An inverse elastodynamic data reconstruction problem

A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the oute...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering mathematics Vol. 134; no. 1
Main Authors Borachok, Ihor, Chapko, Roman, Johansson, B. Tomas
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-0833
1573-2703
1573-2703
DOI10.1007/s10665-022-10219-6

Cover

Loading…
Abstract A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the outer boundary. This corresponds to the problem of finding elastic wave propagation in a structure from measured data being the displacement and traction on a portion of the boundary of the structure. The time-dependent lateral Cauchy problem is reduced to a sequence of elliptic systems by applying the Laguerre transform. A sequence of fundamental solutions to the elliptic equations are derived. Linear combination of elements of this sequence of fundamental solutions is used to generate an approximation to the elliptic Cauchy problems. By placing source points outside of the solution domain, and collocating on the boundary, linear equations are obtained for finding the coefficients in the MFS approximation. It is outlined that the sequence of fundamental solutions of the elliptic systems constitutes a linearly independent and dense set on the boundary with respect to the L 2 -norm. Tikhonov regularization in combination with the L-curve rule is incorporated to generate a stable solution to the obtained systems of linear equations. The proposed MFS approximation for the time-dependent lateral Cauchy problem is supported by numerical results.
AbstractList A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the outer boundary. This corresponds to the problem of finding elastic wave propagation in a structure from measured data being the displacement and traction on a portion of the boundary of the structure. The time-dependent lateral Cauchy problem is reduced to a sequence of elliptic systems by applying the Laguerre transform. A sequence of fundamental solutions to the elliptic equations are derived. Linear combination of elements of this sequence of fundamental solutions is used to generate an approximation to the elliptic Cauchy problems. By placing source points outside of the solution domain, and collocating on the boundary, linear equations are obtained for finding the coefficients in the MFS approximation. It is outlined that the sequence of fundamental solutions of the elliptic systems constitutes a linearly independent and dense set on the boundary with respect to the L 2 -norm. Tikhonov regularization in combination with the L-curve rule is incorporated to generate a stable solution to the obtained systems of linear equations. The proposed MFS approximation for the time-dependent lateral Cauchy problem is supported by numerical results.
A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the outer boundary. This corresponds to the problem of finding elastic wave propagation in a structure from measured data being the displacement and traction on a portion of the boundary of the structure. The time-dependent lateral Cauchy problem is reduced to a sequence of elliptic systems by applying the Laguerre transform. A sequence of fundamental solutions to the elliptic equations are derived. Linear combination of elements of this sequence of fundamental solutions is used to generate an approximation to the elliptic Cauchy problems. By placing source points outside of the solution domain, and collocating on the boundary, linear equations are obtained for finding the coefficients in the MFS approximation. It is outlined that the sequence of fundamental solutions of the elliptic systems constitutes a linearly independent and dense set on the boundary with respect to the L2-norm. Tikhonov regularization in combination with the L-curve rule is incorporated to generate a stable solution to the obtained systems of linear equations. The proposed MFS approximation for the time-dependent lateral Cauchy problem is supported by numerical results.
A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the outer boundary. This corresponds to the problem of finding elastic wave propagation in a structure from measured data being the displacement and traction on a portion of the boundary of the structure. The time-dependent lateral Cauchy problem is reduced to a sequence of elliptic systems by applying the Laguerre transform. A sequence of fundamental solutions to the elliptic equations are derived. Linear combination of elements of this sequence of fundamental solutions is used to generate an approximation to the elliptic Cauchy problems. By placing source points outside of the solution domain, and collocating on the boundary, linear equations are obtained for finding the coefficients in the MFS approximation. It is outlined that the sequence of fundamental solutions of the elliptic systems constitutes a linearly independent and dense set on the boundary with respect to the L-2-norm. Tikhonov regularization in combination with the L-curve rule is incorporated to generate a stable solution to the obtained systems of linear equations. The proposed MFS approximation for the time-dependent lateral Cauchy problem is supported by numerical results.
ArticleNumber 3
Author Chapko, Roman
Johansson, B. Tomas
Borachok, Ihor
Author_xml – sequence: 1
  givenname: Ihor
  orcidid: 0000-0003-3797-7491
  surname: Borachok
  fullname: Borachok, Ihor
  email: ihor.borachok@lnu.edu.ua
  organization: Faculty of Applied Mathematics and Informatics, Ivan Franko National University of Lviv
– sequence: 2
  givenname: Roman
  surname: Chapko
  fullname: Chapko, Roman
  organization: Faculty of Applied Mathematics and Informatics, Ivan Franko National University of Lviv
– sequence: 3
  givenname: B. Tomas
  surname: Johansson
  fullname: Johansson, B. Tomas
  organization: ITN, Linköping University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185243$$DView record from Swedish Publication Index
BookMark eNp9kEtLAzEUhYNUsK3-AVcDrkfzmDxmWeoTCm6K25DJJCVlmtQko_TfO2NFwUVXd3HPOffcbwYmPngDwDWCtwhCfpcQZIyWEOMSQYzqkp2BKaKclJhDMgFTOK6gIOQCzFLaQghrUeEpqBa-cP7DxGQK06mUQ3vwaud00aqsimh08CnHXmcXfLGPoenM7hKcW9Ulc_Uz52D9-LBePper16eX5WJVaix4LhkjtraqgcoKhihUFamVJpqItm4EolXDaU2MrYXClHNEWlRh3kLKmFXakjkoj7Hp0-z7Ru6j26l4kEE5ee_eFjLEjexcL5GguCKD_uaoH2q-9yZluQ199ENDiRnDHDNSsUGFjyodQ0rR2N9cBOUIUx5hyoGY_IYpR5P4Z9Iuq5FJjsp1p63k54vhjt-Y-NfqhOsLk66KQg
CitedBy_id crossref_primary_10_1007_s11075_023_01639_1
Cites_doi 10.1007/s10915-021-01501-3
10.1016/j.camwa.2019.04.023
10.1016/j.enganabound.2020.04.014
10.1016/j.enganabound.2009.05.007
10.1080/10407790.2019.1665386
10.1016/j.apnum.2018.03.004
10.1007/s10915-012-9664-x
10.1007/s11075-015-0036-0
10.1007/s11075-021-01120-x
10.1080/17415977.2016.1191072
10.1016/j.cam.2019.112463
10.1109/SUMMA53307.2021.9632193
10.1016/S0168-2024(02)80016-9
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
ADTPV
AOWAS
DG8
DOI 10.1007/s10665-022-10219-6
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Linköpings universitet
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1573-2703
ExternalDocumentID oai_DiVA_org_liu_185243
10_1007_s10665_022_10219_6
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z86
Z8M
Z8S
ZMTXR
ZWQNP
ZY4
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ADTPV
AOWAS
DG8
ID FETCH-LOGICAL-c287t-663f9fab0af86150a439ac3c38d9b8154b7593ef98a257713d1427d0566facf3
IEDL.DBID U2A
ISSN 0022-0833
1573-2703
IngestDate Thu Aug 21 06:32:25 EDT 2025
Fri Jul 25 11:03:54 EDT 2025
Tue Jul 01 03:43:57 EDT 2025
Thu Apr 24 23:01:03 EDT 2025
Fri Feb 21 02:46:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Lateral Cauchy problem
Method of fundamental solutions
L-curve rule
Elastodynamics
Tikhonov regularization
Inverse problem
Laguerre transformation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c287t-663f9fab0af86150a439ac3c38d9b8154b7593ef98a257713d1427d0566facf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3797-7491
PQID 2662726346
PQPubID 2043778
ParticipantIDs swepub_primary_oai_DiVA_org_liu_185243
proquest_journals_2662726346
crossref_primary_10_1007_s10665_022_10219_6
crossref_citationtrail_10_1007_s10665_022_10219_6
springer_journals_10_1007_s10665_022_10219_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Journal of engineering mathematics
PublicationTitleAbbrev J Eng Math
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Marin, Karageorghis, Lesnic, Johansson (CR9) 2017; 25
Xi, Fu, Alves, Ji (CR11) 2019; 76
CR4
Karageorghis, Marin (CR8) 2013; 56
Hematiyan, Arezou, Koochak Dezfouli, Khoshroo (CR7) 2019; 121
Chapko, Mindrinos (CR13) 2017; 30
Khoshroo, Hematiyan, Daneshbod (CR6) 2020; 117
Alves (CR14) 2009; 33
Hansen, Johnston (CR15) 2001
Miklowitz (CR5) 1978
CR10
Grabski (CR18) 2021; 88
Abramowitz, Stegun (CR12) 1972
Chapko, Johansson (CR2) 2018; 129
Borachok, Chapko, Johansson (CR1) 2021; 89
Chen, Karageorghis, Li (CR17) 2016; 72
Chapko, Johansson, Mindrinos (CR3) 2020; 367
Le, Nguyen, Nguyen, Powell (CR16) 2021; 87
J Miklowitz (10219_CR5) 1978
Q Xi (10219_CR11) 2019; 76
CS Chen (10219_CR17) 2016; 72
JK Grabski (10219_CR18) 2021; 88
R Chapko (10219_CR2) 2018; 129
R Chapko (10219_CR13) 2017; 30
M Abramowitz (10219_CR12) 1972
PC Hansen (10219_CR15) 2001
CJS Alves (10219_CR14) 2009; 33
M Khoshroo (10219_CR6) 2020; 117
MR Hematiyan (10219_CR7) 2019; 121
I Borachok (10219_CR1) 2021; 89
R Chapko (10219_CR3) 2020; 367
10219_CR4
TT Le (10219_CR16) 2021; 87
A Karageorghis (10219_CR8) 2013; 56
10219_CR10
L Marin (10219_CR9) 2017; 25
References_xml – year: 1972
  ident: CR12
  publication-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables
– volume: 87
  start-page: 90
  year: 2021
  ident: CR16
  article-title: The quasi-reversibility method to numerically solve an inverse source problem for hyperbolic equations
  publication-title: J Sci Comput
  doi: 10.1007/s10915-021-01501-3
– volume: 88
  start-page: 33
  year: 2021
  end-page: 51
  ident: CR18
  article-title: On the sources placement in the method of fundamental solutions for time-dependent heat conduction problems
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2019.04.023
– volume: 117
  start-page: 188
  year: 2020
  end-page: 201
  ident: CR6
  article-title: Two-dimensional elastodynamic and free vibration analysis by the method of fundamental solutions
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2020.04.014
– volume: 33
  start-page: 1348
  year: 2009
  end-page: 1361
  ident: CR14
  article-title: On the choice of source points in the method of fundamental solutions
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2009.05.007
– start-page: 119
  year: 2001
  end-page: 142
  ident: CR15
  article-title: The L-curve and its use in the numerical treatment of inverse problems
  publication-title: Computational inverse problems in electrocardiology
– ident: CR4
– volume: 76
  start-page: 311
  year: 2019
  end-page: 327
  ident: CR11
  article-title: A semi-analytical boundary collocation solver for the inverse Cauchy problems in heat conduction under 3D FGMs with heat source
  publication-title: Numer Heat Transf Part B Fundam
  doi: 10.1080/10407790.2019.1665386
– volume: 129
  start-page: 104
  year: 2018
  end-page: 119
  ident: CR2
  article-title: A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2018.03.004
– volume: 56
  start-page: 96
  year: 2013
  end-page: 121
  ident: CR8
  article-title: Efficient MFS algorithms for problems in thermoelasticity
  publication-title: J Sci Comput
  doi: 10.1007/s10915-012-9664-x
– volume: 72
  start-page: 107
  year: 2016
  end-page: 130
  ident: CR17
  article-title: On choosing the location of the sources in the MFS
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-015-0036-0
– ident: CR10
– year: 1978
  ident: CR5
  publication-title: The theory of elastic waves and waveguides
– volume: 89
  start-page: 431
  year: 2021
  end-page: 449
  ident: CR1
  article-title: A method of fundamental solutions for heat and wave propagation from lateral Cauchy data
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-021-01120-x
– volume: 25
  start-page: 652
  year: 2017
  end-page: 673
  ident: CR9
  article-title: The method of fundamental solutions for problems in static thermo-elasticity with incomplete boundary data
  publication-title: Inverse Probl Sci Eng
  doi: 10.1080/17415977.2016.1191072
– volume: 30
  start-page: 521
  issue: 4
  year: 2017
  end-page: 542
  ident: CR13
  article-title: On the numerical solution of the elastodynamic problem by a boundary integral equation method
  publication-title: J Integral Equ Appl
– volume: 121
  start-page: 661
  year: 2019
  end-page: 686
  ident: CR7
  article-title: Some remarks on the method of fundamental solutions for two-dimensional elasticity
  publication-title: Comput Model Eng Sci (CMES)
– volume: 367
  start-page: 112463
  year: 2020
  ident: CR3
  article-title: On a boundary integral solution of a lateral planar Cauchy problem in elastodynamics
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2019.112463
– volume: 56
  start-page: 96
  year: 2013
  ident: 10219_CR8
  publication-title: J Sci Comput
  doi: 10.1007/s10915-012-9664-x
– volume: 76
  start-page: 311
  year: 2019
  ident: 10219_CR11
  publication-title: Numer Heat Transf Part B Fundam
  doi: 10.1080/10407790.2019.1665386
– ident: 10219_CR10
  doi: 10.1109/SUMMA53307.2021.9632193
– volume: 87
  start-page: 90
  year: 2021
  ident: 10219_CR16
  publication-title: J Sci Comput
  doi: 10.1007/s10915-021-01501-3
– volume: 25
  start-page: 652
  year: 2017
  ident: 10219_CR9
  publication-title: Inverse Probl Sci Eng
  doi: 10.1080/17415977.2016.1191072
– volume: 88
  start-page: 33
  year: 2021
  ident: 10219_CR18
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2019.04.023
– ident: 10219_CR4
  doi: 10.1016/S0168-2024(02)80016-9
– volume-title: The theory of elastic waves and waveguides
  year: 1978
  ident: 10219_CR5
– volume: 117
  start-page: 188
  year: 2020
  ident: 10219_CR6
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2020.04.014
– volume: 33
  start-page: 1348
  year: 2009
  ident: 10219_CR14
  publication-title: Eng Anal Bound Elem
  doi: 10.1016/j.enganabound.2009.05.007
– volume: 89
  start-page: 431
  year: 2021
  ident: 10219_CR1
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-021-01120-x
– volume: 121
  start-page: 661
  year: 2019
  ident: 10219_CR7
  publication-title: Comput Model Eng Sci (CMES)
– volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables
  year: 1972
  ident: 10219_CR12
– volume: 129
  start-page: 104
  year: 2018
  ident: 10219_CR2
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2018.03.004
– volume: 30
  start-page: 521
  issue: 4
  year: 2017
  ident: 10219_CR13
  publication-title: J Integral Equ Appl
– start-page: 119
  volume-title: Computational inverse problems in electrocardiology
  year: 2001
  ident: 10219_CR15
– volume: 72
  start-page: 107
  year: 2016
  ident: 10219_CR17
  publication-title: Numer Algorithms
  doi: 10.1007/s11075-015-0036-0
– volume: 367
  start-page: 112463
  year: 2020
  ident: 10219_CR3
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2019.112463
SSID ssj0009842
Score 2.2884092
Snippet A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Approximation
Boundary conditions
Cauchy problems
Computational Mathematics and Numerical Analysis
Domains
Elastic waves
Elastodynamics
Elliptic functions
Hyperbolic systems
Inverse problems
Linear equations
Mathematical and Computational Engineering
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Reconstruction
Regularization
Theoretical and Applied Mechanics
Time dependence
Wave propagation
Title An inverse elastodynamic data reconstruction problem
URI https://link.springer.com/article/10.1007/s10665-022-10219-6
https://www.proquest.com/docview/2662726346
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185243
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA66veiDP6bidI4-iC8asG3apo-dbg5le9pkPoUkTWQwOrHz__fSpt0UGfhUStor3F2a75K77xC6dl0ZSUo8zIUbYOIKigUsa5iGGvyJp6HmpnZ4NA6HU_I8C2a2KCyvst2rI8niT71R7BaGpprYw6YddYzDXdQMIHY3fj31kjXVLiU1RzgADN-Wyvwt4-dytMaY9bHoLwrRYtkZHKEDixedpDTwMdpRWQsdWuzo2JmZt9D-BrEg3I1qNtb8BJEkc-aZyb9QjgK0vFqmZR96x-SHOkVMXPPIOrbFzCmaDPqThyG23RKwhKhnhQE66Fhzcc81NSzvHKAGl770aRoLCkhJREHsKx1TDtMUYtPUJV6UAgACe0jtn6FGtszUOXJ4BGEGEVTzgBMBUhWNFI8lQIPUj5VsI7fSGZOWSdw0tFiwNQey0TMDPbNCzyxso9v6nY-SR2Pr053KFMzOqZx5hqveC30Cw3eVedbD26TdlCasv2w4tR_nrwlbfr6zxfyLmRJy4l_8T-4l2vMKJzN7Mh3UAEOpK4AoK9FFzWTQ643N9entpd8tPPQbUm_d6A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ7oelAPvo1vORgvWiNQoByJr9Xd9bSa9dS0pZiNhjUuXvz1TqGwaswmHklhgM60_aad-QbgyHVVpBj1iJBuQKgrGZG4rBEWZmhPIg0zYXKHe_dh-4HeDYKBTQob19Hu9ZFkOVN_S3YLQ5NN7BFTjjom4SzMUfTBgxbMJTdPnasJ2S6jDUs4QgzfJsv8LeXngjRBmc3B6C8S0XLhuV6Gh_qTq3iTl7OPQp6pz19sjv_9pxVYskjUSSrTWYUZna_BskWljh3z4zVY_EZZiFe9hud1vA40yZ1hbiI7tKMRhxejtKpw75jIU6f0thuGWscWr9mA_vVV_6JNbB0GotCfKgiCkizOhDwXGTP88QJBjFC-8lkaS4YYTEZB7OssZgInAPR6U5d6UYrQCjWtMn8TWvko11vgiAgdGCpZJgJBJUrVLNIiVgg6Uj_WahvcWhdcWY5yUyrjlU_YlU2PcewxXvYYD7fhpHnmrWLomHr3Xq1ibkfrmHuGBd8LfYrNp7WiJs3TpB1XptG82bB1Xw4fEz56f-avww9uktOpv_M_uYcw3-73urx7e9_ZhQWvNGSz87MHLVSa3kcgVMgDa_dfa2T6vA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBy1ScTu2D-KJhtk3b9LE4x7xs-LDJ3kKSJjIY3XD1_3vS6xQZ-FjSnsI5SfOd5nzfQejatmUgKXEwF7aHiS0oFrCtYeprmE889jU33OHB0O-PyfPEm6yw-LNq9_JIMuc0GJWmJO0sYt1ZIb75vmEWO9i0pg6xv4m24HNsm6KusRPVsruUVHrhADbcgjbzt42fW1ONN6sj0l9yotkW1DtAewV2tKI82IdoQyVNtF_gSKtYpcsm2l0RGYSrQaXMujxCJEqsaWJqMZSlADmn8zjvSW-ZWlEry48rTVmraDdzjEa9x9FDHxedE7CEDCjFACN0qLm455oaxXcOsINLV7o0DgUF1CQCL3SVDimHJQt5amwTJ4gBDEFspHZPUCOZJ-oUWTyAlIMIqrnHiQCrigaKhxJgQuyGSraQXfqMyUJV3DS3mLFaD9n4mYGfWeZn5rfQbfXMItfUWHt3uwwFK9bXkjlGt97xXQLDd2V46uF11m7yEFZvNvra3el7xOafH2w2_WKGTk7cs__ZvULbb90ee30avpyjHSebb-ZXTRs1IGbqApBLKi6zyfkNCr3iBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inverse+elastodynamic+data+reconstruction+problem&rft.jtitle=Journal+of+engineering+mathematics&rft.au=Borachok+Ihor&rft.au=Chapko+Roman&rft.au=Tomas%2C+Johansson+B&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-0833&rft.eissn=1573-2703&rft.volume=134&rft.issue=1&rft_id=info:doi/10.1007%2Fs10665-022-10219-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0833&client=summon