Multiple mechanisms of termination modulate the dynamics of RNAPI transcription

Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by “torsional entrainment” generated by DNA rotation. We report that release of entrainment by co-transcriptional 3′ end cleavage, is permissiv...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 44; no. 3; p. 115325
Main Authors Petfalski, Elisabeth, Winz, Marie-Luise, Grelewska-Nowotko, Katarzyna, Turowski, Tomasz W., Tollervey, David
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 25.03.2025
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2025.115325

Cover

Loading…
Abstract Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by “torsional entrainment” generated by DNA rotation. We report that release of entrainment by co-transcriptional 3′ end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5′ exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse “torpedoes”: Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems. [Display omitted] •Nascent pre-rRNA 3′ cleavage promotes RNAPI deceleration and termination•RNAPI undergoes early start-site proximal termination at sites of polymerase pausing•Biophysical modeling indicates ∼10% early termination of RNAPI•Model supports roles of additional rDNA repeats in buffering pre-rRNA transcription Petfalski et al. reveal complexities in RNAPI termination. Torsion release, through nascent pre-rRNA cleavage by Rnt1, favors RNAPI pausing and torpedo termination by the exonuclease Rat1, aided by Nsi1 roadblocks and RNAPI-mediated endonuclease cleavage. Termination of prematurely stalled RNAPI is facilitated by TRAMP-mediated nascent transcript polyadenylation and a reverse torpedo mechanism.
AbstractList Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by "torsional entrainment" generated by DNA rotation. We report that release of entrainment by co-transcriptional 3' end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5' exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse "torpedoes": Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems.Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by "torsional entrainment" generated by DNA rotation. We report that release of entrainment by co-transcriptional 3' end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5' exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse "torpedoes": Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems.
Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by “torsional entrainment” generated by DNA rotation. We report that release of entrainment by co-transcriptional 3′ end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5′ exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse “torpedoes”: Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems. [Display omitted] •Nascent pre-rRNA 3′ cleavage promotes RNAPI deceleration and termination•RNAPI undergoes early start-site proximal termination at sites of polymerase pausing•Biophysical modeling indicates ∼10% early termination of RNAPI•Model supports roles of additional rDNA repeats in buffering pre-rRNA transcription Petfalski et al. reveal complexities in RNAPI termination. Torsion release, through nascent pre-rRNA cleavage by Rnt1, favors RNAPI pausing and torpedo termination by the exonuclease Rat1, aided by Nsi1 roadblocks and RNAPI-mediated endonuclease cleavage. Termination of prematurely stalled RNAPI is facilitated by TRAMP-mediated nascent transcript polyadenylation and a reverse torpedo mechanism.
Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by "torsional entrainment" generated by DNA rotation. We report that release of entrainment by co-transcriptional 3' end cleavage, is permissive for relative movement between polymerases, promoting pausing and backtracking. Subsequent termination (polymerase release) is facilitated by the 5' exonuclease Rat1 (Xrn2) and backtracked transcript cleavage by the RNA polymerase I (RNAPI) subunit Rpa12. These activities are reproduced in vitro. Short nascent transcripts close to the transcriptional start site, combined with nascent transcript folding energy, similarly facilitate RNAPI pausing. Nascent, backtracked transcripts at pause sites are terminated by forward and reverse "torpedoes": Rat1 and the exosome cofactor Trf4/5-Air1/2-Mtr4 polyadenylation (TRAMP), respectively. Topoisomerase 2 localizes adjacent to RNAPI pause sites, potentially allowing continued elongation by downstream polymerases. Mathematical modeling supported substantial premature termination. These basic insights into transcription in vivo will be relevant to many systems.
ArticleNumber 115325
Author Tollervey, David
Grelewska-Nowotko, Katarzyna
Turowski, Tomasz W.
Winz, Marie-Luise
Petfalski, Elisabeth
Author_xml – sequence: 1
  givenname: Elisabeth
  surname: Petfalski
  fullname: Petfalski, Elisabeth
  organization: Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK
– sequence: 2
  givenname: Marie-Luise
  surname: Winz
  fullname: Winz, Marie-Luise
  organization: Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK
– sequence: 3
  givenname: Katarzyna
  surname: Grelewska-Nowotko
  fullname: Grelewska-Nowotko, Katarzyna
  organization: Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warszawa, Poland
– sequence: 4
  givenname: Tomasz W.
  surname: Turowski
  fullname: Turowski, Tomasz W.
  email: tomasz.turowski@ibb.waw.pl
  organization: Institute of Biochemistry and Biophysics PAS, Pawińskiego 5A, 02-106 Warszawa, Poland
– sequence: 5
  givenname: David
  orcidid: 0000-0003-2894-2772
  surname: Tollervey
  fullname: Tollervey, David
  email: d.tollervey@ed.ac.uk
  organization: Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Michael Swann Building, Edinburgh EH9 3BF, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39999833$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNUtNb-A5E9emnNJPvVi1CKH4X6geg5ZJNZTNnNrklW6L9366p4ci4zh-d9YZ4TMrKNRULOgM6BQnq5nSusHLZzRlkyB0g4Sw7ImDGAGbA4G_25j8nU-y3tJ6UAi_iIHPNFPznnY_J431XBtBVGNao3aY2vfdSUUUBXGyuDaWxUN7qrZMAovGGkd1bWRn1Bzw_Lp3UUnLReOdPu4VNyWMrK4_R7T8jrzfXL6m62ebxdr5abmWJ5FmaF1FJySMuFTkoKuc4VxizGJNYpz5NMcwqF5jJJC6lSxjK2oLzMtQKdUFqkfEIuht7WNe8d-iBq43snlbTYdF5wyIBnKY_36Pk32hU1atE6U0u3Ez8SeiAeAOUa7x2WvwhQsdcttmLQLfa6xaC7j10NMez__DDohFcGrUJtHKogdGP-L_gET7OJSg
Cites_doi 10.1073/pnas.92.21.9781
10.1128/MCB.00395-14
10.1038/sj.embor.7400612
10.1093/emboj/17.4.1128
10.1038/s41594-021-00578-6
10.1073/pnas.0605686103
10.1186/1752-0509-2-87
10.1093/nar/gks188
10.1007/978-1-60327-461-6_4
10.1261/rna.2900205
10.7554/eLife.27082
10.1038/s41467-019-08382-z
10.1101/gad.6.7.1173
10.1093/bioinformatics/bts635
10.1016/j.jmb.2016.04.017
10.1093/bioinformatics/btq033
10.1101/gad.463408
10.1046/j.1365-2958.2002.02824.x
10.1073/pnas.1517011113
10.1038/nature07731
10.1038/s41580-020-00308-8
10.1016/j.cell.2007.10.051
10.1093/bioinformatics/btp352
10.1016/j.biocel.2019.03.006
10.1016/j.molcel.2012.08.013
10.1371/journal.pone.0285660
10.1016/j.celrep.2023.112463
10.3390/biology1030895
10.1017/S135583829999026X
10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
10.1038/s41467-020-16965-4
10.1186/gb-2014-15-1-r8
10.1016/j.bpj.2021.03.007
10.1038/nature12712
10.1016/j.jbc.2022.101862
10.1128/MCB.18.3.1181
10.1016/j.molcel.2020.06.002
10.1038/ncomms12248
10.1038/nature07747
10.1016/j.cell.2005.04.029
10.1006/jmbi.1996.0707
10.1038/emboj.2011.256
10.1038/emboj.2012.185
10.1016/j.cell.2015.07.060
10.1016/j.molcel.2013.02.017
10.1002/yea.3362
10.1128/MCB.26.10.3986-3996.2006
10.1016/S0968-0004(97)01133-X
10.1016/j.celrep.2012.07.009
10.1016/j.molcel.2010.02.024
10.1006/jmbi.1999.3154
10.1074/jbc.M109.013847
10.1038/326414a0
10.1016/j.cell.2016.02.045
10.1016/j.molcel.2019.09.031
10.1101/gr.205492.116
10.1073/pnas.90.16.7637
10.3390/genes12121939
10.7554/eLife.00971
10.1016/j.molcel.2018.10.031
10.1016/S0968-0004(99)01460-7
10.1016/j.jmb.2021.166975
10.1093/nar/gku148
10.1016/j.molcel.2022.12.021
10.1101/gad.573310
10.1128/MCB.16.9.5139
10.1074/jbc.270.27.16063
10.1093/nar/gkw257
10.1093/nar/gkq894
10.1093/nar/gki950
10.1371/journal.pgen.1006699
10.1016/j.cell.2011.03.051
10.1093/nar/gkn614
10.1002/j.1460-2075.1994.tb06530.x
10.1101/gad.463708
10.1371/journal.pgen.1004716
10.1002/yea.3098
10.1126/science.1235441
10.1371/journal.pcbi.1005069
10.1128/MCB.20.11.4006-4015.2000
10.1038/nature09785
10.1073/pnas.0401393101
10.1016/j.cell.2013.07.047
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.celrep.2025.115325
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID 39999833
10_1016_j_celrep_2025_115325
S2211124725000968
Genre Journal Article
GroupedDBID 0R~
4.4
457
53G
5VS
6I.
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAMRU
AAXUO
AAYWO
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
O-L
O9-
OK1
ROL
SSZ
AAYXX
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c287t-badaa316f9d5f018d8ce424e54d63857d301bd3a56bac62272903f8dc1d500b63
IEDL.DBID M48
ISSN 2211-1247
IngestDate Fri Jul 11 14:34:47 EDT 2025
Sun May 11 01:41:44 EDT 2025
Thu Jul 03 08:37:01 EDT 2025
Sat Jul 05 17:10:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords ribosome synthesis
transcription
RNA-protein interactions
UV crosslinking
biophysical modeling
CP: Molecular biology
topoisomerase
RNA polymerase
exosome
DNA torsion
yeast
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c287t-badaa316f9d5f018d8ce424e54d63857d301bd3a56bac62272903f8dc1d500b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2894-2772
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124725000968
PMID 39999833
PQID 3171376346
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3171376346
pubmed_primary_39999833
crossref_primary_10_1016_j_celrep_2025_115325
elsevier_sciencedirect_doi_10_1016_j_celrep_2025_115325
PublicationCentury 2000
PublicationDate 2025-03-25
PublicationDateYYYYMMDD 2025-03-25
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References El Hage, French, Beyer, Tollervey (bib7) 2010; 24
Jiao, Chang, Kilic, Tong, Kiledjian (bib84) 2013; 50
Sheridan, Fong, D’Alessandro, Bentley (bib5) 2019; 73
Schneider, Kudla, Wlotzka, Tuck, Tollervey (bib52) 2012; 48
Henry, Wood, Morrissey, Petfalski, Kearsey, Tollervey (bib73) 1994; 13
Dangkulwanich, Ishibashi, Liu, Kireeva, Lubkowska, Kashlev, Bustamante (bib2) 2013; 2
Delan-Forino, Spanos, Rappsilber, Tollervey (bib51) 2020; 11
Warner (bib58) 1999; 24
Cortazar, Sheridan, Erickson, Fong, Glover-Cutter, Brannan, Bentley (bib65) 2019; 76
Mendoza-Ochoa, Barrass, Terlouw, Maudlin, de Lucas, Sani, Aslanzadeh, Reid, Beggs (bib36) 2019; 36
Winz, Peil, Turowski, Rappsilber, Tollervey (bib55) 2019; 10
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha, Batut, Chaisson, Gingeras (bib79) 2013; 29
Lesne, Victor, Bertrand, Basyuk, Barbi (bib33) 2018
Fang, Phillips, Butler (bib37) 2005; 11
Engel, Sainsbury, Cheung, Kostrewa, Cramer (bib85) 2013; 502
Peil, Waghmare, Fischer, Spitzer, Petfalski, Tollervey, Rappsilber (bib54) 2018
Merkl, Perez-Fernandez, Pilsl, Reiter, Williams, Gerber, Böhm, Deutzmann, Griesenbeck, Milkereit, Tschochner (bib24) 2014; 34
Neil, Malabat, d'Aubenton-Carafa, Xu, Steinmetz, Jacquier (bib41) 2009; 457
Amberg, Goldstein, Cole (bib48) 1992; 6
Reeder, Lang (bib15) 1997; 22
Dodt, Roehr, Ahmed, Dieterich (bib86) 2012; 1
Quinlan, Hall (bib78) 2010; 26
El Hage, Koper, Kufel, Tollervey (bib19) 2008; 22
Houseley, Tollervey (bib74) 2006; 7
Kawauchi, Mischo, Braglia, Rondon, Proudfoot (bib20) 2008; 22
Ibars, Codina-Fabra, Bellí, Casas, Tarrés, Solé-Soler, Lorite, Ximénez-Embún, Muñoz, Colomina, Torres-Rosell (bib60) 2023; 42
Laughery, Hunter, Brown, Hoopes, Ostbye, Shumaker, Wyrick (bib80) 2015; 32
Delan-Forino, Schneider, Tollervey (bib40) 2017; 13
Lang, Reeder (bib18) 1995; 92
Kos, Tollervey (bib10) 2010; 37
de la Cruz, Kressler, Tollervey, Linder (bib44) 1998; 17
Braglia, Kawauchi, Proudfoot (bib31) 2011; 39
Webb, Hector, Kudla, Granneman (bib76) 2014; 15
Saldi, Cortazar, Sheridan, Bentley (bib64) 2016; 428
Wittner, Hamperl, Stöckl, Seufert, Tschochner, Milkereit, Griesenbeck (bib56) 2011; 145
Clarke, Huffines, Edwards, Petit, Schneider (bib25) 2021; 12
El Hage, Webb, Kerr, Tollervey (bib67) 2014; 10
Turowski, Leśniewska, Delan-Forino, Sayou, Boguta, Tollervey (bib50) 2016; 26
Krawczyk, Dion, Schär, Fritsch (bib70) 2014; 42
Tantale, Mueller, Kozulic-Pirher, Lesne, Victor, Robert, Capozi, Chouaib, Bäcker, Mateos-Langerak (bib34) 2016; 7
Petfalski, Dandekar, Henry, Tollervey (bib47) 1998; 18
Brill, DiNardo, Voelkel-Meiman, Sternglanz (bib11) 1987; 326
Oesterreich, Herzel, Straube, Hujer, Howard, Neugebauer (bib62) 2016; 165
Park, Parrott, Fritz, Park, Mathews, Lee (bib53) 2008; 36
LaCava, Houseley, Saveanu, Petfalski, Thompson, Jacquier, Tollervey (bib75) 2005; 121
Thoms, Thomson, Baßler, Gnädig, Griesel, Hurt (bib45) 2015; 162
Schwank, Schmid, Fremter, Milkereit, Griesenbeck, Tschochner (bib29) 2022; 298
Granneman, Petfalski, Tollervey (bib81) 2011; 30
Xue, Bai, Lee, Kallstrom, Ho, Brown, Stevens, Johnson (bib38) 2000; 20
Osheim, French, Sikes, Beyer (bib57) 2009; 464
Reiter, Hamperl, Seitz, Merkl, Perez-Fernandez, Williams, Gerber, Németh, Léger, Gadal (bib23) 2012; 31
Turowski, Petfalski, Goddard, French, Helwak, Tollervey (bib8) 2020; 79
Li, Handsaker, Wysoker, Fennell, Ruan, Homer, Marth, Abecasis, Durbin (bib77) 2009; 25
Kufel, Dichtl, Tollervey (bib21) 1999; 5
Dengl, Cramer (bib82) 2009; 284
Ford, Wei, Liu, Scull, Najmi, Pitts, Fan, Schneider, Laiho (bib26) 2023; 18
Van Mullem, Landrieux, Vandenhaute, Thuriaux (bib30) 2002; 43
Ramírez, Ryan, Grüning, Bhardwaj, Kilpert, Richter, Heyne, Dündar, Manke (bib87) 2016; 44
Longtine, McKenzie, Demarini, Shah, Wach, Brachat, Philippsen, Pringle (bib72) 1998; 14
Kenna, Stevens, McCammon, Douglas (bib39) 1993; 13
Cheung, Cramer (bib49) 2011; 471
Di Felice, Egidi, D'Alfonso, Camilloni (bib14) 2019; 110
Heberling, Davis, Gedeon, Morgan, Gedeon (bib35) 2016; 12
Stevens, Poole (bib46) 1995; 270
Lang, Reeder (bib17) 1993; 13
Scull, Lucius, Schneider (bib28) 2021; 120
Di Felice, Cioci, Camilloni (bib13) 2005; 33
Liang, Hitomi, Hu, Liu, Tartakoff (bib43) 1996; 16
von der Haar (bib59) 2008; 2
Ha, Sung, Huh (bib22) 2012; 40
Tuck, Tollervey (bib42) 2013; 154
Farnung, Ochmann, Engeholm, Cramer (bib68) 2021; 28
Christman, Dietrich, Levin, Sadoff, Fink (bib71) 1993; 90
Prescott, Osheim, Jones, Alen, Roan, Reeder, Beyer, Proudfoot (bib16) 2004; 101
Rodríguez-Molina, West, Passmore (bib6) 2023; 83
Noe Gonzalez, Blears, Svejstrup (bib4) 2021; 22
Milligan, Sayou, Tuck, Auchynnikava, Reid, Alexander, Alves, Allshire, Spanos, Rappsilber (bib63) 2017; 6
Lisica, Engel, Jahnel, Roldán, Galburt, Cramer, Grill (bib66) 2016; 113
Xiang, Cooper-Morgan, Jiao, Kiledjian, Manley, Tong (bib83) 2009; 458
Richardson, Reed, Charette, Freed, Fredrickson, Locke, Baserga, Gardner (bib61) 2012; 2
Schärfen, Neugebauer (bib9) 2021; 433
Vogelauer, Camilloni (bib12) 1999; 293
Guajardo, Sousa (bib3) 1997; 265
Gromak, West, Proudfoot (bib32) 2006; 26
Schneider, French, Osheim, Bailey, Vu, Dodd, Yates, Beyer, Nomura (bib69) 2006; 103
Kuhn, Geiger, Baumli, Gartmann, Gerber, Jennebach, Mielke, Tschochner, Beckmann, Cramer (bib27) 2007; 131
Ma, Bai, Wang (bib1) 2013; 340
Guajardo (10.1016/j.celrep.2025.115325_bib3) 1997; 265
Scull (10.1016/j.celrep.2025.115325_bib28) 2021; 120
Cortazar (10.1016/j.celrep.2025.115325_bib65) 2019; 76
Dengl (10.1016/j.celrep.2025.115325_bib82) 2009; 284
Kufel (10.1016/j.celrep.2025.115325_bib21) 1999; 5
Fang (10.1016/j.celrep.2025.115325_bib37) 2005; 11
Henry (10.1016/j.celrep.2025.115325_bib73) 1994; 13
Delan-Forino (10.1016/j.celrep.2025.115325_bib51) 2020; 11
Merkl (10.1016/j.celrep.2025.115325_bib24) 2014; 34
Turowski (10.1016/j.celrep.2025.115325_bib50) 2016; 26
El Hage (10.1016/j.celrep.2025.115325_bib7) 2010; 24
Engel (10.1016/j.celrep.2025.115325_bib85) 2013; 502
Gromak (10.1016/j.celrep.2025.115325_bib32) 2006; 26
Rodríguez-Molina (10.1016/j.celrep.2025.115325_bib6) 2023; 83
Longtine (10.1016/j.celrep.2025.115325_bib72) 1998; 14
Lisica (10.1016/j.celrep.2025.115325_bib66) 2016; 113
Jiao (10.1016/j.celrep.2025.115325_bib84) 2013; 50
Osheim (10.1016/j.celrep.2025.115325_bib57) 2009; 464
El Hage (10.1016/j.celrep.2025.115325_bib19) 2008; 22
Ha (10.1016/j.celrep.2025.115325_bib22) 2012; 40
Laughery (10.1016/j.celrep.2025.115325_bib80) 2015; 32
Granneman (10.1016/j.celrep.2025.115325_bib81) 2011; 30
Kawauchi (10.1016/j.celrep.2025.115325_bib20) 2008; 22
Kuhn (10.1016/j.celrep.2025.115325_bib27) 2007; 131
Xiang (10.1016/j.celrep.2025.115325_bib83) 2009; 458
Lang (10.1016/j.celrep.2025.115325_bib17) 1993; 13
Schneider (10.1016/j.celrep.2025.115325_bib52) 2012; 48
Amberg (10.1016/j.celrep.2025.115325_bib48) 1992; 6
Richardson (10.1016/j.celrep.2025.115325_bib61) 2012; 2
Oesterreich (10.1016/j.celrep.2025.115325_bib62) 2016; 165
Schärfen (10.1016/j.celrep.2025.115325_bib9) 2021; 433
Braglia (10.1016/j.celrep.2025.115325_bib31) 2011; 39
Thoms (10.1016/j.celrep.2025.115325_bib45) 2015; 162
Reeder (10.1016/j.celrep.2025.115325_bib15) 1997; 22
Sheridan (10.1016/j.celrep.2025.115325_bib5) 2019; 73
de la Cruz (10.1016/j.celrep.2025.115325_bib44) 1998; 17
Li (10.1016/j.celrep.2025.115325_bib77) 2009; 25
Ramírez (10.1016/j.celrep.2025.115325_bib87) 2016; 44
Van Mullem (10.1016/j.celrep.2025.115325_bib30) 2002; 43
Petfalski (10.1016/j.celrep.2025.115325_bib47) 1998; 18
Houseley (10.1016/j.celrep.2025.115325_bib74) 2006; 7
Clarke (10.1016/j.celrep.2025.115325_bib25) 2021; 12
Ibars (10.1016/j.celrep.2025.115325_bib60) 2023; 42
LaCava (10.1016/j.celrep.2025.115325_bib75) 2005; 121
Milligan (10.1016/j.celrep.2025.115325_bib63) 2017; 6
Dangkulwanich (10.1016/j.celrep.2025.115325_bib2) 2013; 2
Liang (10.1016/j.celrep.2025.115325_bib43) 1996; 16
Warner (10.1016/j.celrep.2025.115325_bib58) 1999; 24
Saldi (10.1016/j.celrep.2025.115325_bib64) 2016; 428
Schneider (10.1016/j.celrep.2025.115325_bib69) 2006; 103
Di Felice (10.1016/j.celrep.2025.115325_bib14) 2019; 110
Dobin (10.1016/j.celrep.2025.115325_bib79) 2013; 29
Turowski (10.1016/j.celrep.2025.115325_bib8) 2020; 79
Neil (10.1016/j.celrep.2025.115325_bib41) 2009; 457
Tuck (10.1016/j.celrep.2025.115325_bib42) 2013; 154
Reiter (10.1016/j.celrep.2025.115325_bib23) 2012; 31
Peil (10.1016/j.celrep.2025.115325_bib54) 2018
Ma (10.1016/j.celrep.2025.115325_bib1) 2013; 340
El Hage (10.1016/j.celrep.2025.115325_bib67) 2014; 10
Lesne (10.1016/j.celrep.2025.115325_bib33) 2018
Heberling (10.1016/j.celrep.2025.115325_bib35) 2016; 12
Kenna (10.1016/j.celrep.2025.115325_bib39) 1993; 13
Lang (10.1016/j.celrep.2025.115325_bib18) 1995; 92
Dodt (10.1016/j.celrep.2025.115325_bib86) 2012; 1
Di Felice (10.1016/j.celrep.2025.115325_bib13) 2005; 33
Delan-Forino (10.1016/j.celrep.2025.115325_bib40) 2017; 13
Krawczyk (10.1016/j.celrep.2025.115325_bib70) 2014; 42
Christman (10.1016/j.celrep.2025.115325_bib71) 1993; 90
Tantale (10.1016/j.celrep.2025.115325_bib34) 2016; 7
Webb (10.1016/j.celrep.2025.115325_bib76) 2014; 15
Noe Gonzalez (10.1016/j.celrep.2025.115325_bib4) 2021; 22
Kos (10.1016/j.celrep.2025.115325_bib10) 2010; 37
Prescott (10.1016/j.celrep.2025.115325_bib16) 2004; 101
Winz (10.1016/j.celrep.2025.115325_bib55) 2019; 10
Farnung (10.1016/j.celrep.2025.115325_bib68) 2021; 28
Stevens (10.1016/j.celrep.2025.115325_bib46) 1995; 270
Vogelauer (10.1016/j.celrep.2025.115325_bib12) 1999; 293
Mendoza-Ochoa (10.1016/j.celrep.2025.115325_bib36) 2019; 36
Park (10.1016/j.celrep.2025.115325_bib53) 2008; 36
Brill (10.1016/j.celrep.2025.115325_bib11) 1987; 326
Wittner (10.1016/j.celrep.2025.115325_bib56) 2011; 145
Cheung (10.1016/j.celrep.2025.115325_bib49) 2011; 471
Schwank (10.1016/j.celrep.2025.115325_bib29) 2022; 298
Ford (10.1016/j.celrep.2025.115325_bib26) 2023; 18
von der Haar (10.1016/j.celrep.2025.115325_bib59) 2008; 2
Xue (10.1016/j.celrep.2025.115325_bib38) 2000; 20
Quinlan (10.1016/j.celrep.2025.115325_bib78) 2010; 26
References_xml – volume: 15
  year: 2014
  ident: bib76
  article-title: PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast
  publication-title: Genome Biol.
– volume: 44
  start-page: W160
  year: 2016
  end-page: W165
  ident: bib87
  article-title: deepTools2: a next generation web server for deep-sequencing data analysis
  publication-title: Nucleic Acids Res.
– volume: 92
  start-page: 9781
  year: 1995
  end-page: 9785
  ident: bib18
  article-title: Transcription termination of RNA polymerase I due to a T-rich element interacting with Reb1p
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 6
  start-page: 1173
  year: 1992
  end-page: 1189
  ident: bib48
  article-title: Isolation and characterization of RAT1: an essential gene of
  publication-title: Genes Dev.
– volume: 43
  start-page: 1105
  year: 2002
  end-page: 1113
  ident: bib30
  article-title: Rpa12p, a conserved RNA polymerase I subunit with two functional domains
  publication-title: Mol. Microbiol.
– volume: 83
  start-page: 404
  year: 2023
  end-page: 415
  ident: bib6
  article-title: Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII
  publication-title: Mol. Cell
– volume: 36
  start-page: 75
  year: 2019
  end-page: 81
  ident: bib36
  article-title: A fast and tuneable auxin-inducible degron for depletion of target proteins in budding yeast
  publication-title: Yeast
– volume: 26
  start-page: 933
  year: 2016
  end-page: 944
  ident: bib50
  article-title: Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts
  publication-title: Genome Res.
– volume: 50
  start-page: 104
  year: 2013
  end-page: 115
  ident: bib84
  article-title: A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing
  publication-title: Mol. Cell
– volume: 340
  start-page: 1580
  year: 2013
  end-page: 1583
  ident: bib1
  article-title: Transcription Under Torsion
  publication-title: Science
– volume: 270
  start-page: 16063
  year: 1995
  end-page: 16069
  ident: bib46
  article-title: 5'-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5'-exonuclease-1
  publication-title: J. Biol. Chem.
– volume: 14
  start-page: 953
  year: 1998
  end-page: 961
  ident: bib72
  article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
  publication-title: Yeast
– volume: 433
  year: 2021
  ident: bib9
  article-title: Transcription Regulation Through Nascent RNA Folding
  publication-title: J. Mol. Biol.
– volume: 36
  start-page: 6080
  year: 2008
  end-page: 6090
  ident: bib53
  article-title: Regulation of the catalytic function of topoisomerase II alpha through association with RNA
  publication-title: Nucleic Acids Res.
– volume: 76
  start-page: 896
  year: 2019
  end-page: 908.e4
  ident: bib65
  article-title: Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a “Sitting Duck Torpedo” Mechanism
  publication-title: Mol. Cell
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib77
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
– volume: 284
  start-page: 21270
  year: 2009
  end-page: 21279
  ident: bib82
  article-title: Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 382
  year: 2021
  end-page: 387
  ident: bib68
  article-title: Structural basis of nucleosome transcription mediated by Chd1 and FACT
  publication-title: Nat. Struct. Mol. Biol.
– volume: 103
  start-page: 12707
  year: 2006
  end-page: 12712
  ident: bib69
  article-title: RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 1
  start-page: 895
  year: 2012
  end-page: 905
  ident: bib86
  article-title: FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms
  publication-title: Biology
– volume: 10
  start-page: 563
  year: 2019
  ident: bib55
  article-title: Molecular interactions between Hel2 and RNA supporting ribosome-associated quality control
  publication-title: Nat. Commun.
– volume: 5
  start-page: 909
  year: 1999
  end-page: 917
  ident: bib21
  article-title: Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3' ETS but not the 5' ETS
  publication-title: RNA
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib79
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 6
  year: 2017
  ident: bib63
  article-title: RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit
  publication-title: Elife
– volume: 471
  start-page: 249
  year: 2011
  end-page: 253
  ident: bib49
  article-title: Structural basis of RNA polymerase II backtracking, arrest and reactivation
  publication-title: Nature
– volume: 37
  start-page: 809
  year: 2010
  end-page: 820
  ident: bib10
  article-title: Yeast pre-rRNA processing and modification occur cotranscriptionally
  publication-title: Mol. Cell
– volume: 7
  start-page: 205
  year: 2006
  end-page: 211
  ident: bib74
  article-title: Yeast Trf5p is a nuclear poly(A) polymerase
  publication-title: EMBO Rep.
– volume: 48
  start-page: 422
  year: 2012
  end-page: 433
  ident: bib52
  article-title: Transcriptome-wide analysis of exosome targets
  publication-title: Mol. Cell
– volume: 13
  start-page: 2452
  year: 1994
  end-page: 2463
  ident: bib73
  article-title: The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site
  publication-title: EMBO J.
– volume: 7
  start-page: 12248
  year: 2016
  ident: bib34
  article-title: A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting
  publication-title: Nat. Commun.
– volume: 20
  start-page: 4006
  year: 2000
  end-page: 4015
  ident: bib38
  article-title: Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p
  publication-title: Mol. Cell Biol.
– volume: 34
  start-page: 3817
  year: 2014
  end-page: 3827
  ident: bib24
  article-title: Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo
  publication-title: Mol. Cell Biol.
– volume: 13
  year: 2017
  ident: bib40
  article-title: Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex
  publication-title: PLoS Genet.
– volume: 18
  year: 2023
  ident: bib26
  article-title: Expression of RNA polymerase I catalytic core is influenced by RPA12
  publication-title: PLoS One
– volume: 293
  start-page: 19
  year: 1999
  end-page: 28
  ident: bib12
  article-title: Site-specific in vivo cleavages by DNA topoisomerase I in the regulatory regions of the 35 S rRNA in Saccharomyces cerevisiae are transcription independent
  publication-title: J. Mol. Biol.
– volume: 31
  start-page: 3480
  year: 2012
  end-page: 3493
  ident: bib23
  article-title: The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast
  publication-title: EMBO J.
– volume: 12
  year: 2016
  ident: bib35
  article-title: A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases
  publication-title: PLoS Comput. Biol.
– volume: 26
  start-page: 3986
  year: 2006
  end-page: 3996
  ident: bib32
  article-title: Pause sites promote transcriptional termination of mammalian RNA polymerase II
  publication-title: Mol. Cell Biol.
– volume: 39
  start-page: 1439
  year: 2011
  end-page: 1448
  ident: bib31
  article-title: Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 3
  year: 2021
  end-page: 21
  ident: bib4
  article-title: Causes and consequences of RNA polymerase II stalling during transcript elongation
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 154
  start-page: 996
  year: 2013
  end-page: 1009
  ident: bib42
  article-title: A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs
  publication-title: Cell
– volume: 298
  year: 2022
  ident: bib29
  article-title: RNA polymerase I (Pol I) lobe-binding subunit Rpa12.2 promotes RNA cleavage and proofreading
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 4006
  year: 2011
  end-page: 4019
  ident: bib81
  article-title: A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease
  publication-title: EMBO J.
– volume: 24
  start-page: 1546
  year: 2010
  end-page: 1558
  ident: bib7
  article-title: Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis
  publication-title: Genes Dev.
– start-page: 215
  year: 2018
  end-page: 232
  ident: bib33
  article-title: The Role of Supercoiling in the Motor Activity of RNA Polymerases
  publication-title: Molecular Motors: Methods and Protocols
– volume: 22
  start-page: 1069
  year: 2008
  end-page: 1081
  ident: bib19
  article-title: Efficient termination of transcription by RNA polymerase I requires the 5' exonuclease Rat1 in yeast
  publication-title: Genes Dev.
– volume: 32
  start-page: 711
  year: 2015
  end-page: 720
  ident: bib80
  article-title: New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae
  publication-title: Yeast
– volume: 458
  start-page: 784
  year: 2009
  end-page: 788
  ident: bib83
  article-title: Structure and function of the 5'->3' exoribonuclease Rat1 and its activating partner Rai1
  publication-title: Nature
– volume: 33
  start-page: 6327
  year: 2005
  end-page: 6337
  ident: bib13
  article-title: FOB1 affects DNA topoisomerase I in vivo cleavages in the enhancer region of the Saccharomyces cerevisiae ribosomal DNA locus
  publication-title: Nucleic Acids Res.
– volume: 131
  start-page: 1260
  year: 2007
  end-page: 1272
  ident: bib27
  article-title: Functional Architecture of RNA Polymerase I
  publication-title: Cell
– volume: 2
  start-page: 372
  year: 2012
  end-page: 385
  ident: bib61
  article-title: A Conserved Deubiquitinating Enzyme Controls Cell Growth by Regulating RNA Polymerase I Stability
  publication-title: Cell Rep.
– volume: 90
  start-page: 7637
  year: 1993
  end-page: 7641
  ident: bib71
  article-title: The rRNA-encoding DNA array has an altered structure in topoisomerase I mutants of Saccharomyces cerevisiae
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 1939
  year: 2021
  ident: bib25
  article-title: Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo
  publication-title: Genes
– year: 2018
  ident: bib54
  article-title: Identification of RNA-associated peptides, iRAP, defines precise sites of protein-RNA interaction
  publication-title: bioRxiv
– volume: 464
  start-page: 55
  year: 2009
  end-page: 69
  ident: bib57
  article-title: Electron Microscope Visualization of RNA Transcription and Processing in Saccharomyces cerevisiae by Miller Chromatin Spreading
  publication-title: Methods Mol. Biol.
– volume: 24
  start-page: 437
  year: 1999
  end-page: 440
  ident: bib58
  article-title: The economics of ribosome biosynthesis in yeast
  publication-title: Trends Biochem. Sci.
– volume: 79
  start-page: 488
  year: 2020
  end-page: 503.e11
  ident: bib8
  article-title: Nascent transcript folding plays a major role in determining RNA polymerase elongation rates
  publication-title: Mol. Cell
– volume: 42
  year: 2023
  ident: bib60
  article-title: Ubiquitin proteomics identifies RNA polymerase I as a target of the Smc5/6 complex
  publication-title: Cell Rep.
– volume: 2
  year: 2013
  ident: bib2
  article-title: Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism
  publication-title: Elife
– volume: 40
  start-page: 4892
  year: 2012
  end-page: 4903
  ident: bib22
  article-title: Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae
  publication-title: Nucleic Acids Res.
– volume: 457
  start-page: 1038
  year: 2009
  end-page: 1042
  ident: bib41
  article-title: Widespread bidirectional promoters are the major source of cryptic transcripts in yeast
  publication-title: Nature
– volume: 11
  start-page: 3122
  year: 2020
  ident: bib51
  article-title: Substrate Specificity of the TRAMP Nuclear Surveillance Complexes
  publication-title: Nat. Commun.
– volume: 22
  start-page: 1082
  year: 2008
  end-page: 1092
  ident: bib20
  article-title: Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination
  publication-title: Genes Dev.
– volume: 11
  start-page: 1571
  year: 2005
  end-page: 1578
  ident: bib37
  article-title: Rat1p and Rai1p function with the nuclear exosome in the processing and degradation of rRNA precursors
  publication-title: RNA
– volume: 26
  start-page: 841
  year: 2010
  end-page: 842
  ident: bib78
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
– volume: 101
  start-page: 6068
  year: 2004
  end-page: 6073
  ident: bib16
  article-title: Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 121
  start-page: 713
  year: 2005
  end-page: 724
  ident: bib75
  article-title: RNA degradation by the exosome is promoted by a nuclear polyadenylation complex
  publication-title: Cell
– volume: 502
  start-page: 650
  year: 2013
  end-page: 655
  ident: bib85
  article-title: RNA polymerase I structure and transcription regulation
  publication-title: Nature
– volume: 22
  start-page: 473
  year: 1997
  end-page: 477
  ident: bib15
  article-title: Terminating transcription in eukaryotes: lessons learned from RNA polymerase I
  publication-title: Trends Biochem. Sci.
– volume: 428
  start-page: 2623
  year: 2016
  end-page: 2635
  ident: bib64
  article-title: Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing
  publication-title: J. Mol. Biol.
– volume: 113
  start-page: 2946
  year: 2016
  end-page: 2951
  ident: bib66
  article-title: Mechanisms of backtrack recovery by RNA polymerases I and II
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 326
  start-page: 414
  year: 1987
  end-page: 416
  ident: bib11
  article-title: Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA
  publication-title: Nature
– volume: 18
  start-page: 1181
  year: 1998
  end-page: 1189
  ident: bib47
  article-title: Processing of the precursors to small nucleolar RNAs and rRNAs requires common components
  publication-title: Mol. Cell Biol.
– volume: 162
  start-page: 1029
  year: 2015
  end-page: 1038
  ident: bib45
  article-title: The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins
  publication-title: Cell
– volume: 17
  start-page: 1128
  year: 1998
  end-page: 1140
  ident: bib44
  article-title: Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae
  publication-title: EMBO J.
– volume: 165
  start-page: 372
  year: 2016
  end-page: 381
  ident: bib62
  article-title: Splicing of Nascent RNA Coincides with Intron Exit from RNA Polymerase II
  publication-title: Cell
– volume: 73
  start-page: 107
  year: 2019
  end-page: 118.e4
  ident: bib5
  article-title: Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5′ Pause Release, Termination, and Transcription Elongation Rate
  publication-title: Mol. Cell
– volume: 145
  start-page: 543
  year: 2011
  end-page: 554
  ident: bib56
  article-title: Establishment and Maintenance of Alternative Chromatin States at a Multicopy Gene Locus
  publication-title: Cell
– volume: 110
  start-page: 143
  year: 2019
  end-page: 148
  ident: bib14
  article-title: Fob1p recruits DNA topoisomerase I to ribosomal genes locus and contributes to its transcriptional silencing maintenance
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 42
  start-page: 4985
  year: 2014
  end-page: 4995
  ident: bib70
  article-title: Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability
  publication-title: Nucleic Acids Res.
– volume: 120
  start-page: 1883
  year: 2021
  end-page: 1893
  ident: bib28
  article-title: The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation
  publication-title: Biophys. J.
– volume: 16
  start-page: 5139
  year: 1996
  end-page: 5146
  ident: bib43
  article-title: A DEAD-box-family protein is required for nucleocytoplasmic transport of yeast mRNA
  publication-title: Mol. Cell Biol.
– volume: 265
  start-page: 8
  year: 1997
  end-page: 19
  ident: bib3
  article-title: A model for the mechanism of polymerase translocation
  publication-title: J. Mol. Biol.
– volume: 2
  start-page: 87
  year: 2008
  ident: bib59
  article-title: A quantitative estimation of the global translational activity in logarithmically growing yeast cells
  publication-title: BMC Syst. Biol.
– volume: 13
  start-page: 649
  year: 1993
  end-page: 658
  ident: bib17
  article-title: The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae
  publication-title: Mol. Cell Biol.
– volume: 13
  start-page: 341
  year: 1993
  end-page: 350
  ident: bib39
  article-title: An essential yeast gene with homology to the exonuclease-encoding
  publication-title: Mol. Cell Biol.
– volume: 10
  year: 2014
  ident: bib67
  article-title: Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria
  publication-title: PLoS Genet.
– volume: 92
  start-page: 9781
  year: 1995
  ident: 10.1016/j.celrep.2025.115325_bib18
  article-title: Transcription termination of RNA polymerase I due to a T-rich element interacting with Reb1p
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.92.21.9781
– volume: 34
  start-page: 3817
  year: 2014
  ident: 10.1016/j.celrep.2025.115325_bib24
  article-title: Binding of the termination factor Nsi1 to its cognate DNA site is sufficient to terminate RNA polymerase I transcription in vitro and to induce termination in vivo
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.00395-14
– volume: 7
  start-page: 205
  year: 2006
  ident: 10.1016/j.celrep.2025.115325_bib74
  article-title: Yeast Trf5p is a nuclear poly(A) polymerase
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400612
– volume: 17
  start-page: 1128
  year: 1998
  ident: 10.1016/j.celrep.2025.115325_bib44
  article-title: Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.4.1128
– volume: 28
  start-page: 382
  year: 2021
  ident: 10.1016/j.celrep.2025.115325_bib68
  article-title: Structural basis of nucleosome transcription mediated by Chd1 and FACT
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-021-00578-6
– volume: 103
  start-page: 12707
  year: 2006
  ident: 10.1016/j.celrep.2025.115325_bib69
  article-title: RNA polymerase II elongation factors Spt4p and Spt5p play roles in transcription elongation by RNA polymerase I and rRNA processing
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0605686103
– volume: 2
  start-page: 87
  year: 2008
  ident: 10.1016/j.celrep.2025.115325_bib59
  article-title: A quantitative estimation of the global translational activity in logarithmically growing yeast cells
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-2-87
– volume: 40
  start-page: 4892
  year: 2012
  ident: 10.1016/j.celrep.2025.115325_bib22
  article-title: Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks188
– volume: 464
  start-page: 55
  year: 2009
  ident: 10.1016/j.celrep.2025.115325_bib57
  article-title: Electron Microscope Visualization of RNA Transcription and Processing in Saccharomyces cerevisiae by Miller Chromatin Spreading
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-60327-461-6_4
– volume: 11
  start-page: 1571
  year: 2005
  ident: 10.1016/j.celrep.2025.115325_bib37
  article-title: Rat1p and Rai1p function with the nuclear exosome in the processing and degradation of rRNA precursors
  publication-title: RNA
  doi: 10.1261/rna.2900205
– volume: 6
  year: 2017
  ident: 10.1016/j.celrep.2025.115325_bib63
  article-title: RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit
  publication-title: Elife
  doi: 10.7554/eLife.27082
– volume: 10
  start-page: 563
  year: 2019
  ident: 10.1016/j.celrep.2025.115325_bib55
  article-title: Molecular interactions between Hel2 and RNA supporting ribosome-associated quality control
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08382-z
– volume: 6
  start-page: 1173
  year: 1992
  ident: 10.1016/j.celrep.2025.115325_bib48
  article-title: Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA
  publication-title: Genes Dev.
  doi: 10.1101/gad.6.7.1173
– volume: 29
  start-page: 15
  year: 2013
  ident: 10.1016/j.celrep.2025.115325_bib79
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 428
  start-page: 2623
  year: 2016
  ident: 10.1016/j.celrep.2025.115325_bib64
  article-title: Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.04.017
– volume: 26
  start-page: 841
  year: 2010
  ident: 10.1016/j.celrep.2025.115325_bib78
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 22
  start-page: 1082
  year: 2008
  ident: 10.1016/j.celrep.2025.115325_bib20
  article-title: Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination
  publication-title: Genes Dev.
  doi: 10.1101/gad.463408
– volume: 43
  start-page: 1105
  year: 2002
  ident: 10.1016/j.celrep.2025.115325_bib30
  article-title: Rpa12p, a conserved RNA polymerase I subunit with two functional domains
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.02824.x
– volume: 113
  start-page: 2946
  year: 2016
  ident: 10.1016/j.celrep.2025.115325_bib66
  article-title: Mechanisms of backtrack recovery by RNA polymerases I and II
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1517011113
– volume: 458
  start-page: 784
  year: 2009
  ident: 10.1016/j.celrep.2025.115325_bib83
  article-title: Structure and function of the 5'->3' exoribonuclease Rat1 and its activating partner Rai1
  publication-title: Nature
  doi: 10.1038/nature07731
– volume: 22
  start-page: 3
  year: 2021
  ident: 10.1016/j.celrep.2025.115325_bib4
  article-title: Causes and consequences of RNA polymerase II stalling during transcript elongation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-020-00308-8
– volume: 131
  start-page: 1260
  year: 2007
  ident: 10.1016/j.celrep.2025.115325_bib27
  article-title: Functional Architecture of RNA Polymerase I
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.051
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.celrep.2025.115325_bib77
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 110
  start-page: 143
  year: 2019
  ident: 10.1016/j.celrep.2025.115325_bib14
  article-title: Fob1p recruits DNA topoisomerase I to ribosomal genes locus and contributes to its transcriptional silencing maintenance
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2019.03.006
– volume: 48
  start-page: 422
  year: 2012
  ident: 10.1016/j.celrep.2025.115325_bib52
  article-title: Transcriptome-wide analysis of exosome targets
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.08.013
– volume: 18
  year: 2023
  ident: 10.1016/j.celrep.2025.115325_bib26
  article-title: Expression of RNA polymerase I catalytic core is influenced by RPA12
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0285660
– volume: 42
  year: 2023
  ident: 10.1016/j.celrep.2025.115325_bib60
  article-title: Ubiquitin proteomics identifies RNA polymerase I as a target of the Smc5/6 complex
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2023.112463
– volume: 1
  start-page: 895
  year: 2012
  ident: 10.1016/j.celrep.2025.115325_bib86
  article-title: FLEXBAR-Flexible Barcode and Adapter Processing for Next-Generation Sequencing Platforms
  publication-title: Biology
  doi: 10.3390/biology1030895
– volume: 5
  start-page: 909
  year: 1999
  ident: 10.1016/j.celrep.2025.115325_bib21
  article-title: Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3' ETS but not the 5' ETS
  publication-title: RNA
  doi: 10.1017/S135583829999026X
– volume: 14
  start-page: 953
  year: 1998
  ident: 10.1016/j.celrep.2025.115325_bib72
  article-title: Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
– volume: 11
  start-page: 3122
  year: 2020
  ident: 10.1016/j.celrep.2025.115325_bib51
  article-title: Substrate Specificity of the TRAMP Nuclear Surveillance Complexes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16965-4
– volume: 15
  year: 2014
  ident: 10.1016/j.celrep.2025.115325_bib76
  article-title: PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast
  publication-title: Genome Biol.
  doi: 10.1186/gb-2014-15-1-r8
– volume: 120
  start-page: 1883
  year: 2021
  ident: 10.1016/j.celrep.2025.115325_bib28
  article-title: The N-terminal domain of the A12.2 subunit stimulates RNA polymerase I transcription elongation
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2021.03.007
– volume: 502
  start-page: 650
  year: 2013
  ident: 10.1016/j.celrep.2025.115325_bib85
  article-title: RNA polymerase I structure and transcription regulation
  publication-title: Nature
  doi: 10.1038/nature12712
– volume: 298
  year: 2022
  ident: 10.1016/j.celrep.2025.115325_bib29
  article-title: RNA polymerase I (Pol I) lobe-binding subunit Rpa12.2 promotes RNA cleavage and proofreading
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2022.101862
– volume: 18
  start-page: 1181
  year: 1998
  ident: 10.1016/j.celrep.2025.115325_bib47
  article-title: Processing of the precursors to small nucleolar RNAs and rRNAs requires common components
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.18.3.1181
– volume: 79
  start-page: 488
  year: 2020
  ident: 10.1016/j.celrep.2025.115325_bib8
  article-title: Nascent transcript folding plays a major role in determining RNA polymerase elongation rates
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.06.002
– volume: 7
  start-page: 12248
  year: 2016
  ident: 10.1016/j.celrep.2025.115325_bib34
  article-title: A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12248
– volume: 457
  start-page: 1038
  year: 2009
  ident: 10.1016/j.celrep.2025.115325_bib41
  article-title: Widespread bidirectional promoters are the major source of cryptic transcripts in yeast
  publication-title: Nature
  doi: 10.1038/nature07747
– volume: 121
  start-page: 713
  year: 2005
  ident: 10.1016/j.celrep.2025.115325_bib75
  article-title: RNA degradation by the exosome is promoted by a nuclear polyadenylation complex
  publication-title: Cell
  doi: 10.1016/j.cell.2005.04.029
– volume: 265
  start-page: 8
  year: 1997
  ident: 10.1016/j.celrep.2025.115325_bib3
  article-title: A model for the mechanism of polymerase translocation
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1996.0707
– volume: 30
  start-page: 4006
  year: 2011
  ident: 10.1016/j.celrep.2025.115325_bib81
  article-title: A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease
  publication-title: EMBO J.
  doi: 10.1038/emboj.2011.256
– volume: 31
  start-page: 3480
  year: 2012
  ident: 10.1016/j.celrep.2025.115325_bib23
  article-title: The Reb1-homologue Ydr026c/Nsi1 is required for efficient RNA polymerase I termination in yeast
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.185
– volume: 162
  start-page: 1029
  year: 2015
  ident: 10.1016/j.celrep.2025.115325_bib45
  article-title: The Exosome Is Recruited to RNA Substrates through Specific Adaptor Proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.060
– volume: 50
  start-page: 104
  year: 2013
  ident: 10.1016/j.celrep.2025.115325_bib84
  article-title: A mammalian pre-mRNA 5' end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.02.017
– year: 2018
  ident: 10.1016/j.celrep.2025.115325_bib54
  article-title: Identification of RNA-associated peptides, iRAP, defines precise sites of protein-RNA interaction
  publication-title: bioRxiv
– volume: 36
  start-page: 75
  year: 2019
  ident: 10.1016/j.celrep.2025.115325_bib36
  article-title: A fast and tuneable auxin-inducible degron for depletion of target proteins in budding yeast
  publication-title: Yeast
  doi: 10.1002/yea.3362
– volume: 26
  start-page: 3986
  year: 2006
  ident: 10.1016/j.celrep.2025.115325_bib32
  article-title: Pause sites promote transcriptional termination of mammalian RNA polymerase II
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.26.10.3986-3996.2006
– volume: 22
  start-page: 473
  year: 1997
  ident: 10.1016/j.celrep.2025.115325_bib15
  article-title: Terminating transcription in eukaryotes: lessons learned from RNA polymerase I
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(97)01133-X
– volume: 2
  start-page: 372
  year: 2012
  ident: 10.1016/j.celrep.2025.115325_bib61
  article-title: A Conserved Deubiquitinating Enzyme Controls Cell Growth by Regulating RNA Polymerase I Stability
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.07.009
– volume: 37
  start-page: 809
  year: 2010
  ident: 10.1016/j.celrep.2025.115325_bib10
  article-title: Yeast pre-rRNA processing and modification occur cotranscriptionally
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.02.024
– volume: 293
  start-page: 19
  year: 1999
  ident: 10.1016/j.celrep.2025.115325_bib12
  article-title: Site-specific in vivo cleavages by DNA topoisomerase I in the regulatory regions of the 35 S rRNA in Saccharomyces cerevisiae are transcription independent
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3154
– volume: 284
  start-page: 21270
  year: 2009
  ident: 10.1016/j.celrep.2025.115325_bib82
  article-title: Torpedo nuclease Rat1 is insufficient to terminate RNA polymerase II in vitro
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.013847
– volume: 326
  start-page: 414
  year: 1987
  ident: 10.1016/j.celrep.2025.115325_bib11
  article-title: Need for DNA topoisomerase activity as a swivel for DNA replication for transcription of ribosomal RNA
  publication-title: Nature
  doi: 10.1038/326414a0
– start-page: 215
  year: 2018
  ident: 10.1016/j.celrep.2025.115325_bib33
  article-title: The Role of Supercoiling in the Motor Activity of RNA Polymerases
– volume: 165
  start-page: 372
  year: 2016
  ident: 10.1016/j.celrep.2025.115325_bib62
  article-title: Splicing of Nascent RNA Coincides with Intron Exit from RNA Polymerase II
  publication-title: Cell
  doi: 10.1016/j.cell.2016.02.045
– volume: 76
  start-page: 896
  year: 2019
  ident: 10.1016/j.celrep.2025.115325_bib65
  article-title: Control of RNA Pol II Speed by PNUTS-PP1 and Spt5 Dephosphorylation Facilitates Termination by a “Sitting Duck Torpedo” Mechanism
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.031
– volume: 26
  start-page: 933
  year: 2016
  ident: 10.1016/j.celrep.2025.115325_bib50
  article-title: Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts
  publication-title: Genome Res.
  doi: 10.1101/gr.205492.116
– volume: 90
  start-page: 7637
  year: 1993
  ident: 10.1016/j.celrep.2025.115325_bib71
  article-title: The rRNA-encoding DNA array has an altered structure in topoisomerase I mutants of Saccharomyces cerevisiae
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.16.7637
– volume: 12
  start-page: 1939
  year: 2021
  ident: 10.1016/j.celrep.2025.115325_bib25
  article-title: Defining the Influence of the A12.2 Subunit on Transcription Elongation and Termination by RNA Polymerase I In Vivo
  publication-title: Genes
  doi: 10.3390/genes12121939
– volume: 2
  year: 2013
  ident: 10.1016/j.celrep.2025.115325_bib2
  article-title: Complete dissection of transcription elongation reveals slow translocation of RNA polymerase II in a linear ratchet mechanism
  publication-title: Elife
  doi: 10.7554/eLife.00971
– volume: 73
  start-page: 107
  year: 2019
  ident: 10.1016/j.celrep.2025.115325_bib5
  article-title: Widespread Backtracking by RNA Pol II Is a Major Effector of Gene Activation, 5′ Pause Release, Termination, and Transcription Elongation Rate
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.10.031
– volume: 24
  start-page: 437
  year: 1999
  ident: 10.1016/j.celrep.2025.115325_bib58
  article-title: The economics of ribosome biosynthesis in yeast
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(99)01460-7
– volume: 433
  year: 2021
  ident: 10.1016/j.celrep.2025.115325_bib9
  article-title: Transcription Regulation Through Nascent RNA Folding
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2021.166975
– volume: 42
  start-page: 4985
  year: 2014
  ident: 10.1016/j.celrep.2025.115325_bib70
  article-title: Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku148
– volume: 83
  start-page: 404
  year: 2023
  ident: 10.1016/j.celrep.2025.115325_bib6
  article-title: Knowing when to stop: Transcription termination on protein-coding genes by eukaryotic RNAPII
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2022.12.021
– volume: 24
  start-page: 1546
  year: 2010
  ident: 10.1016/j.celrep.2025.115325_bib7
  article-title: Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.573310
– volume: 16
  start-page: 5139
  year: 1996
  ident: 10.1016/j.celrep.2025.115325_bib43
  article-title: A DEAD-box-family protein is required for nucleocytoplasmic transport of yeast mRNA
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.16.9.5139
– volume: 13
  start-page: 649
  year: 1993
  ident: 10.1016/j.celrep.2025.115325_bib17
  article-title: The REB1 site is an essential component of a terminator for RNA polymerase I in Saccharomyces cerevisiae
  publication-title: Mol. Cell Biol.
– volume: 270
  start-page: 16063
  year: 1995
  ident: 10.1016/j.celrep.2025.115325_bib46
  article-title: 5'-exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5'-exonuclease-1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.27.16063
– volume: 44
  start-page: W160
  year: 2016
  ident: 10.1016/j.celrep.2025.115325_bib87
  article-title: deepTools2: a next generation web server for deep-sequencing data analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw257
– volume: 39
  start-page: 1439
  year: 2011
  ident: 10.1016/j.celrep.2025.115325_bib31
  article-title: Co-transcriptional RNA cleavage provides a failsafe termination mechanism for yeast RNA polymerase I
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq894
– volume: 33
  start-page: 6327
  year: 2005
  ident: 10.1016/j.celrep.2025.115325_bib13
  article-title: FOB1 affects DNA topoisomerase I in vivo cleavages in the enhancer region of the Saccharomyces cerevisiae ribosomal DNA locus
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki950
– volume: 13
  year: 2017
  ident: 10.1016/j.celrep.2025.115325_bib40
  article-title: Transcriptome-wide analysis of alternative routes for RNA substrates into the exosome complex
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006699
– volume: 145
  start-page: 543
  year: 2011
  ident: 10.1016/j.celrep.2025.115325_bib56
  article-title: Establishment and Maintenance of Alternative Chromatin States at a Multicopy Gene Locus
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.051
– volume: 36
  start-page: 6080
  year: 2008
  ident: 10.1016/j.celrep.2025.115325_bib53
  article-title: Regulation of the catalytic function of topoisomerase II alpha through association with RNA
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn614
– volume: 13
  start-page: 2452
  year: 1994
  ident: 10.1016/j.celrep.2025.115325_bib73
  article-title: The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1994.tb06530.x
– volume: 22
  start-page: 1069
  year: 2008
  ident: 10.1016/j.celrep.2025.115325_bib19
  article-title: Efficient termination of transcription by RNA polymerase I requires the 5' exonuclease Rat1 in yeast
  publication-title: Genes Dev.
  doi: 10.1101/gad.463708
– volume: 10
  year: 2014
  ident: 10.1016/j.celrep.2025.115325_bib67
  article-title: Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1004716
– volume: 32
  start-page: 711
  year: 2015
  ident: 10.1016/j.celrep.2025.115325_bib80
  article-title: New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae
  publication-title: Yeast
  doi: 10.1002/yea.3098
– volume: 340
  start-page: 1580
  year: 2013
  ident: 10.1016/j.celrep.2025.115325_bib1
  article-title: Transcription Under Torsion
  publication-title: Science
  doi: 10.1126/science.1235441
– volume: 12
  year: 2016
  ident: 10.1016/j.celrep.2025.115325_bib35
  article-title: A Mechanistic Model for Cooperative Behavior of Co-transcribing RNA Polymerases
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005069
– volume: 20
  start-page: 4006
  year: 2000
  ident: 10.1016/j.celrep.2025.115325_bib38
  article-title: Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.20.11.4006-4015.2000
– volume: 471
  start-page: 249
  year: 2011
  ident: 10.1016/j.celrep.2025.115325_bib49
  article-title: Structural basis of RNA polymerase II backtracking, arrest and reactivation
  publication-title: Nature
  doi: 10.1038/nature09785
– volume: 101
  start-page: 6068
  year: 2004
  ident: 10.1016/j.celrep.2025.115325_bib16
  article-title: Transcriptional termination by RNA polymerase I requires the small subunit Rpa12p
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0401393101
– volume: 13
  start-page: 341
  year: 1993
  ident: 10.1016/j.celrep.2025.115325_bib39
  article-title: An essential yeast gene with homology to the exonuclease-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease activity
  publication-title: Mol. Cell Biol.
– volume: 154
  start-page: 996
  year: 2013
  ident: 10.1016/j.celrep.2025.115325_bib42
  article-title: A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.047
SSID ssj0000601194
Score 2.4267733
Snippet Transcription elongation is stochastic, driven by a Brownian ratchet, making it subject to changes in velocity. On the rDNA, multiple polymerases are linked by...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 115325
SubjectTerms biophysical modeling
DNA torsion
Exoribonucleases - metabolism
exosome
ribosome synthesis
RNA polymerase
RNA Polymerase I - genetics
RNA Polymerase I - metabolism
RNA-protein interactions
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
topoisomerase
transcription
Transcription Termination, Genetic
Transcription, Genetic
UV crosslinking
yeast
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KQfAi7taNEbyGNpkl6bEWSxVaRS30NswKFbvQ5eC_970sBUERPCbMkOGbvO99k7yFkNs0uFbWDjxqO2kirsHSM5vGUciYDBZcivOY4DwYyv6IP47FuEa6VS4MhlWW3F9wes7W5Z1miWZzMZk0XxM4u4B3SpO8pr_EhF_GszyJb3y3_c6C9UbivB8ijo9wQpVBl4d5Wf-x9Fi4MhFAH4Jhz-yfPdRvCjT3RL19sldKSNopVnlAan52SHaKppKfR-RpUMYI0qnHtN7Jarqi80DLsBfcCDqdO2zb5SnIP-qKpvT5oJdh5_mBrtGBVXRyTEa9-7duPyrbJkQWjj_ryGinNYtlaDsRWnHmMut5wr3gDoxNpA5s2jimhTTayiQBed1iIXM2doCkkeyE1GfzmT8j1GgjMttq-5BobsDYucUOYj6kznLJQ4NEFVRqUVTHUFXY2LsqoFUIrSqgbZC0wlN922UFBP7HzJsKfgUGgH819MzPNysFAihGluSyQU6LfdmuBdQXHCcZO__3cy_ILl5h1FkiLkl9vdz4K5Aha3Odv2dfX6rasQ
  priority: 102
  providerName: Elsevier
Title Multiple mechanisms of termination modulate the dynamics of RNAPI transcription
URI https://dx.doi.org/10.1016/j.celrep.2025.115325
https://www.ncbi.nlm.nih.gov/pubmed/39999833
https://www.proquest.com/docview/3171376346
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA06EXwRv51fRPC10qZJ2j2ITFFUmIo42FvIJyhu022C_nvvXVp9cYgvhUJbwknuPefSmxxCjorg0rIVeNJy0iRcQ6SXtsiSUOYyWKAU53GDc-dWXnX5TU_05kjt2VoBOP61tEM_qe7o5fjj7fMUAv7kp1fL-peRx9MnmYAcIHIm5skCcFOBZg6dSvDH3IxnnOGvZsawl4vxot5PN-NDs_hqlh6d8tLlClmuBCVtxxWwSub8YI0sRovJz3Vy16k6Bmnf4ybfp3F_TIeBVk0wOC20P3Ro4uUpiEHqokX99KGH2_b9NZ0gndXJZYN0Ly8ez6-SykQhsVAMTRKjndZ5JkPLiZBmpSut54x7wR2EnigcRLhxuRbSaCsZA7Gd5qF0NnMiTY3MN0ljMBz4bUKNNqK0acsHprmB0OcW_cR8KJzlkocmSWqo1Gs8K0PVTWTPKkKrEFoVoW2SosZTVXwfeVzB7P7x5mENv4JwwH8ceuCH72MFcijDnMllk2zFefkeC2gxKC7zfOef49wlS3iHnWdM7JHGZPTu90GKTMzBtISH63Xv7GC60r4AihndSw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-NAFD5UZdEXUddLvY6wr6FNMjNJH7Uordoquwp9G-YKFXvB1gf_vefkIizsIviaZMjwzZzvfJOcC8CvLLh23gk86jhpIq7R0nObxVHIUxksuhTnKcF5MJS9J34zEqMGdOtcGAqrrLi_5PSCrasrrQrN1nw8bv1J8OyC3ilLipr-Ml-BNVQDkrZ2f3T5-aGFCo7ERUNEGhDRiDqFrojzsv7l1VPlykQgf4iUmmb_20X9T4IWruh6CzYrDckuymluQ8NPd-BH2VXy_SfcD6ogQTbxlNc7XkwWbBZYFfdCK8EmM0d9uzxD_cdc2ZW-eOj38OKhz5bkwWo-2YWn66vHbi-q-iZEFs8_y8hop3Uay9BxIrTj3OXW84R7wR1am8gcGrVxqRbSaCuTBPV1Ow25s7FDKI1M92B1Opv6A2BGG5HbdseHRHOD1s4ttRDzIXOWSx6aENVQqXlZHkPVcWPPqoRWEbSqhLYJWY2n-muZFTL4FyPPa_gVWgD91tBTP3tbKFRAMdEkl03YL9flcy4ov_A8maaH337vGaz3Hgd36q4_vD2CDbpDIWiJOIbV5eubP0FNsjSnxZ77AHyG3dg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+mechanisms+of+termination+modulate+the+dynamics+of+RNAPI+transcription&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Petfalski%2C+Elisabeth&rft.au=Winz%2C+Marie-Luise&rft.au=Grelewska-Nowotko%2C+Katarzyna&rft.au=Turowski%2C+Tomasz+W.&rft.date=2025-03-25&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=44&rft.issue=3&rft.spage=115325&rft_id=info:doi/10.1016%2Fj.celrep.2025.115325&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2025_115325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon