Multiple mechanisms of termination modulate the dynamics of RNAPI transcription
Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by “torsional entrainment” generated by DNA rotation. We report that release of entrainment by co-transcriptional 3′ end cleavage, is permissiv...
Saved in:
Published in | Cell reports (Cambridge) Vol. 44; no. 3; p. 115325 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
25.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2025.115325 |
Cover
Loading…
Abstract | Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by “torsional entrainment” generated by DNA rotation. We report that release of entrainment by co-transcriptional 3′ end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5′ exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse “torpedoes”: Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems.
[Display omitted]
•Nascent pre-rRNA 3′ cleavage promotes RNAPI deceleration and termination•RNAPI undergoes early start-site proximal termination at sites of polymerase pausing•Biophysical modeling indicates ∼10% early termination of RNAPI•Model supports roles of additional rDNA repeats in buffering pre-rRNA transcription
Petfalski et al. reveal complexities in RNAPI termination. Torsion release, through nascent pre-rRNA cleavage by Rnt1, favors RNAPI pausing and torpedo termination by the exonuclease Rat1, aided by Nsi1 roadblocks and RNAPI-mediated endonuclease cleavage. Termination of prematurely stalled RNAPI is facilitated by TRAMP-mediated nascent transcript polyadenylation and a reverse torpedo mechanism. |
---|---|
AbstractList | Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by "torsional entrainment" generated by DNA rotation. We report that release of entrainment by co-transcriptional 3' end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5' exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse "torpedoes": Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems.Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by "torsional entrainment" generated by DNA rotation. We report that release of entrainment by co-transcriptional 3' end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5' exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse "torpedoes": Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems. Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by “torsional entrainment” generated by DNA rotation. We report that release of entrainment by co-transcriptional 3′ end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5′ exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse “torpedoes”: Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems. [Display omitted] •Nascent pre-rRNA 3′ cleavage promotes RNAPI deceleration and termination•RNAPI undergoes early start-site proximal termination at sites of polymerase pausing•Biophysical modeling indicates ∼10% early termination of RNAPI•Model supports roles of additional rDNA repeats in buffering pre-rRNA transcription Petfalski et al. reveal complexities in RNAPI termination. Torsion release, through nascent pre-rRNA cleavage by Rnt1, favors RNAPI pausing and torpedo termination by the exonuclease Rat1, aided by Nsi1 roadblocks and RNAPI-mediated endonuclease cleavage. Termination of prematurely stalled RNAPI is facilitated by TRAMP-mediated nascent transcript polyadenylation and a reverse torpedo mechanism. Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by "torsional entrainment" generated by DNA rotation. We report that release of entrainment by co-transcriptional 3' end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5' exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse "torpedoes": Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems. |
ArticleNumber | 115325 |
Author | Tollervey, David Grelewska-Nowotko, Katarzyna Turowski, Tomasz W. Winz, Marie-Luise Petfalski, Elisabeth |
Author_xml | – sequence: 1 givenname: Elisabeth surname: Petfalski fullname: Petfalski, Elisabeth organization: Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK – sequence: 2 givenname: Marie-Luise surname: Winz fullname: Winz, Marie-Luise organization: Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK – sequence: 3 givenname: Katarzyna surname: Grelewska-Nowotko fullname: Grelewska-Nowotko, Katarzyna organization: Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warszawa, Poland – sequence: 4 givenname: Tomasz W. surname: Turowski fullname: Turowski, Tomasz W. email: tomasz.turowski@ibb.waw.pl organization: Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warszawa, Poland – sequence: 5 givenname: David orcidid: 0000-0003-2894-2772 surname: Tollervey fullname: Tollervey, David email: d.tollervey@ed.ac.uk organization: Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39999833$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoNUtNb-A5E9emnNJPvVi1CKH4X6geg5ZJNZTNnNrklW6L9366p4ci4zh-d9YZ4TMrKNRULOgM6BQnq5nSusHLZzRlkyB0g4Sw7ImDGAGbA4G_25j8nU-y3tJ6UAi_iIHPNFPznnY_J431XBtBVGNao3aY2vfdSUUUBXGyuDaWxUN7qrZMAovGGkd1bWRn1Bzw_Lp3UUnLReOdPu4VNyWMrK4_R7T8jrzfXL6m62ebxdr5abmWJ5FmaF1FJySMuFTkoKuc4VxizGJNYpz5NMcwqF5jJJC6lSxjK2oLzMtQKdUFqkfEIuht7WNe8d-iBq43snlbTYdF5wyIBnKY_36Pk32hU1atE6U0u3Ez8SeiAeAOUa7x2WvwhQsdcttmLQLfa6xaC7j10NMez__DDohFcGrUJtHKogdGP-L_gET7OJSg |
Cites_doi | 10.1073/pnas.92.21.9781 10.1128/MCB.00395-14 10.1038/sj.embor.7400612 10.1093/emboj/17.4.1128 10.1038/s41594-021-00578-6 10.1073/pnas.0605686103 10.1186/1752-0509-2-87 10.1093/nar/gks188 10.1007/978-1-60327-461-6_4 10.1261/rna.2900205 10.7554/eLife.27082 10.1038/s41467-019-08382-z 10.1101/gad.6.7.1173 10.1093/bioinformatics/bts635 10.1016/j.jmb.2016.04.017 10.1093/bioinformatics/btq033 10.1101/gad.463408 10.1046/j.1365-2958.2002.02824.x 10.1073/pnas.1517011113 10.1038/nature07731 10.1038/s41580-020-00308-8 10.1016/j.cell.2007.10.051 10.1093/bioinformatics/btp352 10.1016/j.biocel.2019.03.006 10.1016/j.molcel.2012.08.013 10.1371/journal.pone.0285660 10.1016/j.celrep.2023.112463 10.3390/biology1030895 10.1017/S135583829999026X 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U 10.1038/s41467-020-16965-4 10.1186/gb-2014-15-1-r8 10.1016/j.bpj.2021.03.007 10.1038/nature12712 10.1016/j.jbc.2022.101862 10.1128/MCB.18.3.1181 10.1016/j.molcel.2020.06.002 10.1038/ncomms12248 10.1038/nature07747 10.1016/j.cell.2005.04.029 10.1006/jmbi.1996.0707 10.1038/emboj.2011.256 10.1038/emboj.2012.185 10.1016/j.cell.2015.07.060 10.1016/j.molcel.2013.02.017 10.1002/yea.3362 10.1128/MCB.26.10.3986-3996.2006 10.1016/S0968-0004(97)01133-X 10.1016/j.celrep.2012.07.009 10.1016/j.molcel.2010.02.024 10.1006/jmbi.1999.3154 10.1074/jbc.M109.013847 10.1038/326414a0 10.1016/j.cell.2016.02.045 10.1016/j.molcel.2019.09.031 10.1101/gr.205492.116 10.1073/pnas.90.16.7637 10.3390/genes12121939 10.7554/eLife.00971 10.1016/j.molcel.2018.10.031 10.1016/S0968-0004(99)01460-7 10.1016/j.jmb.2021.166975 10.1093/nar/gku148 10.1016/j.molcel.2022.12.021 10.1101/gad.573310 10.1128/MCB.16.9.5139 10.1074/jbc.270.27.16063 10.1093/nar/gkw257 10.1093/nar/gkq894 10.1093/nar/gki950 10.1371/journal.pgen.1006699 10.1016/j.cell.2011.03.051 10.1093/nar/gkn614 10.1002/j.1460-2075.1994.tb06530.x 10.1101/gad.463708 10.1371/journal.pgen.1004716 10.1002/yea.3098 10.1126/science.1235441 10.1371/journal.pcbi.1005069 10.1128/MCB.20.11.4006-4015.2000 10.1038/nature09785 10.1073/pnas.0401393101 10.1016/j.cell.2013.07.047 |
ContentType | Journal Article |
Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.celrep.2025.115325 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | 39999833 10_1016_j_celrep_2025_115325 S2211124725000968 |
Genre | Journal Article |
GroupedDBID | 0R~ 4.4 457 53G 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAMRU AAXUO AAYWO ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AENEX AEUPX AEXQZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 O-L O9- OK1 ROL SSZ AAYXX CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c287t-badaa316f9d5f018d8ce424e54d63857d301bd3a56bac62272903f8dc1d500b63 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Fri Jul 11 14:34:47 EDT 2025 Sun May 11 01:41:44 EDT 2025 Thu Jul 03 08:37:01 EDT 2025 Sat Jul 05 17:10:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | ribosome synthesis transcription RNA-protein interactions UV crosslinking biophysical modeling CP: Molecular biology topoisomerase RNA polymerase exosome DNA torsion yeast |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c287t-badaa316f9d5f018d8ce424e54d63857d301bd3a56bac62272903f8dc1d500b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2894-2772 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124725000968 |
PMID | 39999833 |
PQID | 3171376346 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3171376346 pubmed_primary_39999833 crossref_primary_10_1016_j_celrep_2025_115325 elsevier_sciencedirect_doi_10_1016_j_celrep_2025_115325 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-25 |
PublicationDateYYYYMMDD | 2025-03-25 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2025 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | El Hage, French, Beyer, Tollervey (bib7) 2010; 24 Jiao, Chang, Kilic, Tong, Kiledjian (bib84) 2013; 50 Sheridan, Fong, D’Alessandro, Bentley (bib5) 2019; 73 Schneider, Kudla, Wlotzka, Tuck, Tollervey (bib52) 2012; 48 Henry, Wood, Morrissey, Petfalski, Kearsey, Tollervey (bib73) 1994; 13 Dangkulwanich, Ishibashi, Liu, Kireeva, Lubkowska, Kashlev, Bustamante (bib2) 2013; 2 Delan-Forino, Spanos, Rappsilber, Tollervey (bib51) 2020; 11 Warner (bib58) 1999; 24 Cortazar, Sheridan, Erickson, Fong, Glover-Cutter, Brannan, Bentley (bib65) 2019; 76 Mendoza-Ochoa, Barrass, Terlouw, Maudlin, de Lucas, Sani, Aslanzadeh, Reid, Beggs (bib36) 2019; 36 Winz, Peil, Turowski, Rappsilber, Tollervey (bib55) 2019; 10 Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib79) 2013; 29 Lesne, Victor, Bertrand, Basyuk, Barbi (bib33) 2018 Fang, Phillips, Butler (bib37) 2005; 11 Engel, Sainsbury, Cheung, Kostrewa, Cramer (bib85) 2013; 502 Peil, Waghmare, Fischer, Spitzer, Petfalski, Tollervey, Rappsilber (bib54) 2018 Merkl, Perez-Fernandez, Pilsl, Reiter, Williams, Gerber, Böhm, Deutzmann, Griesenbeck, Milkereit, Tschochner (bib24) 2014; 34 Neil, Malabat, d'Aubenton-Carafa, Xu, Steinmetz, Jacquier (bib41) 2009; 457 Amberg, Goldstein, Cole (bib48) 1992; 6 Reeder, Lang (bib15) 1997; 22 Dodt, Roehr, Ahmed, Dieterich (bib86) 2012; 1 Quinlan, Hall (bib78) 2010; 26 El Hage, Koper, Kufel, Tollervey (bib19) 2008; 22 Houseley, Tollervey (bib74) 2006; 7 Kawauchi, Mischo, Braglia, Rondon, Proudfoot (bib20) 2008; 22 Ibars, Codina-Fabra, Bellí, Casas, Tarrés, Solé-Soler, Lorite, Ximénez-Embún, Muñoz, Colomina, Torres-Rosell (bib60) 2023; 42 Laughery, Hunter, Brown, Hoopes, Ostbye, Shumaker, Wyrick (bib80) 2015; 32 Delan-Forino, Schneider, Tollervey (bib40) 2017; 13 Lang, Reeder (bib18) 1995; 92 Kos, Tollervey (bib10) 2010; 37 de la Cruz, Kressler, Tollervey, Linder (bib44) 1998; 17 Braglia, Kawauchi, Proudfoot (bib31) 2011; 39 Webb, Hector, Kudla, Granneman (bib76) 2014; 15 Saldi, Cortazar, Sheridan, Bentley (bib64) 2016; 428 Wittner, Hamperl, Stöckl, Seufert, Tschochner, Milkereit, Griesenbeck (bib56) 2011; 145 Clarke, Huffines, Edwards, Petit, Schneider (bib25) 2021; 12 El Hage, Webb, Kerr, Tollervey (bib67) 2014; 10 Turowski, Leśniewska, Delan-Forino, Sayou, Boguta, Tollervey (bib50) 2016; 26 Krawczyk, Dion, Schär, Fritsch (bib70) 2014; 42 Tantale, Mueller, Kozulic-Pirher, Lesne, Victor, Robert, Capozi, Chouaib, Bäcker, Mateos-Langerak (bib34) 2016; 7 Petfalski, Dandekar, Henry, Tollervey (bib47) 1998; 18 Brill, DiNardo, Voelkel-Meiman, Sternglanz (bib11) 1987; 326 Oesterreich, Herzel, Straube, Hujer, Howard, Neugebauer (bib62) 2016; 165 Park, Parrott, Fritz, Park, Mathews, Lee (bib53) 2008; 36 LaCava, Houseley, Saveanu, Petfalski, Thompson, Jacquier, Tollervey (bib75) 2005; 121 Thoms, Thomson, Baßler, Gnädig, Griesel, Hurt (bib45) 2015; 162 Schwank, Schmid, Fremter, Milkereit, Griesenbeck, Tschochner (bib29) 2022; 298 Granneman, Petfalski, Tollervey (bib81) 2011; 30 Xue, Bai, Lee, Kallstrom, Ho, Brown, Stevens, Johnson (bib38) 2000; 20 Osheim, French, Sikes, Beyer (bib57) 2009; 464 Reiter, Hamperl, Seitz, Merkl, Perez-Fernandez, Williams, Gerber, Németh, Léger, Gadal (bib23) 2012; 31 Turowski, Petfalski, Goddard, French, Helwak, Tollervey (bib8) 2020; 79 Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib77) 2009; 25 Kufel, Dichtl, Tollervey (bib21) 1999; 5 Dengl, Cramer (bib82) 2009; 284 Ford, Wei, Liu, Scull, Najmi, Pitts, Fan, Schneider, Laiho (bib26) 2023; 18 Van Mullem, Landrieux, Vandenhaute, Thuriaux (bib30) 2002; 43 Ramírez, Ryan, Grüning, Bhardwaj, Kilpert, Richter, Heyne, Dündar, Manke (bib87) 2016; 44 Longtine, McKenzie, Demarini, Shah, Wach, Brachat, Philippsen, Pringle (bib72) 1998; 14 Kenna, Stevens, McCammon, Douglas (bib39) 1993; 13 Cheung, Cramer (bib49) 2011; 471 Di Felice, Egidi, D'Alfonso, Camilloni (bib14) 2019; 110 Heberling, Davis, Gedeon, Morgan, Gedeon (bib35) 2016; 12 Stevens, Poole (bib46) 1995; 270 Lang, Reeder (bib17) 1993; 13 Scull, Lucius, Schneider (bib28) 2021; 120 Di Felice, Cioci, Camilloni (bib13) 2005; 33 Liang, Hitomi, Hu, Liu, Tartakoff (bib43) 1996; 16 von der Haar (bib59) 2008; 2 Ha, Sung, Huh (bib22) 2012; 40 Tuck, Tollervey (bib42) 2013; 154 Farnung, Ochmann, Engeholm, Cramer (bib68) 2021; 28 Christman, Dietrich, Levin, Sadoff, Fink (bib71) 1993; 90 Prescott, Osheim, Jones, Alen, Roan, Reeder, Beyer, Proudfoot (bib16) 2004; 101 Rodríguez-Molina, West, Passmore (bib6) 2023; 83 Noe Gonzalez, Blears, Svejstrup (bib4) 2021; 22 Milligan, Sayou, Tuck, Auchynnikava, Reid, Alexander, Alves, Allshire, Spanos, Rappsilber (bib63) 2017; 6 Lisica, Engel, Jahnel, Roldán, Galburt, Cramer, Grill (bib66) 2016; 113 Xiang, Cooper-Morgan, Jiao, Kiledjian, Manley, Tong (bib83) 2009; 458 Richardson, Reed, Charette, Freed, Fredrickson, Locke, Baserga, Gardner (bib61) 2012; 2 Schärfen, Neugebauer (bib9) 2021; 433 Vogelauer, Camilloni (bib12) 1999; 293 Guajardo, Sousa (bib3) 1997; 265 Gromak, West, Proudfoot (bib32) 2006; 26 Schneider, French, Osheim, Bailey, Vu, Dodd, Yates, Beyer, Nomura (bib69) 2006; 103 Kuhn, Geiger, Baumli, Gartmann, Gerber, Jennebach, Mielke, Tschochner, Beckmann, Cramer (bib27) 2007; 131 Ma, Bai, Wang (bib1) 2013; 340 Guajardo (10.1016/j.celrep.2025.115325_bib3) 1997; 265 Scull (10.1016/j.celrep.2025.115325_bib28) 2021; 120 Cortazar (10.1016/j.celrep.2025.115325_bib65) 2019; 76 Dengl (10.1016/j.celrep.2025.115325_bib82) 2009; 284 Kufel (10.1016/j.celrep.2025.115325_bib21) 1999; 5 Fang (10.1016/j.celrep.2025.115325_bib37) 2005; 11 Henry (10.1016/j.celrep.2025.115325_bib73) 1994; 13 Delan-Forino (10.1016/j.celrep.2025.115325_bib51) 2020; 11 Merkl (10.1016/j.celrep.2025.115325_bib24) 2014; 34 Turowski (10.1016/j.celrep.2025.115325_bib50) 2016; 26 El Hage (10.1016/j.celrep.2025.115325_bib7) 2010; 24 Engel (10.1016/j.celrep.2025.115325_bib85) 2013; 502 Gromak (10.1016/j.celrep.2025.115325_bib32) 2006; 26 Rodríguez-Molina (10.1016/j.celrep.2025.115325_bib6) 2023; 83 Longtine (10.1016/j.celrep.2025.115325_bib72) 1998; 14 Lisica (10.1016/j.celrep.2025.115325_bib66) 2016; 113 Jiao (10.1016/j.celrep.2025.115325_bib84) 2013; 50 Osheim (10.1016/j.celrep.2025.115325_bib57) 2009; 464 El Hage (10.1016/j.celrep.2025.115325_bib19) 2008; 22 Ha (10.1016/j.celrep.2025.115325_bib22) 2012; 40 Laughery (10.1016/j.celrep.2025.115325_bib80) 2015; 32 Granneman (10.1016/j.celrep.2025.115325_bib81) 2011; 30 Kawauchi (10.1016/j.celrep.2025.115325_bib20) 2008; 22 Kuhn (10.1016/j.celrep.2025.115325_bib27) 2007; 131 Xiang (10.1016/j.celrep.2025.115325_bib83) 2009; 458 Lang (10.1016/j.celrep.2025.115325_bib17) 1993; 13 Schneider (10.1016/j.celrep.2025.115325_bib52) 2012; 48 Amberg (10.1016/j.celrep.2025.115325_bib48) 1992; 6 Richardson (10.1016/j.celrep.2025.115325_bib61) 2012; 2 Oesterreich (10.1016/j.celrep.2025.115325_bib62) 2016; 165 Schärfen (10.1016/j.celrep.2025.115325_bib9) 2021; 433 Braglia (10.1016/j.celrep.2025.115325_bib31) 2011; 39 Thoms (10.1016/j.celrep.2025.115325_bib45) 2015; 162 Reeder (10.1016/j.celrep.2025.115325_bib15) 1997; 22 Sheridan (10.1016/j.celrep.2025.115325_bib5) 2019; 73 de la Cruz (10.1016/j.celrep.2025.115325_bib44) 1998; 17 Li (10.1016/j.celrep.2025.115325_bib77) 2009; 25 Ramírez (10.1016/j.celrep.2025.115325_bib87) 2016; 44 Van Mullem (10.1016/j.celrep.2025.115325_bib30) 2002; 43 Petfalski (10.1016/j.celrep.2025.115325_bib47) 1998; 18 Houseley (10.1016/j.celrep.2025.115325_bib74) 2006; 7 Clarke (10.1016/j.celrep.2025.115325_bib25) 2021; 12 Ibars (10.1016/j.celrep.2025.115325_bib60) 2023; 42 LaCava (10.1016/j.celrep.2025.115325_bib75) 2005; 121 Milligan (10.1016/j.celrep.2025.115325_bib63) 2017; 6 Dangkulwanich (10.1016/j.celrep.2025.115325_bib2) 2013; 2 Liang (10.1016/j.celrep.2025.115325_bib43) 1996; 16 Warner (10.1016/j.celrep.2025.115325_bib58) 1999; 24 Saldi (10.1016/j.celrep.2025.115325_bib64) 2016; 428 Schneider (10.1016/j.celrep.2025.115325_bib69) 2006; 103 Di Felice (10.1016/j.celrep.2025.115325_bib14) 2019; 110 Dobin (10.1016/j.celrep.2025.115325_bib79) 2013; 29 Turowski (10.1016/j.celrep.2025.115325_bib8) 2020; 79 Neil (10.1016/j.celrep.2025.115325_bib41) 2009; 457 Tuck (10.1016/j.celrep.2025.115325_bib42) 2013; 154 Reiter (10.1016/j.celrep.2025.115325_bib23) 2012; 31 Peil (10.1016/j.celrep.2025.115325_bib54) 2018 Ma (10.1016/j.celrep.2025.115325_bib1) 2013; 340 El Hage (10.1016/j.celrep.2025.115325_bib67) 2014; 10 Lesne (10.1016/j.celrep.2025.115325_bib33) 2018 Heberling (10.1016/j.celrep.2025.115325_bib35) 2016; 12 Kenna (10.1016/j.celrep.2025.115325_bib39) 1993; 13 Lang (10.1016/j.celrep.2025.115325_bib18) 1995; 92 Dodt (10.1016/j.celrep.2025.115325_bib86) 2012; 1 Di Felice (10.1016/j.celrep.2025.115325_bib13) 2005; 33 Delan-Forino (10.1016/j.celrep.2025.115325_bib40) 2017; 13 Krawczyk (10.1016/j.celrep.2025.115325_bib70) 2014; 42 Christman (10.1016/j.celrep.2025.115325_bib71) 1993; 90 Tantale (10.1016/j.celrep.2025.115325_bib34) 2016; 7 Webb (10.1016/j.celrep.2025.115325_bib76) 2014; 15 Noe Gonzalez (10.1016/j.celrep.2025.115325_bib4) 2021; 22 Kos (10.1016/j.celrep.2025.115325_bib10) 2010; 37 Prescott (10.1016/j.celrep.2025.115325_bib16) 2004; 101 Winz (10.1016/j.celrep.2025.115325_bib55) 2019; 10 Farnung (10.1016/j.celrep.2025.115325_bib68) 2021; 28 Stevens (10.1016/j.celrep.2025.115325_bib46) 1995; 270 Vogelauer (10.1016/j.celrep.2025.115325_bib12) 1999; 293 Mendoza-Ochoa (10.1016/j.celrep.2025.115325_bib36) 2019; 36 Park (10.1016/j.celrep.2025.115325_bib53) 2008; 36 Brill (10.1016/j.celrep.2025.115325_bib11) 1987; 326 Wittner (10.1016/j.celrep.2025.115325_bib56) 2011; 145 Cheung (10.1016/j.celrep.2025.115325_bib49) 2011; 471 Schwank (10.1016/j.celrep.2025.115325_bib29) 2022; 298 Ford (10.1016/j.celrep.2025.115325_bib26) 2023; 18 von der Haar (10.1016/j.celrep.2025.115325_bib59) 2008; 2 Xue (10.1016/j.celrep.2025.115325_bib38) 2000; 20 Quinlan (10.1016/j.celrep.2025.115325_bib78) 2010; 26 |
References_xml | – volume: 15 year: 2014 ident: bib76 article-title: PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast publication-title: Genome Biol. – volume: 44 start-page: W160 year: 2016 end-page: W165 ident: bib87 article-title: deepTools2: a next generation web server for deep-sequencing data analysis publication-title: Nucleic Acids Res. – volume: 92 start-page: 9781 year: 1995 end-page: 9785 ident: bib18 article-title: Transcription termination of RNA polymerase I due to a T-rich element interacting with Reb1p publication-title: Proc. Natl. Acad. Sci. USA – volume: 6 start-page: 1173 year: 1992 end-page: 1189 ident: bib48 article-title: Isolation and characterization of RAT1: an essential gene of publication-title: Genes Dev. – volume: 43 start-page: 1105 year: 2002 end-page: 1113 ident: bib30 article-title: Rpa12p, a conserved RNA polymerase I subunit with two functional domains publication-title: Mol. Microbiol. – volume: 83 start-page: 404 year: 2023 end-page: 415 ident: bib6 article-title: Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII publication-title: Mol. Cell – volume: 36 start-page: 75 year: 2019 end-page: 81 ident: bib36 article-title: A fast and tuneable auxin-inducible degron for depletion of target proteins in budding yeast publication-title: Yeast – volume: 26 start-page: 933 year: 2016 end-page: 944 ident: bib50 article-title: Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts publication-title: Genome Res. – volume: 50 start-page: 104 year: 2013 end-page: 115 ident: bib84 article-title: A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing publication-title: Mol. Cell – volume: 340 start-page: 1580 year: 2013 end-page: 1583 ident: bib1 article-title: Transcription Under Torsion publication-title: Science – volume: 270 start-page: 16063 year: 1995 end-page: 16069 ident: bib46 article-title: 5'-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5'-exonuclease-1 publication-title: J. Biol. Chem. – volume: 14 start-page: 953 year: 1998 end-page: 961 ident: bib72 article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae publication-title: Yeast – volume: 433 year: 2021 ident: bib9 article-title: Transcription Regulation Through Nascent RNA Folding publication-title: J. Mol. Biol. – volume: 36 start-page: 6080 year: 2008 end-page: 6090 ident: bib53 article-title: Regulation of the catalytic function of topoisomerase II alpha through association with RNA publication-title: Nucleic Acids Res. – volume: 76 start-page: 896 year: 2019 end-page: 908.e4 ident: bib65 article-title: Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a “Sitting Duck Torpedo” Mechanism publication-title: Mol. Cell – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: bib77 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics – volume: 284 start-page: 21270 year: 2009 end-page: 21279 ident: bib82 article-title: Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro publication-title: J. Biol. Chem. – volume: 28 start-page: 382 year: 2021 end-page: 387 ident: bib68 article-title: Structural basis of nucleosome transcription mediated by Chd1 and FACT publication-title: Nat. Struct. Mol. Biol. – volume: 103 start-page: 12707 year: 2006 end-page: 12712 ident: bib69 article-title: RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing publication-title: Proc. Natl. Acad. Sci. USA – volume: 1 start-page: 895 year: 2012 end-page: 905 ident: bib86 article-title: FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms publication-title: Biology – volume: 10 start-page: 563 year: 2019 ident: bib55 article-title: Molecular interactions between Hel2 and RNA supporting ribosome-associated quality control publication-title: Nat. Commun. – volume: 5 start-page: 909 year: 1999 end-page: 917 ident: bib21 article-title: Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3' ETS but not the 5' ETS publication-title: RNA – volume: 29 start-page: 15 year: 2013 end-page: 21 ident: bib79 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics – volume: 6 year: 2017 ident: bib63 article-title: RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit publication-title: Elife – volume: 471 start-page: 249 year: 2011 end-page: 253 ident: bib49 article-title: Structural basis of RNA polymerase II backtracking, arrest and reactivation publication-title: Nature – volume: 37 start-page: 809 year: 2010 end-page: 820 ident: bib10 article-title: Yeast pre-rRNA processing and modification occur cotranscriptionally publication-title: Mol. Cell – volume: 7 start-page: 205 year: 2006 end-page: 211 ident: bib74 article-title: Yeast Trf5p is a nuclear poly(A) polymerase publication-title: EMBO Rep. – volume: 48 start-page: 422 year: 2012 end-page: 433 ident: bib52 article-title: Transcriptome-wide analysis of exosome targets publication-title: Mol. Cell – volume: 13 start-page: 2452 year: 1994 end-page: 2463 ident: bib73 article-title: The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site publication-title: EMBO J. – volume: 7 start-page: 12248 year: 2016 ident: bib34 article-title: A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting publication-title: Nat. Commun. – volume: 20 start-page: 4006 year: 2000 end-page: 4015 ident: bib38 article-title: Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p publication-title: Mol. Cell Biol. – volume: 34 start-page: 3817 year: 2014 end-page: 3827 ident: bib24 article-title: Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo publication-title: Mol. Cell Biol. – volume: 13 year: 2017 ident: bib40 article-title: Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex publication-title: PLoS Genet. – volume: 18 year: 2023 ident: bib26 article-title: Expression of RNA polymerase I catalytic core is influenced by RPA12 publication-title: PLoS One – volume: 293 start-page: 19 year: 1999 end-page: 28 ident: bib12 article-title: Site-specific in vivo cleavages by DNA topoisomerase I in the regulatory regions of the 35 S rRNA in Saccharomyces cerevisiae are transcription independent publication-title: J. Mol. Biol. – volume: 31 start-page: 3480 year: 2012 end-page: 3493 ident: bib23 article-title: The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast publication-title: EMBO J. – volume: 12 year: 2016 ident: bib35 article-title: A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases publication-title: PLoS Comput. Biol. – volume: 26 start-page: 3986 year: 2006 end-page: 3996 ident: bib32 article-title: Pause sites promote transcriptional termination of mammalian RNA polymerase II publication-title: Mol. Cell Biol. – volume: 39 start-page: 1439 year: 2011 end-page: 1448 ident: bib31 article-title: Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I publication-title: Nucleic Acids Res. – volume: 22 start-page: 3 year: 2021 end-page: 21 ident: bib4 article-title: Causes and consequences of RNA polymerase II stalling during transcript elongation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 154 start-page: 996 year: 2013 end-page: 1009 ident: bib42 article-title: A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs publication-title: Cell – volume: 298 year: 2022 ident: bib29 article-title: RNA polymerase I (Pol I) lobe-binding subunit Rpa12.2 promotes RNA cleavage and proofreading publication-title: J. Biol. Chem. – volume: 30 start-page: 4006 year: 2011 end-page: 4019 ident: bib81 article-title: A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease publication-title: EMBO J. – volume: 24 start-page: 1546 year: 2010 end-page: 1558 ident: bib7 article-title: Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis publication-title: Genes Dev. – start-page: 215 year: 2018 end-page: 232 ident: bib33 article-title: The Role of Supercoiling in the Motor Activity of RNA Polymerases publication-title: Molecular Motors: Methods and Protocols – volume: 22 start-page: 1069 year: 2008 end-page: 1081 ident: bib19 article-title: Efficient termination of transcription by RNA polymerase I requires the 5' exonuclease Rat1 in yeast publication-title: Genes Dev. – volume: 32 start-page: 711 year: 2015 end-page: 720 ident: bib80 article-title: New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae publication-title: Yeast – volume: 458 start-page: 784 year: 2009 end-page: 788 ident: bib83 article-title: Structure and function of the 5'->3' exoribonuclease Rat1 and its activating partner Rai1 publication-title: Nature – volume: 33 start-page: 6327 year: 2005 end-page: 6337 ident: bib13 article-title: FOB1 affects DNA topoisomerase I in vivo cleavages in the enhancer region of the Saccharomyces cerevisiae ribosomal DNA locus publication-title: Nucleic Acids Res. – volume: 131 start-page: 1260 year: 2007 end-page: 1272 ident: bib27 article-title: Functional Architecture of RNA Polymerase I publication-title: Cell – volume: 2 start-page: 372 year: 2012 end-page: 385 ident: bib61 article-title: A Conserved Deubiquitinating Enzyme Controls Cell Growth by Regulating RNA Polymerase I Stability publication-title: Cell Rep. – volume: 90 start-page: 7637 year: 1993 end-page: 7641 ident: bib71 article-title: The rRNA-encoding DNA array has an altered structure in topoisomerase I mutants of Saccharomyces cerevisiae publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 1939 year: 2021 ident: bib25 article-title: Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo publication-title: Genes – year: 2018 ident: bib54 article-title: Identification of RNA-associated peptides, iRAP, defines precise sites of protein-RNA interaction publication-title: bioRxiv – volume: 464 start-page: 55 year: 2009 end-page: 69 ident: bib57 article-title: Electron Microscope Visualization of RNA Transcription and Processing in Saccharomyces cerevisiae by Miller Chromatin Spreading publication-title: Methods Mol. Biol. – volume: 24 start-page: 437 year: 1999 end-page: 440 ident: bib58 article-title: The economics of ribosome biosynthesis in yeast publication-title: Trends Biochem. Sci. – volume: 79 start-page: 488 year: 2020 end-page: 503.e11 ident: bib8 article-title: Nascent transcript folding plays a major role in determining RNA polymerase elongation rates publication-title: Mol. Cell – volume: 42 year: 2023 ident: bib60 article-title: Ubiquitin proteomics identifies RNA polymerase I as a target of the Smc5/6 complex publication-title: Cell Rep. – volume: 2 year: 2013 ident: bib2 article-title: Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism publication-title: Elife – volume: 40 start-page: 4892 year: 2012 end-page: 4903 ident: bib22 article-title: Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae publication-title: Nucleic Acids Res. – volume: 457 start-page: 1038 year: 2009 end-page: 1042 ident: bib41 article-title: Widespread bidirectional promoters are the major source of cryptic transcripts in yeast publication-title: Nature – volume: 11 start-page: 3122 year: 2020 ident: bib51 article-title: Substrate Specificity of the TRAMP Nuclear Surveillance Complexes publication-title: Nat. Commun. – volume: 22 start-page: 1082 year: 2008 end-page: 1092 ident: bib20 article-title: Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination publication-title: Genes Dev. – volume: 11 start-page: 1571 year: 2005 end-page: 1578 ident: bib37 article-title: Rat1p and Rai1p function with the nuclear exosome in the processing and degradation of rRNA precursors publication-title: RNA – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: bib78 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics – volume: 101 start-page: 6068 year: 2004 end-page: 6073 ident: bib16 article-title: Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p publication-title: Proc. Natl. Acad. Sci. USA – volume: 121 start-page: 713 year: 2005 end-page: 724 ident: bib75 article-title: RNA degradation by the exosome is promoted by a nuclear polyadenylation complex publication-title: Cell – volume: 502 start-page: 650 year: 2013 end-page: 655 ident: bib85 article-title: RNA polymerase I structure and transcription regulation publication-title: Nature – volume: 22 start-page: 473 year: 1997 end-page: 477 ident: bib15 article-title: Terminating transcription in eukaryotes: lessons learned from RNA polymerase I publication-title: Trends Biochem. Sci. – volume: 428 start-page: 2623 year: 2016 end-page: 2635 ident: bib64 article-title: Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing publication-title: J. Mol. Biol. – volume: 113 start-page: 2946 year: 2016 end-page: 2951 ident: bib66 article-title: Mechanisms of backtrack recovery by RNA polymerases I and II publication-title: Proc. Natl. Acad. Sci. USA – volume: 326 start-page: 414 year: 1987 end-page: 416 ident: bib11 article-title: Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA publication-title: Nature – volume: 18 start-page: 1181 year: 1998 end-page: 1189 ident: bib47 article-title: Processing of the precursors to small nucleolar RNAs and rRNAs requires common components publication-title: Mol. Cell Biol. – volume: 162 start-page: 1029 year: 2015 end-page: 1038 ident: bib45 article-title: The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins publication-title: Cell – volume: 17 start-page: 1128 year: 1998 end-page: 1140 ident: bib44 article-title: Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae publication-title: EMBO J. – volume: 165 start-page: 372 year: 2016 end-page: 381 ident: bib62 article-title: Splicing of Nascent RNA Coincides with Intron Exit from RNA Polymerase II publication-title: Cell – volume: 73 start-page: 107 year: 2019 end-page: 118.e4 ident: bib5 article-title: Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5′ Pause Release, Termination, and Transcription Elongation Rate publication-title: Mol. Cell – volume: 145 start-page: 543 year: 2011 end-page: 554 ident: bib56 article-title: Establishment and Maintenance of Alternative Chromatin States at a Multicopy Gene Locus publication-title: Cell – volume: 110 start-page: 143 year: 2019 end-page: 148 ident: bib14 article-title: Fob1p recruits DNA topoisomerase I to ribosomal genes locus and contributes to its transcriptional silencing maintenance publication-title: Int. J. Biochem. Cell Biol. – volume: 42 start-page: 4985 year: 2014 end-page: 4995 ident: bib70 article-title: Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability publication-title: Nucleic Acids Res. – volume: 120 start-page: 1883 year: 2021 end-page: 1893 ident: bib28 article-title: The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation publication-title: Biophys. J. – volume: 16 start-page: 5139 year: 1996 end-page: 5146 ident: bib43 article-title: A DEAD-box-family protein is required for nucleocytoplasmic transport of yeast mRNA publication-title: Mol. Cell Biol. – volume: 265 start-page: 8 year: 1997 end-page: 19 ident: bib3 article-title: A model for the mechanism of polymerase translocation publication-title: J. Mol. Biol. – volume: 2 start-page: 87 year: 2008 ident: bib59 article-title: A quantitative estimation of the global translational activity in logarithmically growing yeast cells publication-title: BMC Syst. Biol. – volume: 13 start-page: 649 year: 1993 end-page: 658 ident: bib17 article-title: The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae publication-title: Mol. Cell Biol. – volume: 13 start-page: 341 year: 1993 end-page: 350 ident: bib39 article-title: An essential yeast gene with homology to the exonuclease-encoding publication-title: Mol. Cell Biol. – volume: 10 year: 2014 ident: bib67 article-title: Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria publication-title: PLoS Genet. – volume: 92 start-page: 9781 year: 1995 ident: 10.1016/j.celrep.2025.115325_bib18 article-title: Transcription termination of RNA polymerase I due to a T-rich element interacting with Reb1p publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.21.9781 – volume: 34 start-page: 3817 year: 2014 ident: 10.1016/j.celrep.2025.115325_bib24 article-title: Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo publication-title: Mol. Cell Biol. doi: 10.1128/MCB.00395-14 – volume: 7 start-page: 205 year: 2006 ident: 10.1016/j.celrep.2025.115325_bib74 article-title: Yeast Trf5p is a nuclear poly(A) polymerase publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400612 – volume: 17 start-page: 1128 year: 1998 ident: 10.1016/j.celrep.2025.115325_bib44 article-title: Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae publication-title: EMBO J. doi: 10.1093/emboj/17.4.1128 – volume: 28 start-page: 382 year: 2021 ident: 10.1016/j.celrep.2025.115325_bib68 article-title: Structural basis of nucleosome transcription mediated by Chd1 and FACT publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-021-00578-6 – volume: 103 start-page: 12707 year: 2006 ident: 10.1016/j.celrep.2025.115325_bib69 article-title: RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0605686103 – volume: 2 start-page: 87 year: 2008 ident: 10.1016/j.celrep.2025.115325_bib59 article-title: A quantitative estimation of the global translational activity in logarithmically growing yeast cells publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-2-87 – volume: 40 start-page: 4892 year: 2012 ident: 10.1016/j.celrep.2025.115325_bib22 article-title: Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks188 – volume: 464 start-page: 55 year: 2009 ident: 10.1016/j.celrep.2025.115325_bib57 article-title: Electron Microscope Visualization of RNA Transcription and Processing in Saccharomyces cerevisiae by Miller Chromatin Spreading publication-title: Methods Mol. Biol. doi: 10.1007/978-1-60327-461-6_4 – volume: 11 start-page: 1571 year: 2005 ident: 10.1016/j.celrep.2025.115325_bib37 article-title: Rat1p and Rai1p function with the nuclear exosome in the processing and degradation of rRNA precursors publication-title: RNA doi: 10.1261/rna.2900205 – volume: 6 year: 2017 ident: 10.1016/j.celrep.2025.115325_bib63 article-title: RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit publication-title: Elife doi: 10.7554/eLife.27082 – volume: 10 start-page: 563 year: 2019 ident: 10.1016/j.celrep.2025.115325_bib55 article-title: Molecular interactions between Hel2 and RNA supporting ribosome-associated quality control publication-title: Nat. Commun. doi: 10.1038/s41467-019-08382-z – volume: 6 start-page: 1173 year: 1992 ident: 10.1016/j.celrep.2025.115325_bib48 article-title: Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA publication-title: Genes Dev. doi: 10.1101/gad.6.7.1173 – volume: 29 start-page: 15 year: 2013 ident: 10.1016/j.celrep.2025.115325_bib79 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 428 start-page: 2623 year: 2016 ident: 10.1016/j.celrep.2025.115325_bib64 article-title: Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.04.017 – volume: 26 start-page: 841 year: 2010 ident: 10.1016/j.celrep.2025.115325_bib78 article-title: BEDTools: a flexible suite of utilities for comparing genomic features publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 22 start-page: 1082 year: 2008 ident: 10.1016/j.celrep.2025.115325_bib20 article-title: Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination publication-title: Genes Dev. doi: 10.1101/gad.463408 – volume: 43 start-page: 1105 year: 2002 ident: 10.1016/j.celrep.2025.115325_bib30 article-title: Rpa12p, a conserved RNA polymerase I subunit with two functional domains publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.02824.x – volume: 113 start-page: 2946 year: 2016 ident: 10.1016/j.celrep.2025.115325_bib66 article-title: Mechanisms of backtrack recovery by RNA polymerases I and II publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1517011113 – volume: 458 start-page: 784 year: 2009 ident: 10.1016/j.celrep.2025.115325_bib83 article-title: Structure and function of the 5'->3' exoribonuclease Rat1 and its activating partner Rai1 publication-title: Nature doi: 10.1038/nature07731 – volume: 22 start-page: 3 year: 2021 ident: 10.1016/j.celrep.2025.115325_bib4 article-title: Causes and consequences of RNA polymerase II stalling during transcript elongation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-020-00308-8 – volume: 131 start-page: 1260 year: 2007 ident: 10.1016/j.celrep.2025.115325_bib27 article-title: Functional Architecture of RNA Polymerase I publication-title: Cell doi: 10.1016/j.cell.2007.10.051 – volume: 25 start-page: 2078 year: 2009 ident: 10.1016/j.celrep.2025.115325_bib77 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 110 start-page: 143 year: 2019 ident: 10.1016/j.celrep.2025.115325_bib14 article-title: Fob1p recruits DNA topoisomerase I to ribosomal genes locus and contributes to its transcriptional silencing maintenance publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2019.03.006 – volume: 48 start-page: 422 year: 2012 ident: 10.1016/j.celrep.2025.115325_bib52 article-title: Transcriptome-wide analysis of exosome targets publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.08.013 – volume: 18 year: 2023 ident: 10.1016/j.celrep.2025.115325_bib26 article-title: Expression of RNA polymerase I catalytic core is influenced by RPA12 publication-title: PLoS One doi: 10.1371/journal.pone.0285660 – volume: 42 year: 2023 ident: 10.1016/j.celrep.2025.115325_bib60 article-title: Ubiquitin proteomics identifies RNA polymerase I as a target of the Smc5/6 complex publication-title: Cell Rep. doi: 10.1016/j.celrep.2023.112463 – volume: 1 start-page: 895 year: 2012 ident: 10.1016/j.celrep.2025.115325_bib86 article-title: FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms publication-title: Biology doi: 10.3390/biology1030895 – volume: 5 start-page: 909 year: 1999 ident: 10.1016/j.celrep.2025.115325_bib21 article-title: Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3' ETS but not the 5' ETS publication-title: RNA doi: 10.1017/S135583829999026X – volume: 14 start-page: 953 year: 1998 ident: 10.1016/j.celrep.2025.115325_bib72 article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U – volume: 11 start-page: 3122 year: 2020 ident: 10.1016/j.celrep.2025.115325_bib51 article-title: Substrate Specificity of the TRAMP Nuclear Surveillance Complexes publication-title: Nat. Commun. doi: 10.1038/s41467-020-16965-4 – volume: 15 year: 2014 ident: 10.1016/j.celrep.2025.115325_bib76 article-title: PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast publication-title: Genome Biol. doi: 10.1186/gb-2014-15-1-r8 – volume: 120 start-page: 1883 year: 2021 ident: 10.1016/j.celrep.2025.115325_bib28 article-title: The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation publication-title: Biophys. J. doi: 10.1016/j.bpj.2021.03.007 – volume: 502 start-page: 650 year: 2013 ident: 10.1016/j.celrep.2025.115325_bib85 article-title: RNA polymerase I structure and transcription regulation publication-title: Nature doi: 10.1038/nature12712 – volume: 298 year: 2022 ident: 10.1016/j.celrep.2025.115325_bib29 article-title: RNA polymerase I (Pol I) lobe-binding subunit Rpa12.2 promotes RNA cleavage and proofreading publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.101862 – volume: 18 start-page: 1181 year: 1998 ident: 10.1016/j.celrep.2025.115325_bib47 article-title: Processing of the precursors to small nucleolar RNAs and rRNAs requires common components publication-title: Mol. Cell Biol. doi: 10.1128/MCB.18.3.1181 – volume: 79 start-page: 488 year: 2020 ident: 10.1016/j.celrep.2025.115325_bib8 article-title: Nascent transcript folding plays a major role in determining RNA polymerase elongation rates publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.06.002 – volume: 7 start-page: 12248 year: 2016 ident: 10.1016/j.celrep.2025.115325_bib34 article-title: A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting publication-title: Nat. Commun. doi: 10.1038/ncomms12248 – volume: 457 start-page: 1038 year: 2009 ident: 10.1016/j.celrep.2025.115325_bib41 article-title: Widespread bidirectional promoters are the major source of cryptic transcripts in yeast publication-title: Nature doi: 10.1038/nature07747 – volume: 121 start-page: 713 year: 2005 ident: 10.1016/j.celrep.2025.115325_bib75 article-title: RNA degradation by the exosome is promoted by a nuclear polyadenylation complex publication-title: Cell doi: 10.1016/j.cell.2005.04.029 – volume: 265 start-page: 8 year: 1997 ident: 10.1016/j.celrep.2025.115325_bib3 article-title: A model for the mechanism of polymerase translocation publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1996.0707 – volume: 30 start-page: 4006 year: 2011 ident: 10.1016/j.celrep.2025.115325_bib81 article-title: A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease publication-title: EMBO J. doi: 10.1038/emboj.2011.256 – volume: 31 start-page: 3480 year: 2012 ident: 10.1016/j.celrep.2025.115325_bib23 article-title: The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast publication-title: EMBO J. doi: 10.1038/emboj.2012.185 – volume: 162 start-page: 1029 year: 2015 ident: 10.1016/j.celrep.2025.115325_bib45 article-title: The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins publication-title: Cell doi: 10.1016/j.cell.2015.07.060 – volume: 50 start-page: 104 year: 2013 ident: 10.1016/j.celrep.2025.115325_bib84 article-title: A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.02.017 – year: 2018 ident: 10.1016/j.celrep.2025.115325_bib54 article-title: Identification of RNA-associated peptides, iRAP, defines precise sites of protein-RNA interaction publication-title: bioRxiv – volume: 36 start-page: 75 year: 2019 ident: 10.1016/j.celrep.2025.115325_bib36 article-title: A fast and tuneable auxin-inducible degron for depletion of target proteins in budding yeast publication-title: Yeast doi: 10.1002/yea.3362 – volume: 26 start-page: 3986 year: 2006 ident: 10.1016/j.celrep.2025.115325_bib32 article-title: Pause sites promote transcriptional termination of mammalian RNA polymerase II publication-title: Mol. Cell Biol. doi: 10.1128/MCB.26.10.3986-3996.2006 – volume: 22 start-page: 473 year: 1997 ident: 10.1016/j.celrep.2025.115325_bib15 article-title: Terminating transcription in eukaryotes: lessons learned from RNA polymerase I publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(97)01133-X – volume: 2 start-page: 372 year: 2012 ident: 10.1016/j.celrep.2025.115325_bib61 article-title: A Conserved Deubiquitinating Enzyme Controls Cell Growth by Regulating RNA Polymerase I Stability publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.07.009 – volume: 37 start-page: 809 year: 2010 ident: 10.1016/j.celrep.2025.115325_bib10 article-title: Yeast pre-rRNA processing and modification occur cotranscriptionally publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.02.024 – volume: 293 start-page: 19 year: 1999 ident: 10.1016/j.celrep.2025.115325_bib12 article-title: Site-specific in vivo cleavages by DNA topoisomerase I in the regulatory regions of the 35 S rRNA in Saccharomyces cerevisiae are transcription independent publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3154 – volume: 284 start-page: 21270 year: 2009 ident: 10.1016/j.celrep.2025.115325_bib82 article-title: Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.013847 – volume: 326 start-page: 414 year: 1987 ident: 10.1016/j.celrep.2025.115325_bib11 article-title: Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA publication-title: Nature doi: 10.1038/326414a0 – start-page: 215 year: 2018 ident: 10.1016/j.celrep.2025.115325_bib33 article-title: The Role of Supercoiling in the Motor Activity of RNA Polymerases – volume: 165 start-page: 372 year: 2016 ident: 10.1016/j.celrep.2025.115325_bib62 article-title: Splicing of Nascent RNA Coincides with Intron Exit from RNA Polymerase II publication-title: Cell doi: 10.1016/j.cell.2016.02.045 – volume: 76 start-page: 896 year: 2019 ident: 10.1016/j.celrep.2025.115325_bib65 article-title: Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a “Sitting Duck Torpedo” Mechanism publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.031 – volume: 26 start-page: 933 year: 2016 ident: 10.1016/j.celrep.2025.115325_bib50 article-title: Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts publication-title: Genome Res. doi: 10.1101/gr.205492.116 – volume: 90 start-page: 7637 year: 1993 ident: 10.1016/j.celrep.2025.115325_bib71 article-title: The rRNA-encoding DNA array has an altered structure in topoisomerase I mutants of Saccharomyces cerevisiae publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.16.7637 – volume: 12 start-page: 1939 year: 2021 ident: 10.1016/j.celrep.2025.115325_bib25 article-title: Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo publication-title: Genes doi: 10.3390/genes12121939 – volume: 2 year: 2013 ident: 10.1016/j.celrep.2025.115325_bib2 article-title: Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism publication-title: Elife doi: 10.7554/eLife.00971 – volume: 73 start-page: 107 year: 2019 ident: 10.1016/j.celrep.2025.115325_bib5 article-title: Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5′ Pause Release, Termination, and Transcription Elongation Rate publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.10.031 – volume: 24 start-page: 437 year: 1999 ident: 10.1016/j.celrep.2025.115325_bib58 article-title: The economics of ribosome biosynthesis in yeast publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(99)01460-7 – volume: 433 year: 2021 ident: 10.1016/j.celrep.2025.115325_bib9 article-title: Transcription Regulation Through Nascent RNA Folding publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2021.166975 – volume: 42 start-page: 4985 year: 2014 ident: 10.1016/j.celrep.2025.115325_bib70 article-title: Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku148 – volume: 83 start-page: 404 year: 2023 ident: 10.1016/j.celrep.2025.115325_bib6 article-title: Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.12.021 – volume: 24 start-page: 1546 year: 2010 ident: 10.1016/j.celrep.2025.115325_bib7 article-title: Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis publication-title: Genes Dev. doi: 10.1101/gad.573310 – volume: 16 start-page: 5139 year: 1996 ident: 10.1016/j.celrep.2025.115325_bib43 article-title: A DEAD-box-family protein is required for nucleocytoplasmic transport of yeast mRNA publication-title: Mol. Cell Biol. doi: 10.1128/MCB.16.9.5139 – volume: 13 start-page: 649 year: 1993 ident: 10.1016/j.celrep.2025.115325_bib17 article-title: The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae publication-title: Mol. Cell Biol. – volume: 270 start-page: 16063 year: 1995 ident: 10.1016/j.celrep.2025.115325_bib46 article-title: 5'-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5'-exonuclease-1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.27.16063 – volume: 44 start-page: W160 year: 2016 ident: 10.1016/j.celrep.2025.115325_bib87 article-title: deepTools2: a next generation web server for deep-sequencing data analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw257 – volume: 39 start-page: 1439 year: 2011 ident: 10.1016/j.celrep.2025.115325_bib31 article-title: Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq894 – volume: 33 start-page: 6327 year: 2005 ident: 10.1016/j.celrep.2025.115325_bib13 article-title: FOB1 affects DNA topoisomerase I in vivo cleavages in the enhancer region of the Saccharomyces cerevisiae ribosomal DNA locus publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki950 – volume: 13 year: 2017 ident: 10.1016/j.celrep.2025.115325_bib40 article-title: Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006699 – volume: 145 start-page: 543 year: 2011 ident: 10.1016/j.celrep.2025.115325_bib56 article-title: Establishment and Maintenance of Alternative Chromatin States at a Multicopy Gene Locus publication-title: Cell doi: 10.1016/j.cell.2011.03.051 – volume: 36 start-page: 6080 year: 2008 ident: 10.1016/j.celrep.2025.115325_bib53 article-title: Regulation of the catalytic function of topoisomerase II alpha through association with RNA publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn614 – volume: 13 start-page: 2452 year: 1994 ident: 10.1016/j.celrep.2025.115325_bib73 article-title: The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site publication-title: EMBO J. doi: 10.1002/j.1460-2075.1994.tb06530.x – volume: 22 start-page: 1069 year: 2008 ident: 10.1016/j.celrep.2025.115325_bib19 article-title: Efficient termination of transcription by RNA polymerase I requires the 5' exonuclease Rat1 in yeast publication-title: Genes Dev. doi: 10.1101/gad.463708 – volume: 10 year: 2014 ident: 10.1016/j.celrep.2025.115325_bib67 article-title: Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004716 – volume: 32 start-page: 711 year: 2015 ident: 10.1016/j.celrep.2025.115325_bib80 article-title: New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae publication-title: Yeast doi: 10.1002/yea.3098 – volume: 340 start-page: 1580 year: 2013 ident: 10.1016/j.celrep.2025.115325_bib1 article-title: Transcription Under Torsion publication-title: Science doi: 10.1126/science.1235441 – volume: 12 year: 2016 ident: 10.1016/j.celrep.2025.115325_bib35 article-title: A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005069 – volume: 20 start-page: 4006 year: 2000 ident: 10.1016/j.celrep.2025.115325_bib38 article-title: Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p publication-title: Mol. Cell Biol. doi: 10.1128/MCB.20.11.4006-4015.2000 – volume: 471 start-page: 249 year: 2011 ident: 10.1016/j.celrep.2025.115325_bib49 article-title: Structural basis of RNA polymerase II backtracking, arrest and reactivation publication-title: Nature doi: 10.1038/nature09785 – volume: 101 start-page: 6068 year: 2004 ident: 10.1016/j.celrep.2025.115325_bib16 article-title: Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0401393101 – volume: 13 start-page: 341 year: 1993 ident: 10.1016/j.celrep.2025.115325_bib39 article-title: An essential yeast gene with homology to the exonuclease-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease activity publication-title: Mol. Cell Biol. – volume: 154 start-page: 996 year: 2013 ident: 10.1016/j.celrep.2025.115325_bib42 article-title: A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs publication-title: Cell doi: 10.1016/j.cell.2013.07.047 |
SSID | ssj0000601194 |
Score | 2.4267733 |
Snippet | Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 115325 |
SubjectTerms | biophysical modeling DNA torsion Exoribonucleases - metabolism exosome ribosome synthesis RNA polymerase RNA Polymerase I - genetics RNA Polymerase I - metabolism RNA-protein interactions Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism topoisomerase transcription Transcription Termination, Genetic Transcription, Genetic UV crosslinking yeast |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KQfAi7taNEbyGNpkl6bEWSxVaRS30NswKFbvQ5eC_970sBUERPCbMkOGbvO99k7yFkNs0uFbWDjxqO2kirsHSM5vGUciYDBZcivOY4DwYyv6IP47FuEa6VS4MhlWW3F9wes7W5Z1miWZzMZk0XxM4u4B3SpO8pr_EhF_GszyJb3y3_c6C9UbivB8ijo9wQpVBl4d5Wf-x9Fi4MhFAH4Jhz-yfPdRvCjT3RL19sldKSNopVnlAan52SHaKppKfR-RpUMYI0qnHtN7Jarqi80DLsBfcCDqdO2zb5SnIP-qKpvT5oJdh5_mBrtGBVXRyTEa9-7duPyrbJkQWjj_ryGinNYtlaDsRWnHmMut5wr3gDoxNpA5s2jimhTTayiQBed1iIXM2doCkkeyE1GfzmT8j1GgjMttq-5BobsDYucUOYj6kznLJQ4NEFVRqUVTHUFXY2LsqoFUIrSqgbZC0wlN922UFBP7HzJsKfgUGgH819MzPNysFAihGluSyQU6LfdmuBdQXHCcZO__3cy_ILl5h1FkiLkl9vdz4K5Aha3Odv2dfX6rasQ priority: 102 providerName: Elsevier |
Title | Multiple mechanisms of termination modulate the dynamics of RNAPI transcription |
URI | https://dx.doi.org/10.1016/j.celrep.2025.115325 https://www.ncbi.nlm.nih.gov/pubmed/39999833 https://www.proquest.com/docview/3171376346 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA06EXwRv51fRPC10qZJ2j2ITFFUmIo42FvIJyhu022C_nvvXVp9cYgvhUJbwknuPefSmxxCjorg0rIVeNJy0iRcQ6SXtsiSUOYyWKAU53GDc-dWXnX5TU_05kjt2VoBOP61tEM_qe7o5fjj7fMUAv7kp1fL-peRx9MnmYAcIHIm5skCcFOBZg6dSvDH3IxnnOGvZsawl4vxot5PN-NDs_hqlh6d8tLlClmuBCVtxxWwSub8YI0sRovJz3Vy16k6Bmnf4ybfp3F_TIeBVk0wOC20P3Ro4uUpiEHqokX99KGH2_b9NZ0gndXJZYN0Ly8ez6-SykQhsVAMTRKjndZ5JkPLiZBmpSut54x7wR2EnigcRLhxuRbSaCsZA7Gd5qF0NnMiTY3MN0ljMBz4bUKNNqK0acsHprmB0OcW_cR8KJzlkocmSWqo1Gs8K0PVTWTPKkKrEFoVoW2SosZTVXwfeVzB7P7x5mENv4JwwH8ceuCH72MFcijDnMllk2zFefkeC2gxKC7zfOef49wlS3iHnWdM7JHGZPTu90GKTMzBtISH63Xv7GC60r4AihndSw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-NAFD5UZdEXUddLvY6wr6FNMjNJH7Uordoquwp9G-YKFXvB1gf_vefkIizsIviaZMjwzZzvfJOcC8CvLLh23gk86jhpIq7R0nObxVHIUxksuhTnKcF5MJS9J34zEqMGdOtcGAqrrLi_5PSCrasrrQrN1nw8bv1J8OyC3ilLipr-Ml-BNVQDkrZ2f3T5-aGFCo7ERUNEGhDRiDqFrojzsv7l1VPlykQgf4iUmmb_20X9T4IWruh6CzYrDckuymluQ8NPd-BH2VXy_SfcD6ogQTbxlNc7XkwWbBZYFfdCK8EmM0d9uzxD_cdc2ZW-eOj38OKhz5bkwWo-2YWn66vHbi-q-iZEFs8_y8hop3Uay9BxIrTj3OXW84R7wR1am8gcGrVxqRbSaCuTBPV1Ow25s7FDKI1M92B1Opv6A2BGG5HbdseHRHOD1s4ttRDzIXOWSx6aENVQqXlZHkPVcWPPqoRWEbSqhLYJWY2n-muZFTL4FyPPa_gVWgD91tBTP3tbKFRAMdEkl03YL9flcy4ov_A8maaH337vGaz3Hgd36q4_vD2CDbpDIWiJOIbV5eubP0FNsjSnxZ77AHyG3dg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+mechanisms+of+termination+modulate+the+dynamics+of+RNAPI+transcription&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Petfalski%2C+Elisabeth&rft.au=Winz%2C+Marie-Luise&rft.au=Grelewska-Nowotko%2C+Katarzyna&rft.au=Turowski%2C+Tomasz+W.&rft.date=2025-03-25&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=44&rft.issue=3&rft.spage=115325&rft_id=info:doi/10.1016%2Fj.celrep.2025.115325&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2025_115325 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |