Batch normalization embeddings for deep domain generalization
•We propose to accumulate domain-specific batch normalization statistics accumulated on convolutional layers to map image samples into a latent space where membership to a domain can be measured according to a distance from domain batch population statistics•We propose to use this concept to learn a...
Saved in:
Published in | Pattern recognition Vol. 135; p. 109115 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-3203 1873-5142 |
DOI | 10.1016/j.patcog.2022.109115 |
Cover
Loading…
Abstract | •We propose to accumulate domain-specific batch normalization statistics accumulated on convolutional layers to map image samples into a latent space where membership to a domain can be measured according to a distance from domain batch population statistics•We propose to use this concept to learn a lightweight ensemble model that shares all parameters excepts the normalization statistics and can generalize better to unseen domains•Compared to previous work, we do not discard domain-specific attributes but exploit them to learn a domain latent space and map unknown domains with respect to known ones•We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech.
[Display omitted]
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains. Several methods train models from multiple datasets to extract domain-invariant features, hoping to generalize to unseen domains. Instead, first we explicitly train domain-dependent representations leveraging ad-hoc batch normalization layers to collect independent domain’s statistics. Then, we propose to use these statistics to map domains in a shared latent space, where membership to a domain is measured by means of a distance function. At test time, we project samples from an unknown domain into the same space and infer properties of their domain as a linear combination of the known ones. We apply the same mapping strategy at training and test time, learning both a latent representation and a powerful but lightweight ensemble model. We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech. |
---|---|
AbstractList | •We propose to accumulate domain-specific batch normalization statistics accumulated on convolutional layers to map image samples into a latent space where membership to a domain can be measured according to a distance from domain batch population statistics•We propose to use this concept to learn a lightweight ensemble model that shares all parameters excepts the normalization statistics and can generalize better to unseen domains•Compared to previous work, we do not discard domain-specific attributes but exploit them to learn a domain latent space and map unknown domains with respect to known ones•We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech.
[Display omitted]
Domain generalization aims at training machine learning models to perform robustly across different and unseen domains. Several methods train models from multiple datasets to extract domain-invariant features, hoping to generalize to unseen domains. Instead, first we explicitly train domain-dependent representations leveraging ad-hoc batch normalization layers to collect independent domain’s statistics. Then, we propose to use these statistics to map domains in a shared latent space, where membership to a domain is measured by means of a distance function. At test time, we project samples from an unknown domain into the same space and infer properties of their domain as a linear combination of the known ones. We apply the same mapping strategy at training and test time, learning both a latent representation and a powerful but lightweight ensemble model. We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech. |
ArticleNumber | 109115 |
Author | Segu, Mattia Tombari, Federico Tonioni, Alessio |
Author_xml | – sequence: 1 givenname: Mattia orcidid: 0000-0002-9107-531X surname: Segu fullname: Segu, Mattia email: segum@ethz.ch organization: Google, Brandschenkestrasse 110, Zurich, 8002, Switzerland – sequence: 2 givenname: Alessio orcidid: 0000-0003-3358-9686 surname: Tonioni fullname: Tonioni, Alessio organization: Google, Brandschenkestrasse 110, Zurich, 8002, Switzerland – sequence: 3 givenname: Federico orcidid: 0000-0001-5598-5212 surname: Tombari fullname: Tombari, Federico organization: Google, Brandschenkestrasse 110, Zurich, 8002, Switzerland |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw_7B7ZOPnazFRS01A8oeNFzyCaza0o3Kcki6K9364oHD3oamJnnZeaZkYkPHgk5p7CgQMuL7WKvexPaBQPGhtaS0uKITGkleV5QwSZkCsBpzhnwEzJLaQtA5TCYkqvbgXzNfIid3rkP3bvgM-xqtNb5NmVNiJlF3Gc2dNr5rEWP8WfzlBw3epfw7LvOycvd-nn1kG-e7h9XN5vcsEr2uTZlIxkvOdRGFlUlSlFxK0u6bLgWloFmzFoAWRhpakGh0tpKiUsjNGWs5nMixlwTQ0oRG7WPrtPxXVFQBwVqq0YF6qBAjQoG7PIXZlz_dXgftdv9B1-PMA6PvTmMKhmH3qB1EU2vbHB_B3wCmZN7zA |
CitedBy_id | crossref_primary_10_1007_s12539_024_00630_1 crossref_primary_10_1016_j_heliyon_2023_e18992 crossref_primary_10_24003_emitter_v11i2_827 crossref_primary_10_1109_TIP_2024_3404241 crossref_primary_10_1016_j_patcog_2024_110338 crossref_primary_10_1109_ACCESS_2023_3345790 crossref_primary_10_1007_s10994_024_06657_1 crossref_primary_10_1186_s40537_023_00758_9 crossref_primary_10_1109_ACCESS_2023_3268704 crossref_primary_10_1016_j_knosys_2024_112765 crossref_primary_10_1007_s11263_023_01913_8 crossref_primary_10_3389_frsip_2024_1384744 crossref_primary_10_1109_TPAMI_2022_3195549 crossref_primary_10_3389_fcvm_2023_1279324 crossref_primary_10_1109_TBDATA_2022_3177197 crossref_primary_10_3390_j7010003 crossref_primary_10_1016_j_eswa_2024_125700 crossref_primary_10_1109_TMM_2024_3399468 crossref_primary_10_1145_3724398 crossref_primary_10_52396_JUSTC_2023_0010 crossref_primary_10_3390_s23031258 crossref_primary_10_1016_j_eswa_2023_122776 crossref_primary_10_1109_ACCESS_2023_3324545 crossref_primary_10_1016_j_isprsjprs_2025_02_025 crossref_primary_10_1016_j_ins_2023_119624 crossref_primary_10_1109_TII_2023_3264111 crossref_primary_10_1016_j_knosys_2023_111127 crossref_primary_10_1016_j_patcog_2023_109642 crossref_primary_10_1109_TIP_2024_3364516 crossref_primary_10_1016_j_patcog_2024_110953 crossref_primary_10_1109_JBHI_2024_3372999 crossref_primary_10_1007_s11760_023_02590_3 crossref_primary_10_1109_TGRS_2023_3344670 crossref_primary_10_1007_s00371_024_03664_0 crossref_primary_10_1016_j_enbuild_2024_115157 crossref_primary_10_1109_TITS_2023_3244827 crossref_primary_10_1016_j_aei_2023_102211 crossref_primary_10_1016_j_patcog_2024_110391 crossref_primary_10_1007_s11263_024_02181_w crossref_primary_10_1016_j_patcog_2025_111484 crossref_primary_10_1016_j_patcog_2024_110762 crossref_primary_10_1016_j_ins_2024_120825 crossref_primary_10_1016_j_patcog_2023_110029 crossref_primary_10_3934_mbe_2023896 crossref_primary_10_1109_COMST_2023_3326399 crossref_primary_10_1007_s00034_024_02653_x crossref_primary_10_1016_j_knosys_2024_112358 crossref_primary_10_1109_TIV_2023_3331024 crossref_primary_10_1049_ipr2_13204 crossref_primary_10_1016_j_patcog_2024_110280 crossref_primary_10_1021_acsanm_3c01919 |
Cites_doi | 10.1109/LRA.2018.2809700 10.1016/j.patcog.2018.03.005 10.1016/j.neucom.2018.05.083 10.1109/TIP.2017.2758199 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.patcog.2022.109115 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1873-5142 |
ExternalDocumentID | 10_1016_j_patcog_2022_109115 S0031320322005957 |
GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c287t-ac6f723630bc758846483d7619f3a4d20a22dd0075c7cb4108aad77e9c4a122b3 |
IEDL.DBID | .~1 |
ISSN | 0031-3203 |
IngestDate | Tue Jul 01 02:36:40 EDT 2025 Thu Apr 24 22:54:40 EDT 2025 Fri Feb 23 02:41:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Domain representation learning Learning from multiple sources Domain generalization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c287t-ac6f723630bc758846483d7619f3a4d20a22dd0075c7cb4108aad77e9c4a122b3 |
ORCID | 0000-0001-5598-5212 0000-0003-3358-9686 0000-0002-9107-531X |
ParticipantIDs | crossref_primary_10_1016_j_patcog_2022_109115 crossref_citationtrail_10_1016_j_patcog_2022_109115 elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109115 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Pattern recognition |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mancini, Bulo, Caputo, Ricci (bib0031) 2019 Loquercio, Kaufmann, Ranftl, Dosovitskiy, Koltun, Scaramuzza (bib0021) 2019 Finn, Abbeel, Levine (bib0024) 2017 Deng, Dong, Socher, Li, Li, Fei-Fei (bib0035) 2009 Simon, Rodner, Denzler (bib0043) 2016 Li, Jialin Pan, Wang, Kot (bib0009) 2018 Volpi, Namkoong, Sener, Duchi, Murino, Savarese (bib0012) 2018 Dou, de Castro, Kamnitsas, Glocker (bib0025) 2019 Ioffe, Szegedy (bib0034) 2015 G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset(2007). Mancini, Bulo, Caputo, Ricci (bib0030) 2018; 3 Mancini, Porzi, Rota Bulò, Caputo, Ricci (bib0029) 2018 Li, Wang, Shi, Hou, Liu (bib0028) 2018; 80 Saenko, Kulis, Fritz, Darrell (bib0036) 2010 Bousmalis, Trigeorgis, Silberman, Krishnan, Erhan (bib0019) 2016 Rahman, Fookes, Baktashmotlagh, Sridharan (bib0046) 2019 Li, Wang, Shi, Liu, Hou (bib0033) 2016 Mancini, Bulò, Caputo, Ricci (bib0017) 2018 He, Zhang, Ren, Sun (bib0040) 2016 Kingma, Ba (bib0041) 2014 Carlucci, Porzi, Caputo, Ricci, Bulo (bib0027) 2017 M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale machine learning on heterogeneous distributed systems (2015). Balaji, Sankaranarayanan, Chellappa (bib0044) 2018 Tobin, Fong, Ray, Schneider, Zaremba, Abbeel (bib0010) 2017 Ghifary, Bastiaan Kleijn, Zhang, Balduzzi (bib0006) 2015 Khosla, Zhou, Malisiewicz, Efros, Torralba (bib0014) 2012 Ding, Fu (bib0016) 2017; 27 Wang, Deng (bib0004) 2018; 312 Li, Tian, Gong, Liu, Liu, Zhang, Tao (bib0018) 2018 Seo, Suh, Kim, Han, Han (bib0032) 2019 Motiian, Piccirilli, Adjeroh, Doretto (bib0008) 2017 Carlucci, D’Innocente, Bucci, Caputo, Tommasi (bib0022) 2019 Li, Gong, Tian, Liu, Tao (bib0048) 2018 Huang, Wang, Xing, Huang (bib0026) 2020 D’Innocente, Caputo (bib0045) 2018 Sugiyama, Storkey (bib0001) 2007 Yosinski, Clune, Bengio, Lipson (bib0003) 2014 Shankar, Piratla, Chakrabarti, Chaudhuri, Jyothi, Sarawagi (bib0011) 2018 Hu, Zhang, Chen, Chan (bib0047) 2019; volume 35 Li, Yang, Song, Hospedales (bib0023) 2018 Muandet, Balduzzi, Schölkopf (bib0005) 2013 Krizhevsky, Sutskever, Hinton (bib0039) 2012 Li, Zhang, Yang, Liu, Song, Hospedales (bib0013) 2019 Gong, Shi, Sha, Grauman (bib0037) 2012 Li, Yang, Song, Hospedales (bib0015) 2017 Luo, Zheng, Guan, Yu, Yang (bib0002) 2019 Koch, Zemel, Salakhutdinov (bib0007) 2015; volume 2 Matsuura, Harada (bib0020) 2020 Ding (10.1016/j.patcog.2022.109115_bib0016) 2017; 27 Mancini (10.1016/j.patcog.2022.109115_bib0030) 2018; 3 Deng (10.1016/j.patcog.2022.109115_bib0035) 2009 Dou (10.1016/j.patcog.2022.109115_bib0025) 2019 Mancini (10.1016/j.patcog.2022.109115_bib0031) 2019 Loquercio (10.1016/j.patcog.2022.109115_bib0021) 2019 Wang (10.1016/j.patcog.2022.109115_bib0004) 2018; 312 10.1016/j.patcog.2022.109115_bib0038 Carlucci (10.1016/j.patcog.2022.109115_bib0027) 2017 Kingma (10.1016/j.patcog.2022.109115_bib0041) 2014 Yosinski (10.1016/j.patcog.2022.109115_bib0003) 2014 Matsuura (10.1016/j.patcog.2022.109115_bib0020) 2020 Rahman (10.1016/j.patcog.2022.109115_bib0046) 2019 Li (10.1016/j.patcog.2022.109115_bib0033) 2016 Carlucci (10.1016/j.patcog.2022.109115_bib0022) 2019 Li (10.1016/j.patcog.2022.109115_bib0023) 2018 Koch (10.1016/j.patcog.2022.109115_bib0007) 2015; volume 2 Seo (10.1016/j.patcog.2022.109115_bib0032) 2019 D’Innocente (10.1016/j.patcog.2022.109115_bib0045) 2018 Gong (10.1016/j.patcog.2022.109115_bib0037) 2012 Li (10.1016/j.patcog.2022.109115_bib0048) 2018 Balaji (10.1016/j.patcog.2022.109115_bib0044) 2018 Luo (10.1016/j.patcog.2022.109115_bib0002) 2019 Motiian (10.1016/j.patcog.2022.109115_bib0008) 2017 Li (10.1016/j.patcog.2022.109115_bib0015) 2017 Muandet (10.1016/j.patcog.2022.109115_bib0005) 2013 Shankar (10.1016/j.patcog.2022.109115_bib0011) 2018 Ioffe (10.1016/j.patcog.2022.109115_bib0034) 2015 Bousmalis (10.1016/j.patcog.2022.109115_bib0019) 2016 He (10.1016/j.patcog.2022.109115_bib0040) 2016 Volpi (10.1016/j.patcog.2022.109115_bib0012) 2018 Hu (10.1016/j.patcog.2022.109115_bib0047) 2019; volume 35 Li (10.1016/j.patcog.2022.109115_bib0018) 2018 Li (10.1016/j.patcog.2022.109115_bib0028) 2018; 80 Krizhevsky (10.1016/j.patcog.2022.109115_bib0039) 2012 Li (10.1016/j.patcog.2022.109115_bib0013) 2019 Mancini (10.1016/j.patcog.2022.109115_bib0029) 2018 Khosla (10.1016/j.patcog.2022.109115_bib0014) 2012 Saenko (10.1016/j.patcog.2022.109115_bib0036) 2010 Sugiyama (10.1016/j.patcog.2022.109115_bib0001) 2007 Simon (10.1016/j.patcog.2022.109115_bib0043) 2016 Ghifary (10.1016/j.patcog.2022.109115_bib0006) 2015 Huang (10.1016/j.patcog.2022.109115_bib0026) 2020 Finn (10.1016/j.patcog.2022.109115_bib0024) 2017 Li (10.1016/j.patcog.2022.109115_bib0009) 2018 Mancini (10.1016/j.patcog.2022.109115_bib0017) 2018 10.1016/j.patcog.2022.109115_bib0042 Tobin (10.1016/j.patcog.2022.109115_bib0010) 2017 |
References_xml | – volume: 27 start-page: 304 year: 2017 end-page: 313 ident: bib0016 article-title: Deep domain generalization with structured low-rank constraint publication-title: IEEE Trans. Image Process. – start-page: 624 year: 2018 end-page: 639 ident: bib0018 article-title: Deep domain generalization via conditional invariant adversarial networks publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – start-page: 579 year: 2019 end-page: 588 ident: bib0046 article-title: Multi-component image translation for deep domain generalization publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV) – start-page: 1353 year: 2018 end-page: 1357 ident: bib0017 article-title: Best sources forward: domain generalization through source-specific nets publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP) – start-page: 213 year: 2010 end-page: 226 ident: bib0036 article-title: Adapting visual category models to new domains publication-title: European conference on computer vision – start-page: 6568 year: 2019 end-page: 6577 ident: bib0031 article-title: Adagraph: Unifying predictive and continuous domain adaptation through graphs publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 248 year: 2009 end-page: 255 ident: bib0035 article-title: Imagenet: A large-scale hierarchical image database publication-title: 2009 IEEE conference on computer vision and pattern recognition – year: 2018 ident: bib0011 article-title: Generalizing across domains via cross-gradient training publication-title: arXiv preprint arXiv:1804.10745 – start-page: 2229 year: 2019 end-page: 2238 ident: bib0022 article-title: Domain generalization by solving jigsaw puzzles publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2019 ident: bib0032 article-title: Learning to optimize domain specific normalization for domain generalization publication-title: arXiv preprint arXiv:1907.04275 – start-page: 1097 year: 2012 end-page: 1105 ident: bib0039 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems – year: 2018 ident: bib0048 article-title: Domain generalization via conditional invariant representations publication-title: Thirty-Second AAAI Conference on Artificial Intelligence – start-page: 343 year: 2016 end-page: 351 ident: bib0019 article-title: Domain separation networks publication-title: Advances in neural information processing systems – year: 2016 ident: bib0033 article-title: Revisiting batch normalization for practical domain adaptation publication-title: arXiv preprint arXiv:1603.04779 – start-page: 2507 year: 2019 end-page: 2516 ident: bib0002 article-title: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 448 year: 2015 end-page: 456 ident: bib0034 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: International Conference on Machine Learning – start-page: 770 year: 2016 end-page: 778 ident: bib0040 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – year: 2019 ident: bib0021 article-title: Deep drone racing: from simulation to reality with domain randomization publication-title: IEEE Trans. Rob. – start-page: 5334 year: 2018 end-page: 5344 ident: bib0012 article-title: Generalizing to unseen domains via adversarial data augmentation publication-title: Advances in Neural Information Processing Systems – volume: 80 start-page: 109 year: 2018 end-page: 117 ident: bib0028 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recognit – volume: 312 start-page: 135 year: 2018 end-page: 153 ident: bib0004 article-title: Deep visual domain adaptation: a survey publication-title: Neurocomputing – start-page: 6447 year: 2019 end-page: 6458 ident: bib0025 article-title: Domain generalization via model-agnostic learning of semantic features publication-title: Advances in Neural Information Processing Systems – start-page: 11749 year: 2020 end-page: 11756 ident: bib0020 article-title: Domain generalization using a mixture of multiple latent domains publication-title: AAAI – year: 2020 ident: bib0026 article-title: Self-challenging improves cross-domain generalization publication-title: arXiv preprint arXiv:2007.02454 – year: 2016 ident: bib0043 article-title: Imagenet pre-trained models with batch normalization publication-title: arXiv preprint arXiv:1612.01452 – start-page: 5542 year: 2017 end-page: 5550 ident: bib0015 article-title: Deeper, broader and artier domain generalization publication-title: Proceedings of the IEEE international conference on computer vision – start-page: 10 year: 2013 end-page: 18 ident: bib0005 article-title: Domain generalization via invariant feature representation publication-title: International Conference on Machine Learning – year: 2018 ident: bib0023 article-title: Learning to generalize: Meta-learning for domain generalization publication-title: Thirty-Second AAAI Conference on Artificial Intelligence – start-page: 187 year: 2018 end-page: 198 ident: bib0045 article-title: Domain generalization with domain-specific aggregation modules publication-title: German Conference on Pattern Recognition – start-page: 2551 year: 2015 end-page: 2559 ident: bib0006 article-title: Domain generalization for object recognition with multi-task autoencoders publication-title: Proceedings of the IEEE international conference on computer vision – start-page: 1446 year: 2019 end-page: 1455 ident: bib0013 article-title: Episodic training for domain generalization publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: volume 35 year: 2019 ident: bib0047 article-title: Domain generalization via multidomain discriminant analysis publication-title: Uncertainty in artificial intelligence: proceedings of the... conference. Conference on Uncertainty in Artificial Intelligence – volume: 3 start-page: 2093 year: 2018 end-page: 2100 ident: bib0030 article-title: Robust place categorization with deep domain generalization publication-title: IEEE Rob. Autom. Lett. – start-page: 158 year: 2012 end-page: 171 ident: bib0014 article-title: Undoing the damage of dataset bias publication-title: European Conference on Computer Vision – year: 2014 ident: bib0041 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint arXiv:1412.6980 – start-page: 357 year: 2017 end-page: 369 ident: bib0027 article-title: Just dial: Domain alignment layers for unsupervised domain adaptation publication-title: International Conference on Image Analysis and Processing – start-page: 5400 year: 2018 end-page: 5409 ident: bib0009 article-title: Domain generalization with adversarial feature learning publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1126 year: 2017 end-page: 1135 ident: bib0024 article-title: Model-agnostic meta-learning for fast adaptation of deep networks publication-title: Proceedings of the 34th International Conference on Machine Learning-Volume 70 – start-page: 998 year: 2018 end-page: 1008 ident: bib0044 article-title: Metareg: Towards domain generalization using meta-regularization publication-title: Advances in Neural Information Processing Systems – start-page: 23 year: 2017 end-page: 30 ident: bib0010 article-title: Domain randomization for transferring deep neural networks from simulation to the real world publication-title: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) – reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale machine learning on heterogeneous distributed systems (2015). – start-page: 3320 year: 2014 end-page: 3328 ident: bib0003 article-title: How transferable are features in deep neural networks? publication-title: Advances in neural information processing systems – reference: G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset(2007). – start-page: 1337 year: 2007 end-page: 1344 ident: bib0001 article-title: Mixture regression for covariate shift publication-title: Advances in Neural Information Processing Systems – start-page: 2066 year: 2012 end-page: 2073 ident: bib0037 article-title: Geodesic flow kernel for unsupervised domain adaptation publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition – volume: volume 2 year: 2015 ident: bib0007 article-title: Siamese neural networks for one-shot image recognition publication-title: ICML deep learning workshop – start-page: 5715 year: 2017 end-page: 5725 ident: bib0008 article-title: Unified deep supervised domain adaptation and generalization publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 3771 year: 2018 end-page: 3780 ident: bib0029 article-title: Boosting domain adaptation by discovering latent domains publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – year: 2020 ident: 10.1016/j.patcog.2022.109115_bib0026 article-title: Self-challenging improves cross-domain generalization publication-title: arXiv preprint arXiv:2007.02454 – start-page: 998 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0044 article-title: Metareg: Towards domain generalization using meta-regularization – start-page: 2066 year: 2012 ident: 10.1016/j.patcog.2022.109115_bib0037 article-title: Geodesic flow kernel for unsupervised domain adaptation – start-page: 2229 year: 2019 ident: 10.1016/j.patcog.2022.109115_bib0022 article-title: Domain generalization by solving jigsaw puzzles – year: 2019 ident: 10.1016/j.patcog.2022.109115_bib0021 article-title: Deep drone racing: from simulation to reality with domain randomization publication-title: IEEE Trans. Rob. – start-page: 770 year: 2016 ident: 10.1016/j.patcog.2022.109115_bib0040 article-title: Deep residual learning for image recognition – start-page: 1446 year: 2019 ident: 10.1016/j.patcog.2022.109115_bib0013 article-title: Episodic training for domain generalization – start-page: 158 year: 2012 ident: 10.1016/j.patcog.2022.109115_bib0014 article-title: Undoing the damage of dataset bias – start-page: 5334 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0012 article-title: Generalizing to unseen domains via adversarial data augmentation – start-page: 1126 year: 2017 ident: 10.1016/j.patcog.2022.109115_bib0024 article-title: Model-agnostic meta-learning for fast adaptation of deep networks – start-page: 3320 year: 2014 ident: 10.1016/j.patcog.2022.109115_bib0003 article-title: How transferable are features in deep neural networks? – start-page: 23 year: 2017 ident: 10.1016/j.patcog.2022.109115_bib0010 article-title: Domain randomization for transferring deep neural networks from simulation to the real world – year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0011 article-title: Generalizing across domains via cross-gradient training publication-title: arXiv preprint arXiv:1804.10745 – start-page: 11749 year: 2020 ident: 10.1016/j.patcog.2022.109115_bib0020 article-title: Domain generalization using a mixture of multiple latent domains – start-page: 448 year: 2015 ident: 10.1016/j.patcog.2022.109115_bib0034 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – start-page: 343 year: 2016 ident: 10.1016/j.patcog.2022.109115_bib0019 article-title: Domain separation networks – volume: 3 start-page: 2093 issue: 3 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0030 article-title: Robust place categorization with deep domain generalization publication-title: IEEE Rob. Autom. Lett. doi: 10.1109/LRA.2018.2809700 – start-page: 2507 year: 2019 ident: 10.1016/j.patcog.2022.109115_bib0002 article-title: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation – start-page: 579 year: 2019 ident: 10.1016/j.patcog.2022.109115_bib0046 article-title: Multi-component image translation for deep domain generalization – start-page: 6568 year: 2019 ident: 10.1016/j.patcog.2022.109115_bib0031 article-title: Adagraph: Unifying predictive and continuous domain adaptation through graphs – start-page: 624 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0018 article-title: Deep domain generalization via conditional invariant adversarial networks – start-page: 187 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0045 article-title: Domain generalization with domain-specific aggregation modules – start-page: 6447 year: 2019 ident: 10.1016/j.patcog.2022.109115_bib0025 article-title: Domain generalization via model-agnostic learning of semantic features – start-page: 5715 year: 2017 ident: 10.1016/j.patcog.2022.109115_bib0008 article-title: Unified deep supervised domain adaptation and generalization – start-page: 3771 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0029 article-title: Boosting domain adaptation by discovering latent domains – year: 2014 ident: 10.1016/j.patcog.2022.109115_bib0041 article-title: Adam: a method for stochastic optimization publication-title: arXiv preprint arXiv:1412.6980 – ident: 10.1016/j.patcog.2022.109115_bib0042 – year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0023 article-title: Learning to generalize: Meta-learning for domain generalization – start-page: 213 year: 2010 ident: 10.1016/j.patcog.2022.109115_bib0036 article-title: Adapting visual category models to new domains – volume: 80 start-page: 109 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0028 article-title: Adaptive batch normalization for practical domain adaptation publication-title: Pattern Recognit doi: 10.1016/j.patcog.2018.03.005 – start-page: 1337 year: 2007 ident: 10.1016/j.patcog.2022.109115_bib0001 article-title: Mixture regression for covariate shift – start-page: 248 year: 2009 ident: 10.1016/j.patcog.2022.109115_bib0035 article-title: Imagenet: A large-scale hierarchical image database – start-page: 357 year: 2017 ident: 10.1016/j.patcog.2022.109115_bib0027 article-title: Just dial: Domain alignment layers for unsupervised domain adaptation – start-page: 2551 year: 2015 ident: 10.1016/j.patcog.2022.109115_bib0006 article-title: Domain generalization for object recognition with multi-task autoencoders – start-page: 1097 year: 2012 ident: 10.1016/j.patcog.2022.109115_bib0039 article-title: Imagenet classification with deep convolutional neural networks – start-page: 1353 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0017 article-title: Best sources forward: domain generalization through source-specific nets – volume: 312 start-page: 135 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0004 article-title: Deep visual domain adaptation: a survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.083 – volume: volume 2 year: 2015 ident: 10.1016/j.patcog.2022.109115_bib0007 article-title: Siamese neural networks for one-shot image recognition – start-page: 10 year: 2013 ident: 10.1016/j.patcog.2022.109115_bib0005 article-title: Domain generalization via invariant feature representation – year: 2019 ident: 10.1016/j.patcog.2022.109115_bib0032 article-title: Learning to optimize domain specific normalization for domain generalization publication-title: arXiv preprint arXiv:1907.04275 – year: 2016 ident: 10.1016/j.patcog.2022.109115_bib0043 article-title: Imagenet pre-trained models with batch normalization publication-title: arXiv preprint arXiv:1612.01452 – volume: volume 35 year: 2019 ident: 10.1016/j.patcog.2022.109115_bib0047 article-title: Domain generalization via multidomain discriminant analysis – start-page: 5400 year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0009 article-title: Domain generalization with adversarial feature learning – year: 2016 ident: 10.1016/j.patcog.2022.109115_bib0033 article-title: Revisiting batch normalization for practical domain adaptation publication-title: arXiv preprint arXiv:1603.04779 – ident: 10.1016/j.patcog.2022.109115_bib0038 – start-page: 5542 year: 2017 ident: 10.1016/j.patcog.2022.109115_bib0015 article-title: Deeper, broader and artier domain generalization – volume: 27 start-page: 304 issue: 1 year: 2017 ident: 10.1016/j.patcog.2022.109115_bib0016 article-title: Deep domain generalization with structured low-rank constraint publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2758199 – year: 2018 ident: 10.1016/j.patcog.2022.109115_bib0048 article-title: Domain generalization via conditional invariant representations |
SSID | ssj0017142 |
Score | 2.664731 |
Snippet | •We propose to accumulate domain-specific batch normalization statistics accumulated on convolutional layers to map image samples into a latent space where... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109115 |
SubjectTerms | Domain generalization Domain representation learning Learning from multiple sources |
Title | Batch normalization embeddings for deep domain generalization |
URI | https://dx.doi.org/10.1016/j.patcog.2022.109115 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OA1Npuk-ziWYqmKPVnobclra6XdLqVe_e1mNtmiIApelxlYZmcnk2S-70PoNi1cEjCZEdFXlog0MwR40YiOFVWpSqmu2fmfJ_F4Kh5n_VkLDRssDIxVhtrva3pdrcOTXohmr1osAOMLtIPUZSQgKPuAKBcigSy_-9iNeYC-t2cM5xEB6wY-V894Va7credul8gY8CpFII770_L0ZckZHaGD0CvigX-dY9Sy5Qk6bHQYcPgtTxEcQ-pXXEL7uQy4SmxXypr6Ygm7vhQbayts1iu5KPHcU00HyzM0Hd2_DMckyCIQ7bY3WyJ1XCSMx5wqnQDONBYpN3AcUXApDKOSMWOgF9CJViKiqZQmSWymhYwYU_wctct1aS8QBuqYgsYs0xwu8IzMOBU60jY2wphIdhBvopHrwBkO0hXLvBkOe8t9DHOIYe5j2EFk51V5zow_7JMm0Pm3b5-7sv6r5-W_Pa_QPgjH-2mya9Tebt7tjWsvtqpb508X7Q0ensaTT91Gzc0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHtpL36X2uYdeF5PdNY-jSEXr46TgLexLa9EYiv3_zSQbaaG00GvYgfBlMju7M983AE_RIncCJmMq2spSEcWGoi4a1YHyVKQiTxfq_ONJ0J-Jl3l7XoNuxYXBtkoX-8uYXkRr96Tl0GxlqxVyfFF20Ms9EhmU7fAAGqhO1a5DozMY9if7YkLoi1I0nPsUDSoGXdHmleURb7vMD4qMobSSj_Nxf9qhvuw6vVM4duki6ZRvdAY1m57DSTWKgbg_8wLwJlK_khQz0LWjVhK7UdYUtSWSp6bEWJsRs93IVUqWpdq0W3kJs97ztNunbjIC1fkJZ0elDhYh4wH3lA6RahqIiBu8kVhwKQzzJGPGYDqgQ62E70VSmjC0sRbSZ0zxK6in29ReA0H1mIUXsFhzrOEZGXNPaF_bwAhjfNkEXqGRaCcbjtMr1knVH_aWlBgmiGFSYtgEurfKStmMP9aHFdDJt8-f5JH9V8ubf1s-wmF_Oh4lo8FkeAtHOEe-bC67g_ru_cPe59nGTj04b_oE_tTQfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Batch+normalization+embeddings+for+deep+domain+generalization&rft.jtitle=Pattern+recognition&rft.au=Segu%2C+Mattia&rft.au=Tonioni%2C+Alessio&rft.au=Tombari%2C+Federico&rft.date=2023-03-01&rft.issn=0031-3203&rft.volume=135&rft.spage=109115&rft_id=info:doi/10.1016%2Fj.patcog.2022.109115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_109115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |