crossref_primary_10_1016_j_matlet_2024_137835
crossref_primary_10_1002_batt_202400544
crossref_primary_10_1021_acsenergylett_4c03177
crossref_primary_10_1002_aenm_202500026
crossref_primary_10_1021_acsami_4c12880
crossref_primary_10_1002_ange_202307802
crossref_primary_10_1016_j_partic_2024_01_011
crossref_primary_10_1016_j_cej_2023_147315
crossref_primary_10_1007_s43938_024_00045_w
crossref_primary_10_1002_anie_202201406
crossref_primary_10_1039_D2NR01815B
crossref_primary_10_1002_smtd_202300662
crossref_primary_10_1002_anie_202423046
crossref_primary_10_1021_jacs_4c02603
crossref_primary_10_1021_acsenergylett_4c00519
crossref_primary_10_1002_smll_202406972
crossref_primary_10_1039_D3TA02347H
crossref_primary_10_1021_acsaem_2c03306
crossref_primary_10_1021_acs_chemrev_1c00904
crossref_primary_10_1021_acs_chemrev_2c00739
crossref_primary_10_1021_acsenergylett_4c02535
crossref_primary_10_1016_j_est_2023_110087
crossref_primary_10_1002_advs_202301006
crossref_primary_10_1002_eem2_12688
crossref_primary_10_1021_acsami_2c12114
crossref_primary_10_1038_s44286_024_00115_4
crossref_primary_10_1002_anie_202303363
crossref_primary_10_1002_anie_202307802
crossref_primary_10_1016_j_ensm_2025_104009
crossref_primary_10_1002_ange_202423046
crossref_primary_10_1002_ange_202201406
crossref_primary_10_1016_j_ensm_2023_03_020
crossref_primary_10_1021_jacs_4c09363
crossref_primary_10_1002_anie_202318785
crossref_primary_10_1021_jacs_3c10260
crossref_primary_10_1002_advs_202305315
crossref_primary_10_1039_D3CS00151B
crossref_primary_10_1002_ange_202309968
crossref_primary_10_1002_adfm_202304619
crossref_primary_10_1002_aenm_202402609
crossref_primary_10_1007_s41918_023_00188_4
crossref_primary_10_1016_j_ensm_2024_103664
crossref_primary_10_1016_j_nxmate_2024_100395
crossref_primary_10_1039_D3EE04183B
crossref_primary_10_1021_acsami_2c18594
crossref_primary_10_1002_adma_202201555
crossref_primary_10_1002_sus2_191
crossref_primary_10_1080_15567036_2023_2259836
crossref_primary_10_1002_smll_202405148
crossref_primary_10_1016_j_chempr_2022_07_004
crossref_primary_10_1002_advs_202415436
crossref_primary_10_1002_cjoc_202300638
crossref_primary_10_1016_j_cclet_2022_108033
crossref_primary_10_1016_j_jechem_2022_09_029
crossref_primary_10_1002_anie_202309968
crossref_primary_10_1002_adma_202401263
crossref_primary_10_1002_aenm_202402996
crossref_primary_10_1021_acsami_2c06934
crossref_primary_10_1016_j_mser_2025_100955
crossref_primary_10_1002_aenm_202402506
crossref_primary_10_1002_smll_202301755
crossref_primary_10_1039_D4GC05507A
crossref_primary_10_1016_j_jechem_2022_05_017
crossref_primary_10_1002_batt_202200457
crossref_primary_10_1002_ange_202303363
crossref_primary_10_1016_j_jechem_2024_01_072
crossref_primary_10_1021_prechem_3c00030
crossref_primary_10_1039_D3TA00096F
crossref_primary_10_1002_batt_202300324
crossref_primary_10_1038_s41467_023_44527_x
crossref_primary_10_1016_j_apsusc_2023_159115
crossref_primary_10_1002_adma_202205284
crossref_primary_10_1016_j_apenergy_2024_125162
crossref_primary_10_1002_adfm_202304541
crossref_primary_10_1002_aenm_202403828
crossref_primary_10_1002_cey2_283
crossref_primary_10_1016_j_jpowsour_2022_232144
crossref_primary_10_1002_anie_202400343
crossref_primary_10_1002_ente_202201110
crossref_primary_10_1021_acs_chemrev_3c00919
crossref_primary_10_1002_adma_202411197
crossref_primary_10_1016_j_cclet_2025_110862
crossref_primary_10_1002_adfm_202211818
crossref_primary_10_1002_marc_202200760
crossref_primary_10_2139_ssrn_4133339
crossref_primary_10_1016_j_jallcom_2024_174681
crossref_primary_10_1016_j_oneear_2022_02_009
crossref_primary_10_1002_adma_202409521
crossref_primary_10_1016_j_ensm_2022_10_053
crossref_primary_10_1039_D3TA03366J
crossref_primary_10_1016_j_jcis_2023_12_057
crossref_primary_10_1016_j_jechem_2022_06_035
crossref_primary_10_1021_acsnano_4c05002
crossref_primary_10_1016_j_cej_2025_159330
crossref_primary_10_1016_j_ensm_2022_07_035
crossref_primary_10_1360_SSC_2022_0181
crossref_primary_10_1021_acsami_3c00977
crossref_primary_10_1002_smll_202206375
crossref_primary_10_1002_adfm_202312550
crossref_primary_10_1016_j_apsusc_2022_154704
crossref_primary_10_1002_aenm_202302378
crossref_primary_10_1039_D3EE01841E
crossref_primary_10_1016_j_nantod_2024_102393
crossref_primary_10_1016_j_ensm_2023_103040
crossref_primary_10_1016_j_cej_2024_149535
crossref_primary_10_1021_acsenergylett_3c00826
crossref_primary_10_1002_batt_202400155
crossref_primary_10_1021_acssuschemeng_4c10154
crossref_primary_10_1016_j_jechem_2022_08_014
crossref_primary_10_1016_j_joule_2024_03_021
crossref_primary_10_1016_j_cej_2024_155807
crossref_primary_10_1021_acs_nanolett_2c02258
crossref_primary_10_1039_D2TA09295F
Cites_doi 10.1002/aenm.201802207
10.1002/anie.202103470
10.1107/S0021889811038970
10.1038/s41560-018-0214-0
10.1002/jcc.22885
10.1016/j.mattod.2020.10.021
10.1021/acs.chemmater.8b03944
10.1016/j.electacta.2012.03.081
10.1002/cphc.200700552
10.1038/nmat3191
10.1016/j.joule.2020.01.001
10.1016/j.jechem.2021.07.010
10.1002/anie.202108882
10.1016/j.joule.2020.02.006
10.1016/j.ensm.2016.09.003
10.1021/acs.jpcc.8b10175
10.1002/aenm.201401801
10.1038/s41560-020-0648-z
10.1016/0263-7855(96)00018-5
10.1149/1945-7111/ab7a81
10.1080/00268978400101201
10.1021/acs.chemmater.7b00068
10.1021/acscentsci.0c00449
10.1021/acs.chemmater.7b02105
10.1039/C8CS00826D
10.1002/anie.202007159
10.1006/jcph.1995.1039
10.1002/aenm.202100332
10.1021/acs.jpclett.6b00228
10.1039/C6CC05881G
10.1021/ac2032244
10.1093/nar/gkx312
10.1021/jacs.6b12358
10.1021/ja308170k
10.1149/2.0981714jes
10.1021/acsenergylett.7b00886
10.1038/ncomms2513
10.1149/2.111308jes
10.1002/anie.201810132
10.1038/nenergy.2016.114
10.1002/aenm.201803096
10.1021/acs.chemmater.9b03885
10.1039/D0EE03181J
10.1021/ct600252r
10.1063/1.328693
10.1039/C6CP06889H
10.1002/adma.201901125
10.1016/j.electacta.2004.01.093
10.1016/j.ensm.2017.01.003
10.1038/s41560-021-00852-3
10.1002/jcc.21224
10.1103/PhysRevA.31.1695
10.1038/ncomms2163
10.1021/cr500062v
10.1149/1.3148721
10.1039/D0EE02088E
10.1149/1.1806394
10.1021/acs.nanolett.5b04166
10.1016/j.joule.2021.06.009
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright_xml – notice: 2021 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.chempr.2021.12.023
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2451-9294
EndPage 1098
ExternalDocumentID 10_1016_j_chempr_2021_12_023
S2451929421006549
GroupedDBID 0R~
AACTN
AAEDW
AALRI
AAVLU
AAXUO
ABMAC
ABVKL
ACGFS
ADJPV
AFTJW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
O9-
OK1
AAMRU
AAYWO
AAYXX
ABDGV
ABJNI
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EJD
SSZ
ID FETCH-LOGICAL-c287t-bf66a33cea654ed0b3425a2d7c3e709d7621fa43df9de3987b323f46b7b481223
ISSN 2451-9294
IngestDate Thu Apr 24 22:57:17 EDT 2025
Tue Jul 01 01:02:49 EDT 2025
Thu Jul 20 20:09:11 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords encapsulating lithium polysulfide electrolyte
solvent shell
solvation structure
di-isopropyl sulfide
SDG7: Affordable and clean energy
lithium–sulfur battery
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c287t-bf66a33cea654ed0b3425a2d7c3e709d7621fa43df9de3987b323f46b7b481223
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_chempr_2021_12_023
crossref_primary_10_1016_j_chempr_2021_12_023
elsevier_sciencedirect_doi_10_1016_j_chempr_2021_12_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-14
PublicationDateYYYYMMDD 2022-04-14
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-14
  day: 14
PublicationDecade 2020
PublicationTitle Chem
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Tikekar, Choudhury, Tu, Archer (bib4) 2016; 1
Bruce, Freunberger, Hardwick, Tarascon (bib1) 2011; 11
Peng, Huang, Liu, Cheng, Xu, Zhao, Wei, Zhang (bib25) 2017; 139
Yanagi, Ueno, Ando, Li, Matsumae, Liu, Dokko, Watanabe (bib24) 2020; 167
Chen, Hou, Li, Yan, Zhu, Guan (bib42) 2017; 8
Li, Zhou, Wang, Lu (bib28) 2019; 9
Bhargav, He, Gupta, Manthiram (bib10) 2020; 4
Zhao, Li, Zhang, Huang, Zhang (bib12) 2020; 6
Steudel, Chivers (bib26) 2019; 48
Han, Chen, Cao, Rajput, Murugesan, Shi, Pan, Zhang, Liu, Persson, Mueller (bib38) 2017; 29
Xiao, Li, Bi, Cai, Dunn, Glossmann, Liu, Osaka, Sugiura, Wu (bib7) 2020; 5
Dodda, Cabeza de Vaca, Tirado-Rives, Jorgensen (bib50) 2017; 45
Zhang, Heim, Song, Bartlett, Li (bib6) 2017; 2
Köddermann, Paschek, Ludwig (bib53) 2007; 8
Plimpton (bib49) 1995; 117
Hoover (bib58) 1985; 31
Shi, Li, Sun, Chen (bib16) 2021; 11
Pascal, Wujcik, Wang, Balsara, Prendergast (bib31) 2017; 19
Cheng, Yan, Huang, Li, Zhu, Zhao, Zhang, Zhu, Yang, Zhang (bib5) 2017; 6
Xin, Gu, Zhao, Yin, Zhou, Guo, Wan (bib13) 2012; 134
Dörfler, Althues, Härtel, Abendroth, Schumm, Kaskel (bib11) 2020; 4
Zhao, Xu, Zhao, Amine (bib22) 2020; 59
Zhang, Peng, Zhao, Chen, Zhao, Li (bib34) 2018; 57
Dibden, Smith, Zhou, Garcia-Araez, Owen (bib35) 2016; 52
Liu, Elias, Meng, Aurbach, Zou, Xia, Pang (bib19) 2021; 5
Suo, Hu, Li, Armand, Chen (bib20) 2013; 4
Niu, Liu, Lochala, Anderson, Cao, Gross, Xu, Zhang, Whittingham, Xiao, Liu (bib47) 2021; 6
Park, Ronneburg, Risse, Ballauff, Kanduč, Dzubiella (bib30) 2019; 123
Ye, Zhao, Hou, Chen, Zhang, Li (bib46) 2022; 66
Mikhaylik, Akridge (bib3) 2004; 151
Andersen, Rajput, Han, Pan, Govind, Persson, Mueller, Murugesan (bib29) 2019; 31
Li, Jiang, Lai, Zhao, Lu (bib27) 2019; 31
Dokko, Tachikawa, Yamauchi, Tsuchiya, Yamazaki, Takashima, Park, Ueno, Seki, Serizawa, Watanabe (bib23) 2013; 160
Kim, Jung, Lim (bib39) 2004; 50
Humphrey, Dalke, Schulten (bib56) 1996; 14
Hou, Zhang, Li, Zhang (bib8) 2021; 45
Gupta, Bhargav, Manthiram (bib9) 2019; 9
Chung, Manthiram (bib40) 2019; 31
Zheng, Ye, Guo (bib17) 2021; 14
Rajput, Murugesan, Shin, Han, Lau, Chen, Liu, Curtiss, Mueller, Persson (bib32) 2017; 29
Zou, Lu (bib37) 2016; 7
Zhang, Liu, Wang, Zhao, Luo, Yu (bib18) 2021; 60
Aurbach, Pollak, Elazari, Salitra, Kelley, Affinito (bib43) 2009; 156
Manthiram, Fu, Chung, Zu, Su (bib2) 2014; 114
Cuisinier, Hart, Balasubramanian, Garsuch, Nazar (bib33) 2015; 5
Weller, Thieme, Härtel, Althues, Kaskel (bib45) 2017; 164
Jensen, Jorgensen (bib52) 2006; 2
Su, Manthiram (bib14) 2012; 3
Momma, Izumi (bib55) 2011; 44
Lu, Chen (bib51) 2012; 33
Barchasz, Molton, Duboc, Leprêtre, Patoux, Alloin (bib36) 2012; 84
Zhang, Jin, Nan, Hou, Li, Chen (bib41) 2021; 60
Parrinello, Rahman (bib57) 1981; 52
Shi, Bak, Shadike, Wang, Niu, Northrup, Lee, Baranovskiy, Anderson, Qin (bib48) 2020; 13
Pang, Shyamsunder, Narayanan, Kwok, Curtiss, Nazar (bib21) 2018; 3
Yuan, Peng, Hou, Huang, Chen, Wang, Cheng, Wei, Zhang (bib15) 2016; 16
Martínez, Andrade, Birgin, Martínez (bib54) 2009; 30
Nosé (bib59) 1984; 52
Zhang (bib44) 2012; 70
Ye (10.1016/j.chempr.2021.12.023_bib46) 2022; 66
Lu (10.1016/j.chempr.2021.12.023_bib51) 2012; 33
Dibden (10.1016/j.chempr.2021.12.023_bib35) 2016; 52
Zhang (10.1016/j.chempr.2021.12.023_bib44) 2012; 70
Gupta (10.1016/j.chempr.2021.12.023_bib9) 2019; 9
Zhao (10.1016/j.chempr.2021.12.023_bib12) 2020; 6
Niu (10.1016/j.chempr.2021.12.023_bib47) 2021; 6
Chen (10.1016/j.chempr.2021.12.023_bib42) 2017; 8
Manthiram (10.1016/j.chempr.2021.12.023_bib2) 2014; 114
Bhargav (10.1016/j.chempr.2021.12.023_bib10) 2020; 4
Xin (10.1016/j.chempr.2021.12.023_bib13) 2012; 134
Tikekar (10.1016/j.chempr.2021.12.023_bib4) 2016; 1
Jensen (10.1016/j.chempr.2021.12.023_bib52) 2006; 2
Martínez (10.1016/j.chempr.2021.12.023_bib54) 2009; 30
Zhang (10.1016/j.chempr.2021.12.023_bib18) 2021; 60
Pang (10.1016/j.chempr.2021.12.023_bib21) 2018; 3
Liu (10.1016/j.chempr.2021.12.023_bib19) 2021; 5
Li (10.1016/j.chempr.2021.12.023_bib28) 2019; 9
Kim (10.1016/j.chempr.2021.12.023_bib39) 2004; 50
Plimpton (10.1016/j.chempr.2021.12.023_bib49) 1995; 117
Zhang (10.1016/j.chempr.2021.12.023_bib34) 2018; 57
Suo (10.1016/j.chempr.2021.12.023_bib20) 2013; 4
Rajput (10.1016/j.chempr.2021.12.023_bib32) 2017; 29
Hoover (10.1016/j.chempr.2021.12.023_bib58) 1985; 31
Chung (10.1016/j.chempr.2021.12.023_bib40) 2019; 31
Steudel (10.1016/j.chempr.2021.12.023_bib26) 2019; 48
Cheng (10.1016/j.chempr.2021.12.023_bib5) 2017; 6
Zou (10.1016/j.chempr.2021.12.023_bib37) 2016; 7
Dörfler (10.1016/j.chempr.2021.12.023_bib11) 2020; 4
Dokko (10.1016/j.chempr.2021.12.023_bib23) 2013; 160
Zhang (10.1016/j.chempr.2021.12.023_bib6) 2017; 2
Andersen (10.1016/j.chempr.2021.12.023_bib29) 2019; 31
Peng (10.1016/j.chempr.2021.12.023_bib25) 2017; 139
Köddermann (10.1016/j.chempr.2021.12.023_bib53) 2007; 8
Zhang (10.1016/j.chempr.2021.12.023_bib41) 2021; 60
Dodda (10.1016/j.chempr.2021.12.023_bib50) 2017; 45
Shi (10.1016/j.chempr.2021.12.023_bib48) 2020; 13
Hou (10.1016/j.chempr.2021.12.023_bib8) 2021; 45
Zheng (10.1016/j.chempr.2021.12.023_bib17) 2021; 14
Humphrey (10.1016/j.chempr.2021.12.023_bib56) 1996; 14
Aurbach (10.1016/j.chempr.2021.12.023_bib43) 2009; 156
Barchasz (10.1016/j.chempr.2021.12.023_bib36) 2012; 84
Mikhaylik (10.1016/j.chempr.2021.12.023_bib3) 2004; 151
Xiao (10.1016/j.chempr.2021.12.023_bib7) 2020; 5
Yuan (10.1016/j.chempr.2021.12.023_bib15) 2016; 16
Parrinello (10.1016/j.chempr.2021.12.023_bib57) 1981; 52
Han (10.1016/j.chempr.2021.12.023_bib38) 2017; 29
Pascal (10.1016/j.chempr.2021.12.023_bib31) 2017; 19
Momma (10.1016/j.chempr.2021.12.023_bib55) 2011; 44
Bruce (10.1016/j.chempr.2021.12.023_bib1) 2011; 11
Zhao (10.1016/j.chempr.2021.12.023_bib22) 2020; 59
Shi (10.1016/j.chempr.2021.12.023_bib16) 2021; 11
Su (10.1016/j.chempr.2021.12.023_bib14) 2012; 3
Li (10.1016/j.chempr.2021.12.023_bib27) 2019; 31
Nosé (10.1016/j.chempr.2021.12.023_bib59) 1984; 52
Yanagi (10.1016/j.chempr.2021.12.023_bib24) 2020; 167
Park (10.1016/j.chempr.2021.12.023_bib30) 2019; 123
Cuisinier (10.1016/j.chempr.2021.12.023_bib33) 2015; 5
Weller (10.1016/j.chempr.2021.12.023_bib45) 2017; 164
References_xml – volume: 5
  start-page: 2323
  year: 2021
  end-page: 2364
  ident: bib19
  article-title: Electrolyte solutions design for lithium-sulfur batteries
  publication-title: Joule
– volume: 70
  start-page: 344
  year: 2012
  end-page: 348
  ident: bib44
  article-title: Role of LiNO
  publication-title: Electrochim. Acta
– volume: 31
  start-page: 2308
  year: 2019
  end-page: 2319
  ident: bib29
  article-title: Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane
  publication-title: Chem. Mater.
– volume: 5
  start-page: 1401801
  year: 2015
  ident: bib33
  article-title: Radical or not radical: revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 9023
  year: 2017
  end-page: 9029
  ident: bib38
  article-title: Effects of anion mobility on electrochemical behaviors of lithium-sulfur batteries
  publication-title: Chem. Mater.
– volume: 45
  start-page: 62
  year: 2021
  end-page: 76
  ident: bib8
  article-title: Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries
  publication-title: Mater. Today
– volume: 139
  start-page: 8458
  year: 2017
  end-page: 8466
  ident: bib25
  article-title: Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 10186
  year: 2019
  end-page: 10196
  ident: bib27
  article-title: Designing effective solvent–catalyst interface for catalytic sulfur conversion in lithium-sulfur batteries
  publication-title: Chem. Mater.
– volume: 164
  start-page: A3766
  year: 2017
  end-page: A3771
  ident: bib45
  article-title: Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 1095
  year: 2020
  end-page: 1104
  ident: bib12
  article-title: A perspective toward practical lithium-sulfur batteries
  publication-title: ACS Cent. Sci.
– volume: 1
  start-page: 16114
  year: 2016
  ident: bib4
  article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries
  publication-title: Nat. Energy
– volume: 114
  start-page: 11751
  year: 2014
  end-page: 11787
  ident: bib2
  article-title: Rechargeable lithium-sulfur batteries
  publication-title: Chem. Rev.
– volume: 14
  start-page: 1835
  year: 2021
  end-page: 1853
  ident: bib17
  article-title: Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries
  publication-title: Energy Environ. Sci.
– volume: 31
  start-page: 1901125
  year: 2019
  ident: bib40
  article-title: Current status and future prospects of metal–sulfur batteries
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1518
  year: 2016
  end-page: 1525
  ident: bib37
  article-title: Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study
  publication-title: J. Phys. Chem. Lett.
– volume: 156
  start-page: A694
  year: 2009
  end-page: A702
  ident: bib43
  article-title: On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 539
  year: 2020
  end-page: 554
  ident: bib11
  article-title: Challenges and key parameters of lithium-sulfur batteries on pouch cell level
  publication-title: Joule
– volume: 31
  start-page: 1695
  year: 1985
  end-page: 1697
  ident: bib58
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A Gen. Phys.
– volume: 8
  start-page: 194
  year: 2017
  end-page: 201
  ident: bib42
  article-title: Towards stable lithium-sulfur batteries: mechanistic insights into electrolyte decomposition on lithium metal anode
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 19
  year: 2011
  end-page: 29
  ident: bib1
  article-title: Li–O
  publication-title: Nat. Mater.
– volume: 19
  start-page: 1441
  year: 2017
  end-page: 1448
  ident: bib31
  article-title: Thermodynamic origins of the solvent-dependent stability of lithium polysulfides from first principles
  publication-title: Phys. Chem. Chem. Phys.
– volume: 50
  start-page: 889
  year: 2004
  end-page: 892
  ident: bib39
  article-title: The effect of solvent component on the discharge performance of lithium-sulfur cell containing various organic electrolytes
  publication-title: Electrochim. Acta
– volume: 151
  start-page: A1969
  year: 2004
  end-page: A1976
  ident: bib3
  article-title: Polysulfide shuttle study in the Li/S battery system
  publication-title: J. Electrochem. Soc.
– volume: 6
  start-page: 723
  year: 2021
  end-page: 732
  ident: bib47
  article-title: Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries
  publication-title: Nat. Energy
– volume: 52
  start-page: 7182
  year: 1981
  end-page: 7190
  ident: bib57
  article-title: Polymorphic transitions in single crystals: A new molecular dynamics method
  publication-title: J. Appl. Phys.
– volume: 59
  start-page: 17634
  year: 2020
  end-page: 17640
  ident: bib22
  article-title: Beyond the polysulfide shuttle and lithium dendrite formation: addressing the sluggish sulfur redox kinetics for practical high-energy Li–S batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 1803096
  year: 2019
  ident: bib9
  article-title: Highly solvating electrolytes for lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
– volume: 52
  start-page: 12885
  year: 2016
  end-page: 12888
  ident: bib35
  article-title: Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram
  publication-title: Chem. Commun.
– volume: 11
  start-page: 2100332
  year: 2021
  ident: bib16
  article-title: Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 3375
  year: 2017
  end-page: 3379
  ident: bib32
  article-title: Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions
  publication-title: Chem. Mater.
– volume: 60
  start-page: 26622
  year: 2021
  end-page: 26629
  ident: bib18
  article-title: Engineering oversaturated Fe-N
  publication-title: Angew. Chem. Int. Ed. Engl.
– volume: 3
  start-page: 1166
  year: 2012
  ident: bib14
  article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
  publication-title: Nat. Commun.
– volume: 84
  start-page: 3973
  year: 2012
  end-page: 3980
  ident: bib36
  article-title: Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification
  publication-title: Anal. Chem.
– volume: 16
  start-page: 519
  year: 2016
  end-page: 527
  ident: bib15
  article-title: Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts
  publication-title: Nano Lett
– volume: 44
  start-page: 1272
  year: 2011
  end-page: 1276
  ident: bib55
  article-title: Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data
  publication-title: J. Appl. Crystallogr.
– volume: 134
  start-page: 18510
  year: 2012
  end-page: 18513
  ident: bib13
  article-title: Smaller sulfur molecules promise better lithium-sulfur batteries
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 783
  year: 2018
  end-page: 791
  ident: bib21
  article-title: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries
  publication-title: Nat. Energy
– volume: 57
  start-page: 16732
  year: 2018
  end-page: 16736
  ident: bib34
  article-title: The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 2696
  year: 2017
  end-page: 2705
  ident: bib6
  article-title: New insights into mossy Li induced anode degradation and its formation mechanism in Li–S batteries
  publication-title: ACS Energy Lett
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  ident: bib51
  article-title: Multiwfn: A multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
– volume: 6
  start-page: 18
  year: 2017
  end-page: 25
  ident: bib5
  article-title: The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection
  publication-title: Energy Storage Mater
– volume: 30
  start-page: 2157
  year: 2009
  end-page: 2164
  ident: bib54
  article-title: Packmol: A package for building initial configurations for molecular dynamics simulations
  publication-title: J. Comput. Chem.
– volume: 9
  start-page: 1802207
  year: 2019
  ident: bib28
  article-title: Solvent-mediated Li
  publication-title: Adv. Energy Mater.
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: bib49
  article-title: Fast parallel algorithms for short-range molecular-dynamics
  publication-title: J. Comput. Phys.
– volume: 123
  start-page: 10167
  year: 2019
  end-page: 10177
  ident: bib30
  article-title: Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species
  publication-title: J. Phys. Chem. C
– volume: 167
  start-page: 070531
  year: 2020
  ident: bib24
  article-title: Effects of polysulfide solubility and Li ion transport on performance of Li–S batteries using sparingly solvating electrolytes
  publication-title: J. Electrochem. Soc.
– volume: 60
  start-page: 15503
  year: 2021
  end-page: 15509
  ident: bib41
  article-title: Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium–sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 66
  start-page: 24
  year: 2022
  end-page: 29
  ident: bib46
  article-title: Evaluation on a 400 wh kg
  publication-title: J. Energy Chem.
– volume: 2
  start-page: 1499
  year: 2006
  end-page: 1509
  ident: bib52
  article-title: Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions
  publication-title: J. Chem. Theory Comput.
– volume: 52
  start-page: 255
  year: 1984
  end-page: 268
  ident: bib59
  article-title: A molecular dynamics method for simulations in the canonical ensemble
  publication-title: Mol. Phys.
– volume: 4
  start-page: 285
  year: 2020
  end-page: 291
  ident: bib10
  article-title: Lithium-sulfur batteries: attaining the critical metrics
  publication-title: Joule
– volume: 48
  start-page: 3279
  year: 2019
  end-page: 3319
  ident: bib26
  article-title: The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries
  publication-title: Chem. Soc. Rev.
– volume: 45
  start-page: W331
  year: 2017
  end-page: W336
  ident: bib50
  article-title: Ligpargen web server: an automatic opls-aa parameter generator for organic ligands
  publication-title: Nucleic Acids Res
– volume: 160
  start-page: A1304
  year: 2013
  end-page: A1310
  ident: bib23
  article-title: Solvate ionic liquid electrolyte for Li–S batteries
  publication-title: J. Electrochem. Soc.
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: bib56
  article-title: Vmd: visual molecular dynamics
  publication-title: J. Mol. Graph.
– volume: 5
  start-page: 561
  year: 2020
  end-page: 568
  ident: bib7
  article-title: Understanding and applying coulombic efficiency in lithium metal batteries
  publication-title: Nat. Energy
– volume: 4
  start-page: 1481
  year: 2013
  ident: bib20
  article-title: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries
  publication-title: Nat. Commun.
– volume: 8
  start-page: 2464
  year: 2007
  end-page: 2470
  ident: bib53
  article-title: Molecular dynamic simulations of ionic liquids: A reliable description of structure, thermodynamics and dynamics
  publication-title: ChemPhysChem
– volume: 13
  start-page: 3620
  year: 2020
  end-page: 3632
  ident: bib48
  article-title: Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1802207
  year: 2019
  ident: 10.1016/j.chempr.2021.12.023_bib28
  article-title: Solvent-mediated Li2S electrodeposition: A critical manipulator in lithium–sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802207
– volume: 60
  start-page: 15503
  year: 2021
  ident: 10.1016/j.chempr.2021.12.023_bib41
  article-title: Electrolyte structure of lithium polysulfides with anti-reductive solvent shells for practical lithium–sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202103470
– volume: 44
  start-page: 1272
  year: 2011
  ident: 10.1016/j.chempr.2021.12.023_bib55
  article-title: Vesta 3 for three-dimensional visualization of crystal, volumetric and morphology data
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
– volume: 3
  start-page: 783
  year: 2018
  ident: 10.1016/j.chempr.2021.12.023_bib21
  article-title: Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0214-0
– volume: 33
  start-page: 580
  year: 2012
  ident: 10.1016/j.chempr.2021.12.023_bib51
  article-title: Multiwfn: A multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 45
  start-page: 62
  year: 2021
  ident: 10.1016/j.chempr.2021.12.023_bib8
  article-title: Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2020.10.021
– volume: 31
  start-page: 2308
  year: 2019
  ident: 10.1016/j.chempr.2021.12.023_bib29
  article-title: Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03944
– volume: 70
  start-page: 344
  year: 2012
  ident: 10.1016/j.chempr.2021.12.023_bib44
  article-title: Role of LiNO3 in rechargeable lithium/sulfur battery
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2012.03.081
– volume: 8
  start-page: 2464
  year: 2007
  ident: 10.1016/j.chempr.2021.12.023_bib53
  article-title: Molecular dynamic simulations of ionic liquids: A reliable description of structure, thermodynamics and dynamics
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200700552
– volume: 11
  start-page: 19
  year: 2011
  ident: 10.1016/j.chempr.2021.12.023_bib1
  article-title: Li–O2 and Li–S batteries with high energy storage
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3191
– volume: 4
  start-page: 285
  year: 2020
  ident: 10.1016/j.chempr.2021.12.023_bib10
  article-title: Lithium-sulfur batteries: attaining the critical metrics
  publication-title: Joule
  doi: 10.1016/j.joule.2020.01.001
– volume: 66
  start-page: 24
  year: 2022
  ident: 10.1016/j.chempr.2021.12.023_bib46
  article-title: Evaluation on a 400 wh kg−1 lithium–sulfur pouch cell
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.07.010
– volume: 60
  start-page: 26622
  year: 2021
  ident: 10.1016/j.chempr.2021.12.023_bib18
  article-title: Engineering oversaturated Fe-N5 multifunctional catalytic sites for durable lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202108882
– volume: 4
  start-page: 539
  year: 2020
  ident: 10.1016/j.chempr.2021.12.023_bib11
  article-title: Challenges and key parameters of lithium-sulfur batteries on pouch cell level
  publication-title: Joule
  doi: 10.1016/j.joule.2020.02.006
– volume: 6
  start-page: 18
  year: 2017
  ident: 10.1016/j.chempr.2021.12.023_bib5
  article-title: The gap between long lifespan Li–S coin and pouch cells: the importance of lithium metal anode protection
  publication-title: Energy Storage Mater
  doi: 10.1016/j.ensm.2016.09.003
– volume: 123
  start-page: 10167
  year: 2019
  ident: 10.1016/j.chempr.2021.12.023_bib30
  article-title: Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b10175
– volume: 5
  start-page: 1401801
  year: 2015
  ident: 10.1016/j.chempr.2021.12.023_bib33
  article-title: Radical or not radical: revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401801
– volume: 5
  start-page: 561
  year: 2020
  ident: 10.1016/j.chempr.2021.12.023_bib7
  article-title: Understanding and applying coulombic efficiency in lithium metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0648-z
– volume: 14
  start-page: 33
  year: 1996
  ident: 10.1016/j.chempr.2021.12.023_bib56
  article-title: Vmd: visual molecular dynamics
  publication-title: J. Mol. Graph.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 167
  start-page: 070531
  year: 2020
  ident: 10.1016/j.chempr.2021.12.023_bib24
  article-title: Effects of polysulfide solubility and Li ion transport on performance of Li–S batteries using sparingly solvating electrolytes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ab7a81
– volume: 52
  start-page: 255
  year: 1984
  ident: 10.1016/j.chempr.2021.12.023_bib59
  article-title: A molecular dynamics method for simulations in the canonical ensemble
  publication-title: Mol. Phys.
  doi: 10.1080/00268978400101201
– volume: 29
  start-page: 3375
  year: 2017
  ident: 10.1016/j.chempr.2021.12.023_bib32
  article-title: Elucidating the solvation structure and dynamics of lithium polysulfides resulting from competitive salt and solvent interactions
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b00068
– volume: 6
  start-page: 1095
  year: 2020
  ident: 10.1016/j.chempr.2021.12.023_bib12
  article-title: A perspective toward practical lithium-sulfur batteries
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00449
– volume: 29
  start-page: 9023
  year: 2017
  ident: 10.1016/j.chempr.2021.12.023_bib38
  article-title: Effects of anion mobility on electrochemical behaviors of lithium-sulfur batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02105
– volume: 48
  start-page: 3279
  year: 2019
  ident: 10.1016/j.chempr.2021.12.023_bib26
  article-title: The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00826D
– volume: 59
  start-page: 17634
  year: 2020
  ident: 10.1016/j.chempr.2021.12.023_bib22
  article-title: Beyond the polysulfide shuttle and lithium dendrite formation: addressing the sluggish sulfur redox kinetics for practical high-energy Li–S batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202007159
– volume: 117
  start-page: 1
  year: 1995
  ident: 10.1016/j.chempr.2021.12.023_bib49
  article-title: Fast parallel algorithms for short-range molecular-dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 11
  start-page: 2100332
  year: 2021
  ident: 10.1016/j.chempr.2021.12.023_bib16
  article-title: Defect engineering for expediting Li–S chemistry: strategies, mechanisms, and perspectives
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100332
– volume: 7
  start-page: 1518
  year: 2016
  ident: 10.1016/j.chempr.2021.12.023_bib37
  article-title: Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00228
– volume: 52
  start-page: 12885
  year: 2016
  ident: 10.1016/j.chempr.2021.12.023_bib35
  article-title: Predicting the composition and formation of solid products in lithium-sulfur batteries by using an experimental phase diagram
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC05881G
– volume: 84
  start-page: 3973
  year: 2012
  ident: 10.1016/j.chempr.2021.12.023_bib36
  article-title: Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification
  publication-title: Anal. Chem.
  doi: 10.1021/ac2032244
– volume: 45
  start-page: W331
  year: 2017
  ident: 10.1016/j.chempr.2021.12.023_bib50
  article-title: Ligpargen web server: an automatic opls-aa parameter generator for organic ligands
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx312
– volume: 139
  start-page: 8458
  year: 2017
  ident: 10.1016/j.chempr.2021.12.023_bib25
  article-title: Healing high-loading sulfur electrodes with unprecedented long cycling life: spatial heterogeneity control
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12358
– volume: 134
  start-page: 18510
  year: 2012
  ident: 10.1016/j.chempr.2021.12.023_bib13
  article-title: Smaller sulfur molecules promise better lithium-sulfur batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308170k
– volume: 164
  start-page: A3766
  year: 2017
  ident: 10.1016/j.chempr.2021.12.023_bib45
  article-title: Intrinsic shuttle suppression in lithium-sulfur batteries for pouch cell application
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0981714jes
– volume: 2
  start-page: 2696
  year: 2017
  ident: 10.1016/j.chempr.2021.12.023_bib6
  article-title: New insights into mossy Li induced anode degradation and its formation mechanism in Li–S batteries
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.7b00886
– volume: 4
  start-page: 1481
  year: 2013
  ident: 10.1016/j.chempr.2021.12.023_bib20
  article-title: A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2513
– volume: 160
  start-page: A1304
  year: 2013
  ident: 10.1016/j.chempr.2021.12.023_bib23
  article-title: Solvate ionic liquid electrolyte for Li–S batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.111308jes
– volume: 57
  start-page: 16732
  year: 2018
  ident: 10.1016/j.chempr.2021.12.023_bib34
  article-title: The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201810132
– volume: 1
  start-page: 16114
  year: 2016
  ident: 10.1016/j.chempr.2021.12.023_bib4
  article-title: Design principles for electrolytes and interfaces for stable lithium-metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.114
– volume: 9
  start-page: 1803096
  year: 2019
  ident: 10.1016/j.chempr.2021.12.023_bib9
  article-title: Highly solvating electrolytes for lithium-sulfur batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803096
– volume: 31
  start-page: 10186
  year: 2019
  ident: 10.1016/j.chempr.2021.12.023_bib27
  article-title: Designing effective solvent–catalyst interface for catalytic sulfur conversion in lithium-sulfur batteries
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03885
– volume: 14
  start-page: 1835
  year: 2021
  ident: 10.1016/j.chempr.2021.12.023_bib17
  article-title: Recent progress on pristine metal/covalent-organic frameworks and their composites for lithium-sulfur batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE03181J
– volume: 2
  start-page: 1499
  year: 2006
  ident: 10.1016/j.chempr.2021.12.023_bib52
  article-title: Halide, ammonium, and alkali metal ion parameters for modeling aqueous solutions
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct600252r
– volume: 52
  start-page: 7182
  year: 1981
  ident: 10.1016/j.chempr.2021.12.023_bib57
  article-title: Polymorphic transitions in single crystals: A new molecular dynamics method
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.328693
– volume: 19
  start-page: 1441
  year: 2017
  ident: 10.1016/j.chempr.2021.12.023_bib31
  article-title: Thermodynamic origins of the solvent-dependent stability of lithium polysulfides from first principles
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP06889H
– volume: 31
  start-page: 1901125
  year: 2019
  ident: 10.1016/j.chempr.2021.12.023_bib40
  article-title: Current status and future prospects of metal–sulfur batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901125
– volume: 50
  start-page: 889
  year: 2004
  ident: 10.1016/j.chempr.2021.12.023_bib39
  article-title: The effect of solvent component on the discharge performance of lithium-sulfur cell containing various organic electrolytes
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.01.093
– volume: 8
  start-page: 194
  year: 2017
  ident: 10.1016/j.chempr.2021.12.023_bib42
  article-title: Towards stable lithium-sulfur batteries: mechanistic insights into electrolyte decomposition on lithium metal anode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.01.003
– volume: 6
  start-page: 723
  year: 2021
  ident: 10.1016/j.chempr.2021.12.023_bib47
  article-title: Balancing interfacial reactions to achieve long cycle life in high-energy lithium metal batteries
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00852-3
– volume: 30
  start-page: 2157
  year: 2009
  ident: 10.1016/j.chempr.2021.12.023_bib54
  article-title: Packmol: A package for building initial configurations for molecular dynamics simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 31
  start-page: 1695
  year: 1985
  ident: 10.1016/j.chempr.2021.12.023_bib58
  article-title: Canonical dynamics: equilibrium phase-space distributions
  publication-title: Phys. Rev. A Gen. Phys.
  doi: 10.1103/PhysRevA.31.1695
– volume: 3
  start-page: 1166
  year: 2012
  ident: 10.1016/j.chempr.2021.12.023_bib14
  article-title: Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2163
– volume: 114
  start-page: 11751
  year: 2014
  ident: 10.1016/j.chempr.2021.12.023_bib2
  article-title: Rechargeable lithium-sulfur batteries
  publication-title: Chem. Rev.
  doi: 10.1021/cr500062v
– volume: 156
  start-page: A694
  year: 2009
  ident: 10.1016/j.chempr.2021.12.023_bib43
  article-title: On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3148721
– volume: 13
  start-page: 3620
  year: 2020
  ident: 10.1016/j.chempr.2021.12.023_bib48
  article-title: Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02088E
– volume: 151
  start-page: A1969
  year: 2004
  ident: 10.1016/j.chempr.2021.12.023_bib3
  article-title: Polysulfide shuttle study in the Li/S battery system
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1806394
– volume: 16
  start-page: 519
  year: 2016
  ident: 10.1016/j.chempr.2021.12.023_bib15
  article-title: Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.5b04166
– volume: 5
  start-page: 2323
  year: 2021
  ident: 10.1016/j.chempr.2021.12.023_bib19
  article-title: Electrolyte solutions design for lithium-sulfur batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2021.06.009
SSID ssj0001821750
Score 2.539066
Snippet Practical lithium–sulfur batteries are severely hindered by parasitic reactions between lithium metal anodes and soluble lithium polysulfide (LiPS)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1083
SubjectTerms di-isopropyl sulfide
encapsulating lithium polysulfide electrolyte
lithium–sulfur battery
solvation structure
solvent shell
Title An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries
URI https://dx.doi.org/10.1016/j.chempr.2021.12.023
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZge4EDojxEC1Q5cFu5SmxvHscVAlVUQoBasT1FduyorbbZVZUcyon_wD_kl_AltpO0XRXKJYq8Y-cxX-a14xlC3kGpmDhLDJXQDVRogTOtS5rOQlkkUmWF6hJkP8cHx-LTYrYYAvrd7pJa7Rc_Nu4r-R-uYgx8bXfJ3oOz_aIYwDn4iyM4jOM_8XheTXE7Eo5um9EGnx829elZc0HXq-UVBsszbaau0c3yqrb1vd2-KLDGUft8B97OaC6nqiu56ZMLfRWDUxfj7VJtG-vO0y_GKb5x6HnRGPoVqOt_OZErJ8iHZAIr7RY9mQs8wGdtKxyKQT4xMYsorCsxFqbpCDNiJBij0ParcUo2Cm3v6VsC3MYSzveB2It1W6-VRV24lvFBYfk_6W_osT670Ceuned2lbxdJY9YjlUeki0Gh4JNyNb88Nv3wyEel8I56xr69s_ld1p26YC3b2izJTOyTo6ekifOrQjmFiPb5IGpnpHHo2KTz8nJvAquoSXYgJZghJYAaAl6tHjq3z9_WZwEPU5ekOOPH47eH1DXWIMWcJBrqso4lpwXRsYzYXSoOCS3ZDopuEnCTENBRqUUXJeZNjxLE8UZL0WsEiVgEDL-kkyqVWVekSAyKk0jTMtCKTBLxbyQaVwaA-LE8B3C_UvKC1d1vm1-sszv4tIOof2sta268hf6xL__3FmO1iLMgas7Z-7e80qvyaPhW3hDJvVlY97CLK3VnkPUH3H8kbM
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+encapsulating+lithium-polysulfide+electrolyte+for+practical+lithium%E2%80%93sulfur+batteries&rft.jtitle=Chem&rft.au=Hou%2C+Li-Peng&rft.au=Zhang%2C+Xue-Qiang&rft.au=Yao%2C+Nan&rft.au=Chen%2C+Xiang&rft.date=2022-04-14&rft.issn=2451-9294&rft.volume=8&rft.issue=4&rft.spage=1083&rft.epage=1098&rft_id=info:doi/10.1016%2Fj.chempr.2021.12.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chempr_2021_12_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2451-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2451-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2451-9294&client=summon