Batch normalization embeddings for deep domain generalization

•We propose to accumulate domain-specific batch normalization statistics accumulated on convolutional layers to map image samples into a latent space where membership to a domain can be measured according to a distance from domain batch population statistics•We propose to use this concept to learn a...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition Vol. 135; p. 109115
Main Authors Segu, Mattia, Tonioni, Alessio, Tombari, Federico
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2023
Subjects
Online AccessGet full text
ISSN0031-3203
1873-5142
DOI10.1016/j.patcog.2022.109115

Cover

Loading…
Abstract •We propose to accumulate domain-specific batch normalization statistics accumulated on convolutional layers to map image samples into a latent space where membership to a domain can be measured according to a distance from domain batch population statistics•We propose to use this concept to learn a lightweight ensemble model that shares all parameters excepts the normalization statistics and can generalize better to unseen domains•Compared to previous work, we do not discard domain-specific attributes but exploit them to learn a domain latent space and map unknown domains with respect to known ones•We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech. [Display omitted] Domain generalization aims at training machine learning models to perform robustly across different and unseen domains. Several methods train models from multiple datasets to extract domain-invariant features, hoping to generalize to unseen domains. Instead, first we explicitly train domain-dependent representations leveraging ad-hoc batch normalization layers to collect independent domain’s statistics. Then, we propose to use these statistics to map domains in a shared latent space, where membership to a domain is measured by means of a distance function. At test time, we project samples from an unknown domain into the same space and infer properties of their domain as a linear combination of the known ones. We apply the same mapping strategy at training and test time, learning both a latent representation and a powerful but lightweight ensemble model. We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech.
AbstractList •We propose to accumulate domain-specific batch normalization statistics accumulated on convolutional layers to map image samples into a latent space where membership to a domain can be measured according to a distance from domain batch population statistics•We propose to use this concept to learn a lightweight ensemble model that shares all parameters excepts the normalization statistics and can generalize better to unseen domains•Compared to previous work, we do not discard domain-specific attributes but exploit them to learn a domain latent space and map unknown domains with respect to known ones•We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech. [Display omitted] Domain generalization aims at training machine learning models to perform robustly across different and unseen domains. Several methods train models from multiple datasets to extract domain-invariant features, hoping to generalize to unseen domains. Instead, first we explicitly train domain-dependent representations leveraging ad-hoc batch normalization layers to collect independent domain’s statistics. Then, we propose to use these statistics to map domains in a shared latent space, where membership to a domain is measured by means of a distance function. At test time, we project samples from an unknown domain into the same space and infer properties of their domain as a linear combination of the known ones. We apply the same mapping strategy at training and test time, learning both a latent representation and a powerful but lightweight ensemble model. We show a significant increase in classification accuracy over current state-of-the-art techniques on popular domain generalization benchmarks: PACS, Office-31 and Office-Caltech.
ArticleNumber 109115
Author Segu, Mattia
Tombari, Federico
Tonioni, Alessio
Author_xml – sequence: 1
  givenname: Mattia
  orcidid: 0000-0002-9107-531X
  surname: Segu
  fullname: Segu, Mattia
  email: segum@ethz.ch
  organization: Google, Brandschenkestrasse 110, Zurich, 8002, Switzerland
– sequence: 2
  givenname: Alessio
  orcidid: 0000-0003-3358-9686
  surname: Tonioni
  fullname: Tonioni, Alessio
  organization: Google, Brandschenkestrasse 110, Zurich, 8002, Switzerland
– sequence: 3
  givenname: Federico
  orcidid: 0000-0001-5598-5212
  surname: Tombari
  fullname: Tombari, Federico
  organization: Google, Brandschenkestrasse 110, Zurich, 8002, Switzerland
BookMark eNqFkE1LAzEQhoNUsK3-Aw_7B7ZOPnazFRS01A8oeNFzyCaza0o3Kcki6K9364oHD3oamJnnZeaZkYkPHgk5p7CgQMuL7WKvexPaBQPGhtaS0uKITGkleV5QwSZkCsBpzhnwEzJLaQtA5TCYkqvbgXzNfIid3rkP3bvgM-xqtNb5NmVNiJlF3Gc2dNr5rEWP8WfzlBw3epfw7LvOycvd-nn1kG-e7h9XN5vcsEr2uTZlIxkvOdRGFlUlSlFxK0u6bLgWloFmzFoAWRhpakGh0tpKiUsjNGWs5nMixlwTQ0oRG7WPrtPxXVFQBwVqq0YF6qBAjQoG7PIXZlz_dXgftdv9B1-PMA6PvTmMKhmH3qB1EU2vbHB_B3wCmZN7zA
CitedBy_id crossref_primary_10_1007_s12539_024_00630_1
crossref_primary_10_1016_j_heliyon_2023_e18992
crossref_primary_10_24003_emitter_v11i2_827
crossref_primary_10_1109_TIP_2024_3404241
crossref_primary_10_1016_j_patcog_2024_110338
crossref_primary_10_1109_ACCESS_2023_3345790
crossref_primary_10_1007_s10994_024_06657_1
crossref_primary_10_1186_s40537_023_00758_9
crossref_primary_10_1109_ACCESS_2023_3268704
crossref_primary_10_1016_j_knosys_2024_112765
crossref_primary_10_1007_s11263_023_01913_8
crossref_primary_10_3389_frsip_2024_1384744
crossref_primary_10_1109_TPAMI_2022_3195549
crossref_primary_10_3389_fcvm_2023_1279324
crossref_primary_10_1109_TBDATA_2022_3177197
crossref_primary_10_3390_j7010003
crossref_primary_10_1016_j_eswa_2024_125700
crossref_primary_10_1109_TMM_2024_3399468
crossref_primary_10_1145_3724398
crossref_primary_10_52396_JUSTC_2023_0010
crossref_primary_10_3390_s23031258
crossref_primary_10_1016_j_eswa_2023_122776
crossref_primary_10_1109_ACCESS_2023_3324545
crossref_primary_10_1016_j_isprsjprs_2025_02_025
crossref_primary_10_1016_j_ins_2023_119624
crossref_primary_10_1109_TII_2023_3264111
crossref_primary_10_1016_j_knosys_2023_111127
crossref_primary_10_1016_j_patcog_2023_109642
crossref_primary_10_1109_TIP_2024_3364516
crossref_primary_10_1016_j_patcog_2024_110953
crossref_primary_10_1109_JBHI_2024_3372999
crossref_primary_10_1007_s11760_023_02590_3
crossref_primary_10_1109_TGRS_2023_3344670
crossref_primary_10_1007_s00371_024_03664_0
crossref_primary_10_1016_j_enbuild_2024_115157
crossref_primary_10_1109_TITS_2023_3244827
crossref_primary_10_1016_j_aei_2023_102211
crossref_primary_10_1016_j_patcog_2024_110391
crossref_primary_10_1007_s11263_024_02181_w
crossref_primary_10_1016_j_patcog_2025_111484
crossref_primary_10_1016_j_patcog_2024_110762
crossref_primary_10_1016_j_ins_2024_120825
crossref_primary_10_1016_j_patcog_2023_110029
crossref_primary_10_3934_mbe_2023896
crossref_primary_10_1109_COMST_2023_3326399
crossref_primary_10_1007_s00034_024_02653_x
crossref_primary_10_1016_j_knosys_2024_112358
crossref_primary_10_1109_TIV_2023_3331024
crossref_primary_10_1049_ipr2_13204
crossref_primary_10_1016_j_patcog_2024_110280
crossref_primary_10_1021_acsanm_3c01919
Cites_doi 10.1109/LRA.2018.2809700
10.1016/j.patcog.2018.03.005
10.1016/j.neucom.2018.05.083
10.1109/TIP.2017.2758199
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.109115
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_109115
S0031320322005957
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c287t-ac6f723630bc758846483d7619f3a4d20a22dd0075c7cb4108aad77e9c4a122b3
IEDL.DBID .~1
ISSN 0031-3203
IngestDate Tue Jul 01 02:36:40 EDT 2025
Thu Apr 24 22:54:40 EDT 2025
Fri Feb 23 02:41:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Domain representation learning
Learning from multiple sources
Domain generalization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c287t-ac6f723630bc758846483d7619f3a4d20a22dd0075c7cb4108aad77e9c4a122b3
ORCID 0000-0001-5598-5212
0000-0003-3358-9686
0000-0002-9107-531X
ParticipantIDs crossref_primary_10_1016_j_patcog_2022_109115
crossref_citationtrail_10_1016_j_patcog_2022_109115
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109115
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mancini, Bulo, Caputo, Ricci (bib0031) 2019
Loquercio, Kaufmann, Ranftl, Dosovitskiy, Koltun, Scaramuzza (bib0021) 2019
Finn, Abbeel, Levine (bib0024) 2017
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0035) 2009
Simon, Rodner, Denzler (bib0043) 2016
Li, Jialin Pan, Wang, Kot (bib0009) 2018
Volpi, Namkoong, Sener, Duchi, Murino, Savarese (bib0012) 2018
Dou, de Castro, Kamnitsas, Glocker (bib0025) 2019
Ioffe, Szegedy (bib0034) 2015
G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset(2007).
Mancini, Bulo, Caputo, Ricci (bib0030) 2018; 3
Mancini, Porzi, Rota Bulò, Caputo, Ricci (bib0029) 2018
Li, Wang, Shi, Hou, Liu (bib0028) 2018; 80
Saenko, Kulis, Fritz, Darrell (bib0036) 2010
Bousmalis, Trigeorgis, Silberman, Krishnan, Erhan (bib0019) 2016
Rahman, Fookes, Baktashmotlagh, Sridharan (bib0046) 2019
Li, Wang, Shi, Liu, Hou (bib0033) 2016
Mancini, Bulò, Caputo, Ricci (bib0017) 2018
He, Zhang, Ren, Sun (bib0040) 2016
Kingma, Ba (bib0041) 2014
Carlucci, Porzi, Caputo, Ricci, Bulo (bib0027) 2017
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale machine learning on heterogeneous distributed systems (2015).
Balaji, Sankaranarayanan, Chellappa (bib0044) 2018
Tobin, Fong, Ray, Schneider, Zaremba, Abbeel (bib0010) 2017
Ghifary, Bastiaan Kleijn, Zhang, Balduzzi (bib0006) 2015
Khosla, Zhou, Malisiewicz, Efros, Torralba (bib0014) 2012
Ding, Fu (bib0016) 2017; 27
Wang, Deng (bib0004) 2018; 312
Li, Tian, Gong, Liu, Liu, Zhang, Tao (bib0018) 2018
Seo, Suh, Kim, Han, Han (bib0032) 2019
Motiian, Piccirilli, Adjeroh, Doretto (bib0008) 2017
Carlucci, D’Innocente, Bucci, Caputo, Tommasi (bib0022) 2019
Li, Gong, Tian, Liu, Tao (bib0048) 2018
Huang, Wang, Xing, Huang (bib0026) 2020
D’Innocente, Caputo (bib0045) 2018
Sugiyama, Storkey (bib0001) 2007
Yosinski, Clune, Bengio, Lipson (bib0003) 2014
Shankar, Piratla, Chakrabarti, Chaudhuri, Jyothi, Sarawagi (bib0011) 2018
Hu, Zhang, Chen, Chan (bib0047) 2019; volume 35
Li, Yang, Song, Hospedales (bib0023) 2018
Muandet, Balduzzi, Schölkopf (bib0005) 2013
Krizhevsky, Sutskever, Hinton (bib0039) 2012
Li, Zhang, Yang, Liu, Song, Hospedales (bib0013) 2019
Gong, Shi, Sha, Grauman (bib0037) 2012
Li, Yang, Song, Hospedales (bib0015) 2017
Luo, Zheng, Guan, Yu, Yang (bib0002) 2019
Koch, Zemel, Salakhutdinov (bib0007) 2015; volume 2
Matsuura, Harada (bib0020) 2020
Ding (10.1016/j.patcog.2022.109115_bib0016) 2017; 27
Mancini (10.1016/j.patcog.2022.109115_bib0030) 2018; 3
Deng (10.1016/j.patcog.2022.109115_bib0035) 2009
Dou (10.1016/j.patcog.2022.109115_bib0025) 2019
Mancini (10.1016/j.patcog.2022.109115_bib0031) 2019
Loquercio (10.1016/j.patcog.2022.109115_bib0021) 2019
Wang (10.1016/j.patcog.2022.109115_bib0004) 2018; 312
10.1016/j.patcog.2022.109115_bib0038
Carlucci (10.1016/j.patcog.2022.109115_bib0027) 2017
Kingma (10.1016/j.patcog.2022.109115_bib0041) 2014
Yosinski (10.1016/j.patcog.2022.109115_bib0003) 2014
Matsuura (10.1016/j.patcog.2022.109115_bib0020) 2020
Rahman (10.1016/j.patcog.2022.109115_bib0046) 2019
Li (10.1016/j.patcog.2022.109115_bib0033) 2016
Carlucci (10.1016/j.patcog.2022.109115_bib0022) 2019
Li (10.1016/j.patcog.2022.109115_bib0023) 2018
Koch (10.1016/j.patcog.2022.109115_bib0007) 2015; volume 2
Seo (10.1016/j.patcog.2022.109115_bib0032) 2019
D’Innocente (10.1016/j.patcog.2022.109115_bib0045) 2018
Gong (10.1016/j.patcog.2022.109115_bib0037) 2012
Li (10.1016/j.patcog.2022.109115_bib0048) 2018
Balaji (10.1016/j.patcog.2022.109115_bib0044) 2018
Luo (10.1016/j.patcog.2022.109115_bib0002) 2019
Motiian (10.1016/j.patcog.2022.109115_bib0008) 2017
Li (10.1016/j.patcog.2022.109115_bib0015) 2017
Muandet (10.1016/j.patcog.2022.109115_bib0005) 2013
Shankar (10.1016/j.patcog.2022.109115_bib0011) 2018
Ioffe (10.1016/j.patcog.2022.109115_bib0034) 2015
Bousmalis (10.1016/j.patcog.2022.109115_bib0019) 2016
He (10.1016/j.patcog.2022.109115_bib0040) 2016
Volpi (10.1016/j.patcog.2022.109115_bib0012) 2018
Hu (10.1016/j.patcog.2022.109115_bib0047) 2019; volume 35
Li (10.1016/j.patcog.2022.109115_bib0018) 2018
Li (10.1016/j.patcog.2022.109115_bib0028) 2018; 80
Krizhevsky (10.1016/j.patcog.2022.109115_bib0039) 2012
Li (10.1016/j.patcog.2022.109115_bib0013) 2019
Mancini (10.1016/j.patcog.2022.109115_bib0029) 2018
Khosla (10.1016/j.patcog.2022.109115_bib0014) 2012
Saenko (10.1016/j.patcog.2022.109115_bib0036) 2010
Sugiyama (10.1016/j.patcog.2022.109115_bib0001) 2007
Simon (10.1016/j.patcog.2022.109115_bib0043) 2016
Ghifary (10.1016/j.patcog.2022.109115_bib0006) 2015
Huang (10.1016/j.patcog.2022.109115_bib0026) 2020
Finn (10.1016/j.patcog.2022.109115_bib0024) 2017
Li (10.1016/j.patcog.2022.109115_bib0009) 2018
Mancini (10.1016/j.patcog.2022.109115_bib0017) 2018
10.1016/j.patcog.2022.109115_bib0042
Tobin (10.1016/j.patcog.2022.109115_bib0010) 2017
References_xml – volume: 27
  start-page: 304
  year: 2017
  end-page: 313
  ident: bib0016
  article-title: Deep domain generalization with structured low-rank constraint
  publication-title: IEEE Trans. Image Process.
– start-page: 624
  year: 2018
  end-page: 639
  ident: bib0018
  article-title: Deep domain generalization via conditional invariant adversarial networks
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– start-page: 579
  year: 2019
  end-page: 588
  ident: bib0046
  article-title: Multi-component image translation for deep domain generalization
  publication-title: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV)
– start-page: 1353
  year: 2018
  end-page: 1357
  ident: bib0017
  article-title: Best sources forward: domain generalization through source-specific nets
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
– start-page: 213
  year: 2010
  end-page: 226
  ident: bib0036
  article-title: Adapting visual category models to new domains
  publication-title: European conference on computer vision
– start-page: 6568
  year: 2019
  end-page: 6577
  ident: bib0031
  article-title: Adagraph: Unifying predictive and continuous domain adaptation through graphs
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0035
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: 2009 IEEE conference on computer vision and pattern recognition
– year: 2018
  ident: bib0011
  article-title: Generalizing across domains via cross-gradient training
  publication-title: arXiv preprint arXiv:1804.10745
– start-page: 2229
  year: 2019
  end-page: 2238
  ident: bib0022
  article-title: Domain generalization by solving jigsaw puzzles
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2019
  ident: bib0032
  article-title: Learning to optimize domain specific normalization for domain generalization
  publication-title: arXiv preprint arXiv:1907.04275
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0039
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in neural information processing systems
– year: 2018
  ident: bib0048
  article-title: Domain generalization via conditional invariant representations
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– start-page: 343
  year: 2016
  end-page: 351
  ident: bib0019
  article-title: Domain separation networks
  publication-title: Advances in neural information processing systems
– year: 2016
  ident: bib0033
  article-title: Revisiting batch normalization for practical domain adaptation
  publication-title: arXiv preprint arXiv:1603.04779
– start-page: 2507
  year: 2019
  end-page: 2516
  ident: bib0002
  article-title: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 448
  year: 2015
  end-page: 456
  ident: bib0034
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0040
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– year: 2019
  ident: bib0021
  article-title: Deep drone racing: from simulation to reality with domain randomization
  publication-title: IEEE Trans. Rob.
– start-page: 5334
  year: 2018
  end-page: 5344
  ident: bib0012
  article-title: Generalizing to unseen domains via adversarial data augmentation
  publication-title: Advances in Neural Information Processing Systems
– volume: 80
  start-page: 109
  year: 2018
  end-page: 117
  ident: bib0028
  article-title: Adaptive batch normalization for practical domain adaptation
  publication-title: Pattern Recognit
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: bib0004
  article-title: Deep visual domain adaptation: a survey
  publication-title: Neurocomputing
– start-page: 6447
  year: 2019
  end-page: 6458
  ident: bib0025
  article-title: Domain generalization via model-agnostic learning of semantic features
  publication-title: Advances in Neural Information Processing Systems
– start-page: 11749
  year: 2020
  end-page: 11756
  ident: bib0020
  article-title: Domain generalization using a mixture of multiple latent domains
  publication-title: AAAI
– year: 2020
  ident: bib0026
  article-title: Self-challenging improves cross-domain generalization
  publication-title: arXiv preprint arXiv:2007.02454
– year: 2016
  ident: bib0043
  article-title: Imagenet pre-trained models with batch normalization
  publication-title: arXiv preprint arXiv:1612.01452
– start-page: 5542
  year: 2017
  end-page: 5550
  ident: bib0015
  article-title: Deeper, broader and artier domain generalization
  publication-title: Proceedings of the IEEE international conference on computer vision
– start-page: 10
  year: 2013
  end-page: 18
  ident: bib0005
  article-title: Domain generalization via invariant feature representation
  publication-title: International Conference on Machine Learning
– year: 2018
  ident: bib0023
  article-title: Learning to generalize: Meta-learning for domain generalization
  publication-title: Thirty-Second AAAI Conference on Artificial Intelligence
– start-page: 187
  year: 2018
  end-page: 198
  ident: bib0045
  article-title: Domain generalization with domain-specific aggregation modules
  publication-title: German Conference on Pattern Recognition
– start-page: 2551
  year: 2015
  end-page: 2559
  ident: bib0006
  article-title: Domain generalization for object recognition with multi-task autoencoders
  publication-title: Proceedings of the IEEE international conference on computer vision
– start-page: 1446
  year: 2019
  end-page: 1455
  ident: bib0013
  article-title: Episodic training for domain generalization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: volume 35
  year: 2019
  ident: bib0047
  article-title: Domain generalization via multidomain discriminant analysis
  publication-title: Uncertainty in artificial intelligence: proceedings of the... conference. Conference on Uncertainty in Artificial Intelligence
– volume: 3
  start-page: 2093
  year: 2018
  end-page: 2100
  ident: bib0030
  article-title: Robust place categorization with deep domain generalization
  publication-title: IEEE Rob. Autom. Lett.
– start-page: 158
  year: 2012
  end-page: 171
  ident: bib0014
  article-title: Undoing the damage of dataset bias
  publication-title: European Conference on Computer Vision
– year: 2014
  ident: bib0041
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– start-page: 357
  year: 2017
  end-page: 369
  ident: bib0027
  article-title: Just dial: Domain alignment layers for unsupervised domain adaptation
  publication-title: International Conference on Image Analysis and Processing
– start-page: 5400
  year: 2018
  end-page: 5409
  ident: bib0009
  article-title: Domain generalization with adversarial feature learning
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1126
  year: 2017
  end-page: 1135
  ident: bib0024
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
  publication-title: Proceedings of the 34th International Conference on Machine Learning-Volume 70
– start-page: 998
  year: 2018
  end-page: 1008
  ident: bib0044
  article-title: Metareg: Towards domain generalization using meta-regularization
  publication-title: Advances in Neural Information Processing Systems
– start-page: 23
  year: 2017
  end-page: 30
  ident: bib0010
  article-title: Domain randomization for transferring deep neural networks from simulation to the real world
  publication-title: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS)
– reference: M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale machine learning on heterogeneous distributed systems (2015).
– start-page: 3320
  year: 2014
  end-page: 3328
  ident: bib0003
  article-title: How transferable are features in deep neural networks?
  publication-title: Advances in neural information processing systems
– reference: G. Griffin, A. Holub, P. Perona, Caltech-256 object category dataset(2007).
– start-page: 1337
  year: 2007
  end-page: 1344
  ident: bib0001
  article-title: Mixture regression for covariate shift
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2066
  year: 2012
  end-page: 2073
  ident: bib0037
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition
– volume: volume 2
  year: 2015
  ident: bib0007
  article-title: Siamese neural networks for one-shot image recognition
  publication-title: ICML deep learning workshop
– start-page: 5715
  year: 2017
  end-page: 5725
  ident: bib0008
  article-title: Unified deep supervised domain adaptation and generalization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 3771
  year: 2018
  end-page: 3780
  ident: bib0029
  article-title: Boosting domain adaptation by discovering latent domains
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– year: 2020
  ident: 10.1016/j.patcog.2022.109115_bib0026
  article-title: Self-challenging improves cross-domain generalization
  publication-title: arXiv preprint arXiv:2007.02454
– start-page: 998
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0044
  article-title: Metareg: Towards domain generalization using meta-regularization
– start-page: 2066
  year: 2012
  ident: 10.1016/j.patcog.2022.109115_bib0037
  article-title: Geodesic flow kernel for unsupervised domain adaptation
– start-page: 2229
  year: 2019
  ident: 10.1016/j.patcog.2022.109115_bib0022
  article-title: Domain generalization by solving jigsaw puzzles
– year: 2019
  ident: 10.1016/j.patcog.2022.109115_bib0021
  article-title: Deep drone racing: from simulation to reality with domain randomization
  publication-title: IEEE Trans. Rob.
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2022.109115_bib0040
  article-title: Deep residual learning for image recognition
– start-page: 1446
  year: 2019
  ident: 10.1016/j.patcog.2022.109115_bib0013
  article-title: Episodic training for domain generalization
– start-page: 158
  year: 2012
  ident: 10.1016/j.patcog.2022.109115_bib0014
  article-title: Undoing the damage of dataset bias
– start-page: 5334
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0012
  article-title: Generalizing to unseen domains via adversarial data augmentation
– start-page: 1126
  year: 2017
  ident: 10.1016/j.patcog.2022.109115_bib0024
  article-title: Model-agnostic meta-learning for fast adaptation of deep networks
– start-page: 3320
  year: 2014
  ident: 10.1016/j.patcog.2022.109115_bib0003
  article-title: How transferable are features in deep neural networks?
– start-page: 23
  year: 2017
  ident: 10.1016/j.patcog.2022.109115_bib0010
  article-title: Domain randomization for transferring deep neural networks from simulation to the real world
– year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0011
  article-title: Generalizing across domains via cross-gradient training
  publication-title: arXiv preprint arXiv:1804.10745
– start-page: 11749
  year: 2020
  ident: 10.1016/j.patcog.2022.109115_bib0020
  article-title: Domain generalization using a mixture of multiple latent domains
– start-page: 448
  year: 2015
  ident: 10.1016/j.patcog.2022.109115_bib0034
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– start-page: 343
  year: 2016
  ident: 10.1016/j.patcog.2022.109115_bib0019
  article-title: Domain separation networks
– volume: 3
  start-page: 2093
  issue: 3
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0030
  article-title: Robust place categorization with deep domain generalization
  publication-title: IEEE Rob. Autom. Lett.
  doi: 10.1109/LRA.2018.2809700
– start-page: 2507
  year: 2019
  ident: 10.1016/j.patcog.2022.109115_bib0002
  article-title: Taking a closer look at domain shift: Category-level adversaries for semantics consistent domain adaptation
– start-page: 579
  year: 2019
  ident: 10.1016/j.patcog.2022.109115_bib0046
  article-title: Multi-component image translation for deep domain generalization
– start-page: 6568
  year: 2019
  ident: 10.1016/j.patcog.2022.109115_bib0031
  article-title: Adagraph: Unifying predictive and continuous domain adaptation through graphs
– start-page: 624
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0018
  article-title: Deep domain generalization via conditional invariant adversarial networks
– start-page: 187
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0045
  article-title: Domain generalization with domain-specific aggregation modules
– start-page: 6447
  year: 2019
  ident: 10.1016/j.patcog.2022.109115_bib0025
  article-title: Domain generalization via model-agnostic learning of semantic features
– start-page: 5715
  year: 2017
  ident: 10.1016/j.patcog.2022.109115_bib0008
  article-title: Unified deep supervised domain adaptation and generalization
– start-page: 3771
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0029
  article-title: Boosting domain adaptation by discovering latent domains
– year: 2014
  ident: 10.1016/j.patcog.2022.109115_bib0041
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– ident: 10.1016/j.patcog.2022.109115_bib0042
– year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0023
  article-title: Learning to generalize: Meta-learning for domain generalization
– start-page: 213
  year: 2010
  ident: 10.1016/j.patcog.2022.109115_bib0036
  article-title: Adapting visual category models to new domains
– volume: 80
  start-page: 109
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0028
  article-title: Adaptive batch normalization for practical domain adaptation
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2018.03.005
– start-page: 1337
  year: 2007
  ident: 10.1016/j.patcog.2022.109115_bib0001
  article-title: Mixture regression for covariate shift
– start-page: 248
  year: 2009
  ident: 10.1016/j.patcog.2022.109115_bib0035
  article-title: Imagenet: A large-scale hierarchical image database
– start-page: 357
  year: 2017
  ident: 10.1016/j.patcog.2022.109115_bib0027
  article-title: Just dial: Domain alignment layers for unsupervised domain adaptation
– start-page: 2551
  year: 2015
  ident: 10.1016/j.patcog.2022.109115_bib0006
  article-title: Domain generalization for object recognition with multi-task autoencoders
– start-page: 1097
  year: 2012
  ident: 10.1016/j.patcog.2022.109115_bib0039
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 1353
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0017
  article-title: Best sources forward: domain generalization through source-specific nets
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0004
  article-title: Deep visual domain adaptation: a survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– volume: volume 2
  year: 2015
  ident: 10.1016/j.patcog.2022.109115_bib0007
  article-title: Siamese neural networks for one-shot image recognition
– start-page: 10
  year: 2013
  ident: 10.1016/j.patcog.2022.109115_bib0005
  article-title: Domain generalization via invariant feature representation
– year: 2019
  ident: 10.1016/j.patcog.2022.109115_bib0032
  article-title: Learning to optimize domain specific normalization for domain generalization
  publication-title: arXiv preprint arXiv:1907.04275
– year: 2016
  ident: 10.1016/j.patcog.2022.109115_bib0043
  article-title: Imagenet pre-trained models with batch normalization
  publication-title: arXiv preprint arXiv:1612.01452
– volume: volume 35
  year: 2019
  ident: 10.1016/j.patcog.2022.109115_bib0047
  article-title: Domain generalization via multidomain discriminant analysis
– start-page: 5400
  year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0009
  article-title: Domain generalization with adversarial feature learning
– year: 2016
  ident: 10.1016/j.patcog.2022.109115_bib0033
  article-title: Revisiting batch normalization for practical domain adaptation
  publication-title: arXiv preprint arXiv:1603.04779
– ident: 10.1016/j.patcog.2022.109115_bib0038
– start-page: 5542
  year: 2017
  ident: 10.1016/j.patcog.2022.109115_bib0015
  article-title: Deeper, broader and artier domain generalization
– volume: 27
  start-page: 304
  issue: 1
  year: 2017
  ident: 10.1016/j.patcog.2022.109115_bib0016
  article-title: Deep domain generalization with structured low-rank constraint
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2758199
– year: 2018
  ident: 10.1016/j.patcog.2022.109115_bib0048
  article-title: Domain generalization via conditional invariant representations
SSID ssj0017142
Score 2.664731
Snippet •We propose to accumulate domain-specific batch normalization statistics accumulated on convolutional layers to map image samples into a latent space where...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109115
SubjectTerms Domain generalization
Domain representation learning
Learning from multiple sources
Title Batch normalization embeddings for deep domain generalization
URI https://dx.doi.org/10.1016/j.patcog.2022.109115
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fuuj5OA1Npuk-ziWYqmKPVnobclra6XdLqVe_e1mNtmiIApelxlYZmcnk2S-70PoNi1cEjCZEdFXlog0MwR40YiOFVWpSqmu2fmfJ_F4Kh5n_VkLDRssDIxVhtrva3pdrcOTXohmr1osAOMLtIPUZSQgKPuAKBcigSy_-9iNeYC-t2cM5xEB6wY-V894Va7credul8gY8CpFII770_L0ZckZHaGD0CvigX-dY9Sy5Qk6bHQYcPgtTxEcQ-pXXEL7uQy4SmxXypr6Ygm7vhQbayts1iu5KPHcU00HyzM0Hd2_DMckyCIQ7bY3WyJ1XCSMx5wqnQDONBYpN3AcUXApDKOSMWOgF9CJViKiqZQmSWymhYwYU_wctct1aS8QBuqYgsYs0xwu8IzMOBU60jY2wphIdhBvopHrwBkO0hXLvBkOe8t9DHOIYe5j2EFk51V5zow_7JMm0Pm3b5-7sv6r5-W_Pa_QPgjH-2mya9Tebt7tjWsvtqpb508X7Q0ensaTT91Gzc0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHtpL36X2uYdeF5PdNY-jSEXr46TgLexLa9EYiv3_zSQbaaG00GvYgfBlMju7M983AE_RIncCJmMq2spSEcWGoi4a1YHyVKQiTxfq_ONJ0J-Jl3l7XoNuxYXBtkoX-8uYXkRr96Tl0GxlqxVyfFF20Ms9EhmU7fAAGqhO1a5DozMY9if7YkLoi1I0nPsUDSoGXdHmleURb7vMD4qMobSSj_Nxf9qhvuw6vVM4duki6ZRvdAY1m57DSTWKgbg_8wLwJlK_khQz0LWjVhK7UdYUtSWSp6bEWJsRs93IVUqWpdq0W3kJs97ztNunbjIC1fkJZ0elDhYh4wH3lA6RahqIiBu8kVhwKQzzJGPGYDqgQ62E70VSmjC0sRbSZ0zxK6in29ReA0H1mIUXsFhzrOEZGXNPaF_bwAhjfNkEXqGRaCcbjtMr1knVH_aWlBgmiGFSYtgEurfKStmMP9aHFdDJt8-f5JH9V8ubf1s-wmF_Oh4lo8FkeAtHOEe-bC67g_ru_cPe59nGTj04b_oE_tTQfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Batch+normalization+embeddings+for+deep+domain+generalization&rft.jtitle=Pattern+recognition&rft.au=Segu%2C+Mattia&rft.au=Tonioni%2C+Alessio&rft.au=Tombari%2C+Federico&rft.date=2023-03-01&rft.issn=0031-3203&rft.volume=135&rft.spage=109115&rft_id=info:doi/10.1016%2Fj.patcog.2022.109115&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_109115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon