An inverse elastodynamic data reconstruction problem
A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the oute...
Saved in:
Published in | Journal of engineering mathematics Vol. 134; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.06.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0022-0833 1573-2703 1573-2703 |
DOI | 10.1007/s10665-022-10219-6 |
Cover
Loading…
Abstract | A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the outer boundary. This corresponds to the problem of finding elastic wave propagation in a structure from measured data being the displacement and traction on a portion of the boundary of the structure. The time-dependent lateral Cauchy problem is reduced to a sequence of elliptic systems by applying the Laguerre transform. A sequence of fundamental solutions to the elliptic equations are derived. Linear combination of elements of this sequence of fundamental solutions is used to generate an approximation to the elliptic Cauchy problems. By placing source points outside of the solution domain, and collocating on the boundary, linear equations are obtained for finding the coefficients in the MFS approximation. It is outlined that the sequence of fundamental solutions of the elliptic systems constitutes a linearly independent and dense set on the boundary with respect to the
L
2
-norm. Tikhonov regularization in combination with the L-curve rule is incorporated to generate a stable solution to the obtained systems of linear equations. The proposed MFS approximation for the time-dependent lateral Cauchy problem is supported by numerical results. |
---|---|
AbstractList | A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the outer boundary. This corresponds to the problem of finding elastic wave propagation in a structure from measured data being the displacement and traction on a portion of the boundary of the structure. The time-dependent lateral Cauchy problem is reduced to a sequence of elliptic systems by applying the Laguerre transform. A sequence of fundamental solutions to the elliptic equations are derived. Linear combination of elements of this sequence of fundamental solutions is used to generate an approximation to the elliptic Cauchy problems. By placing source points outside of the solution domain, and collocating on the boundary, linear equations are obtained for finding the coefficients in the MFS approximation. It is outlined that the sequence of fundamental solutions of the elliptic systems constitutes a linearly independent and dense set on the boundary with respect to the
L
2
-norm. Tikhonov regularization in combination with the L-curve rule is incorporated to generate a stable solution to the obtained systems of linear equations. The proposed MFS approximation for the time-dependent lateral Cauchy problem is supported by numerical results. A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the outer boundary. This corresponds to the problem of finding elastic wave propagation in a structure from measured data being the displacement and traction on a portion of the boundary of the structure. The time-dependent lateral Cauchy problem is reduced to a sequence of elliptic systems by applying the Laguerre transform. A sequence of fundamental solutions to the elliptic equations are derived. Linear combination of elements of this sequence of fundamental solutions is used to generate an approximation to the elliptic Cauchy problems. By placing source points outside of the solution domain, and collocating on the boundary, linear equations are obtained for finding the coefficients in the MFS approximation. It is outlined that the sequence of fundamental solutions of the elliptic systems constitutes a linearly independent and dense set on the boundary with respect to the L2-norm. Tikhonov regularization in combination with the L-curve rule is incorporated to generate a stable solution to the obtained systems of linear equations. The proposed MFS approximation for the time-dependent lateral Cauchy problem is supported by numerical results. A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner boundary for the hyperbolic system of elastodynamics in planar annular domains from known essential and natural boundary conditions on the outer boundary. This corresponds to the problem of finding elastic wave propagation in a structure from measured data being the displacement and traction on a portion of the boundary of the structure. The time-dependent lateral Cauchy problem is reduced to a sequence of elliptic systems by applying the Laguerre transform. A sequence of fundamental solutions to the elliptic equations are derived. Linear combination of elements of this sequence of fundamental solutions is used to generate an approximation to the elliptic Cauchy problems. By placing source points outside of the solution domain, and collocating on the boundary, linear equations are obtained for finding the coefficients in the MFS approximation. It is outlined that the sequence of fundamental solutions of the elliptic systems constitutes a linearly independent and dense set on the boundary with respect to the L-2-norm. Tikhonov regularization in combination with the L-curve rule is incorporated to generate a stable solution to the obtained systems of linear equations. The proposed MFS approximation for the time-dependent lateral Cauchy problem is supported by numerical results. |
ArticleNumber | 3 |
Author | Chapko, Roman Johansson, B. Tomas Borachok, Ihor |
Author_xml | – sequence: 1 givenname: Ihor orcidid: 0000-0003-3797-7491 surname: Borachok fullname: Borachok, Ihor email: ihor.borachok@lnu.edu.ua organization: Faculty of Applied Mathematics and Informatics, Ivan Franko National University of Lviv – sequence: 2 givenname: Roman surname: Chapko fullname: Chapko, Roman organization: Faculty of Applied Mathematics and Informatics, Ivan Franko National University of Lviv – sequence: 3 givenname: B. Tomas surname: Johansson fullname: Johansson, B. Tomas organization: ITN, Linköping University |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185243$$DView record from Swedish Publication Index |
BookMark | eNp9kEtLAzEUhYNUsK3-AVcDrkfzmDxmWeoTCm6K25DJJCVlmtQko_TfO2NFwUVXd3HPOffcbwYmPngDwDWCtwhCfpcQZIyWEOMSQYzqkp2BKaKclJhDMgFTOK6gIOQCzFLaQghrUeEpqBa-cP7DxGQK06mUQ3vwaud00aqsimh08CnHXmcXfLGPoenM7hKcW9Ulc_Uz52D9-LBePper16eX5WJVaix4LhkjtraqgcoKhihUFamVJpqItm4EolXDaU2MrYXClHNEWlRh3kLKmFXakjkoj7Hp0-z7Ru6j26l4kEE5ee_eFjLEjexcL5GguCKD_uaoH2q-9yZluQ199ENDiRnDHDNSsUGFjyodQ0rR2N9cBOUIUx5hyoGY_IYpR5P4Z9Iuq5FJjsp1p63k54vhjt-Y-NfqhOsLk66KQg |
CitedBy_id | crossref_primary_10_1007_s11075_023_01639_1 |
Cites_doi | 10.1007/s10915-021-01501-3 10.1016/j.camwa.2019.04.023 10.1016/j.enganabound.2020.04.014 10.1016/j.enganabound.2009.05.007 10.1080/10407790.2019.1665386 10.1016/j.apnum.2018.03.004 10.1007/s10915-012-9664-x 10.1007/s11075-015-0036-0 10.1007/s11075-021-01120-x 10.1080/17415977.2016.1191072 10.1016/j.cam.2019.112463 10.1109/SUMMA53307.2021.9632193 10.1016/S0168-2024(02)80016-9 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
DBID | AAYXX CITATION ADTPV AOWAS DG8 |
DOI | 10.1007/s10665-022-10219-6 |
DatabaseName | CrossRef SwePub SwePub Articles SWEPUB Linköpings universitet |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1573-2703 |
ExternalDocumentID | oai_DiVA_org_liu_185243 10_1007_s10665_022_10219_6 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PKN PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z86 Z8M Z8S ZMTXR ZWQNP ZY4 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ ADTPV AOWAS DG8 |
ID | FETCH-LOGICAL-c287t-663f9fab0af86150a439ac3c38d9b8154b7593ef98a257713d1427d0566facf3 |
IEDL.DBID | U2A |
ISSN | 0022-0833 1573-2703 |
IngestDate | Thu Aug 21 06:32:25 EDT 2025 Fri Jul 25 11:03:54 EDT 2025 Tue Jul 01 03:43:57 EDT 2025 Thu Apr 24 23:01:03 EDT 2025 Fri Feb 21 02:46:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Lateral Cauchy problem Method of fundamental solutions L-curve rule Elastodynamics Tikhonov regularization Inverse problem Laguerre transformation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c287t-663f9fab0af86150a439ac3c38d9b8154b7593ef98a257713d1427d0566facf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3797-7491 |
PQID | 2662726346 |
PQPubID | 2043778 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_185243 proquest_journals_2662726346 crossref_primary_10_1007_s10665_022_10219_6 crossref_citationtrail_10_1007_s10665_022_10219_6 springer_journals_10_1007_s10665_022_10219_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Journal of engineering mathematics |
PublicationTitleAbbrev | J Eng Math |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Marin, Karageorghis, Lesnic, Johansson (CR9) 2017; 25 Xi, Fu, Alves, Ji (CR11) 2019; 76 CR4 Karageorghis, Marin (CR8) 2013; 56 Hematiyan, Arezou, Koochak Dezfouli, Khoshroo (CR7) 2019; 121 Chapko, Mindrinos (CR13) 2017; 30 Khoshroo, Hematiyan, Daneshbod (CR6) 2020; 117 Alves (CR14) 2009; 33 Hansen, Johnston (CR15) 2001 Miklowitz (CR5) 1978 CR10 Grabski (CR18) 2021; 88 Abramowitz, Stegun (CR12) 1972 Chapko, Johansson (CR2) 2018; 129 Borachok, Chapko, Johansson (CR1) 2021; 89 Chen, Karageorghis, Li (CR17) 2016; 72 Chapko, Johansson, Mindrinos (CR3) 2020; 367 Le, Nguyen, Nguyen, Powell (CR16) 2021; 87 J Miklowitz (10219_CR5) 1978 Q Xi (10219_CR11) 2019; 76 CS Chen (10219_CR17) 2016; 72 JK Grabski (10219_CR18) 2021; 88 R Chapko (10219_CR2) 2018; 129 R Chapko (10219_CR13) 2017; 30 M Abramowitz (10219_CR12) 1972 PC Hansen (10219_CR15) 2001 CJS Alves (10219_CR14) 2009; 33 M Khoshroo (10219_CR6) 2020; 117 MR Hematiyan (10219_CR7) 2019; 121 I Borachok (10219_CR1) 2021; 89 R Chapko (10219_CR3) 2020; 367 10219_CR4 TT Le (10219_CR16) 2021; 87 A Karageorghis (10219_CR8) 2013; 56 10219_CR10 L Marin (10219_CR9) 2017; 25 |
References_xml | – year: 1972 ident: CR12 publication-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables – volume: 87 start-page: 90 year: 2021 ident: CR16 article-title: The quasi-reversibility method to numerically solve an inverse source problem for hyperbolic equations publication-title: J Sci Comput doi: 10.1007/s10915-021-01501-3 – volume: 88 start-page: 33 year: 2021 end-page: 51 ident: CR18 article-title: On the sources placement in the method of fundamental solutions for time-dependent heat conduction problems publication-title: Comput Math Appl doi: 10.1016/j.camwa.2019.04.023 – volume: 117 start-page: 188 year: 2020 end-page: 201 ident: CR6 article-title: Two-dimensional elastodynamic and free vibration analysis by the method of fundamental solutions publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2020.04.014 – volume: 33 start-page: 1348 year: 2009 end-page: 1361 ident: CR14 article-title: On the choice of source points in the method of fundamental solutions publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2009.05.007 – start-page: 119 year: 2001 end-page: 142 ident: CR15 article-title: The L-curve and its use in the numerical treatment of inverse problems publication-title: Computational inverse problems in electrocardiology – ident: CR4 – volume: 76 start-page: 311 year: 2019 end-page: 327 ident: CR11 article-title: A semi-analytical boundary collocation solver for the inverse Cauchy problems in heat conduction under 3D FGMs with heat source publication-title: Numer Heat Transf Part B Fundam doi: 10.1080/10407790.2019.1665386 – volume: 129 start-page: 104 year: 2018 end-page: 119 ident: CR2 article-title: A boundary integral equation method for numerical solution of parabolic and hyperbolic Cauchy problems publication-title: Appl Numer Math doi: 10.1016/j.apnum.2018.03.004 – volume: 56 start-page: 96 year: 2013 end-page: 121 ident: CR8 article-title: Efficient MFS algorithms for problems in thermoelasticity publication-title: J Sci Comput doi: 10.1007/s10915-012-9664-x – volume: 72 start-page: 107 year: 2016 end-page: 130 ident: CR17 article-title: On choosing the location of the sources in the MFS publication-title: Numer Algorithms doi: 10.1007/s11075-015-0036-0 – ident: CR10 – year: 1978 ident: CR5 publication-title: The theory of elastic waves and waveguides – volume: 89 start-page: 431 year: 2021 end-page: 449 ident: CR1 article-title: A method of fundamental solutions for heat and wave propagation from lateral Cauchy data publication-title: Numer Algorithms doi: 10.1007/s11075-021-01120-x – volume: 25 start-page: 652 year: 2017 end-page: 673 ident: CR9 article-title: The method of fundamental solutions for problems in static thermo-elasticity with incomplete boundary data publication-title: Inverse Probl Sci Eng doi: 10.1080/17415977.2016.1191072 – volume: 30 start-page: 521 issue: 4 year: 2017 end-page: 542 ident: CR13 article-title: On the numerical solution of the elastodynamic problem by a boundary integral equation method publication-title: J Integral Equ Appl – volume: 121 start-page: 661 year: 2019 end-page: 686 ident: CR7 article-title: Some remarks on the method of fundamental solutions for two-dimensional elasticity publication-title: Comput Model Eng Sci (CMES) – volume: 367 start-page: 112463 year: 2020 ident: CR3 article-title: On a boundary integral solution of a lateral planar Cauchy problem in elastodynamics publication-title: J Comput Appl Math doi: 10.1016/j.cam.2019.112463 – volume: 56 start-page: 96 year: 2013 ident: 10219_CR8 publication-title: J Sci Comput doi: 10.1007/s10915-012-9664-x – volume: 76 start-page: 311 year: 2019 ident: 10219_CR11 publication-title: Numer Heat Transf Part B Fundam doi: 10.1080/10407790.2019.1665386 – ident: 10219_CR10 doi: 10.1109/SUMMA53307.2021.9632193 – volume: 87 start-page: 90 year: 2021 ident: 10219_CR16 publication-title: J Sci Comput doi: 10.1007/s10915-021-01501-3 – volume: 25 start-page: 652 year: 2017 ident: 10219_CR9 publication-title: Inverse Probl Sci Eng doi: 10.1080/17415977.2016.1191072 – volume: 88 start-page: 33 year: 2021 ident: 10219_CR18 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2019.04.023 – ident: 10219_CR4 doi: 10.1016/S0168-2024(02)80016-9 – volume-title: The theory of elastic waves and waveguides year: 1978 ident: 10219_CR5 – volume: 117 start-page: 188 year: 2020 ident: 10219_CR6 publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2020.04.014 – volume: 33 start-page: 1348 year: 2009 ident: 10219_CR14 publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2009.05.007 – volume: 89 start-page: 431 year: 2021 ident: 10219_CR1 publication-title: Numer Algorithms doi: 10.1007/s11075-021-01120-x – volume: 121 start-page: 661 year: 2019 ident: 10219_CR7 publication-title: Comput Model Eng Sci (CMES) – volume-title: Handbook of mathematical functions with formulas, graphs, and mathematical tables year: 1972 ident: 10219_CR12 – volume: 129 start-page: 104 year: 2018 ident: 10219_CR2 publication-title: Appl Numer Math doi: 10.1016/j.apnum.2018.03.004 – volume: 30 start-page: 521 issue: 4 year: 2017 ident: 10219_CR13 publication-title: J Integral Equ Appl – start-page: 119 volume-title: Computational inverse problems in electrocardiology year: 2001 ident: 10219_CR15 – volume: 72 start-page: 107 year: 2016 ident: 10219_CR17 publication-title: Numer Algorithms doi: 10.1007/s11075-015-0036-0 – volume: 367 start-page: 112463 year: 2020 ident: 10219_CR3 publication-title: J Comput Appl Math doi: 10.1016/j.cam.2019.112463 |
SSID | ssj0009842 |
Score | 2.2884092 |
Snippet | A method of fundamental solutions (MFS) is presented for the ill-posed linear inverse problem consisting of the reconstruction of boundary data on the inner... |
SourceID | swepub proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applications of Mathematics Approximation Boundary conditions Cauchy problems Computational Mathematics and Numerical Analysis Domains Elastic waves Elastodynamics Elliptic functions Hyperbolic systems Inverse problems Linear equations Mathematical and Computational Engineering Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Reconstruction Regularization Theoretical and Applied Mechanics Time dependence Wave propagation |
Title | An inverse elastodynamic data reconstruction problem |
URI | https://link.springer.com/article/10.1007/s10665-022-10219-6 https://www.proquest.com/docview/2662726346 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185243 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA66veiDP6bidI4-iC8asG3apo-dbg5le9pkPoUkTWQwOrHz__fSpt0UGfhUStor3F2a75K77xC6dl0ZSUo8zIUbYOIKigUsa5iGGvyJp6HmpnZ4NA6HU_I8C2a2KCyvst2rI8niT71R7BaGpprYw6YddYzDXdQMIHY3fj31kjXVLiU1RzgADN-Wyvwt4-dytMaY9bHoLwrRYtkZHKEDixedpDTwMdpRWQsdWuzo2JmZt9D-BrEg3I1qNtb8BJEkc-aZyb9QjgK0vFqmZR96x-SHOkVMXPPIOrbFzCmaDPqThyG23RKwhKhnhQE66Fhzcc81NSzvHKAGl770aRoLCkhJREHsKx1TDtMUYtPUJV6UAgACe0jtn6FGtszUOXJ4BGEGEVTzgBMBUhWNFI8lQIPUj5VsI7fSGZOWSdw0tFiwNQey0TMDPbNCzyxso9v6nY-SR2Pr053KFMzOqZx5hqveC30Cw3eVedbD26TdlCasv2w4tR_nrwlbfr6zxfyLmRJy4l_8T-4l2vMKJzN7Mh3UAEOpK4AoK9FFzWTQ643N9entpd8tPPQbUm_d6A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4QwEJ7oelAPvo1vORgvWiNQoByJr9Xd9bSa9dS0pZiNhjUuXvz1TqGwaswmHklhgM60_aad-QbgyHVVpBj1iJBuQKgrGZG4rBEWZmhPIg0zYXKHe_dh-4HeDYKBTQob19Hu9ZFkOVN_S3YLQ5NN7BFTjjom4SzMUfTBgxbMJTdPnasJ2S6jDUs4QgzfJsv8LeXngjRBmc3B6C8S0XLhuV6Gh_qTq3iTl7OPQp6pz19sjv_9pxVYskjUSSrTWYUZna_BskWljh3z4zVY_EZZiFe9hud1vA40yZ1hbiI7tKMRhxejtKpw75jIU6f0thuGWscWr9mA_vVV_6JNbB0GotCfKgiCkizOhDwXGTP88QJBjFC-8lkaS4YYTEZB7OssZgInAPR6U5d6UYrQCjWtMn8TWvko11vgiAgdGCpZJgJBJUrVLNIiVgg6Uj_WahvcWhdcWY5yUyrjlU_YlU2PcewxXvYYD7fhpHnmrWLomHr3Xq1ibkfrmHuGBd8LfYrNp7WiJs3TpB1XptG82bB1Xw4fEz56f-avww9uktOpv_M_uYcw3-73urx7e9_ZhQWvNGSz87MHLVSa3kcgVMgDa_dfa2T6vA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBy1ScTu2D-KJhtk3b9LE4x7xs-LDJ3kKSJjIY3XD1_3vS6xQZ-FjSnsI5SfOd5nzfQejatmUgKXEwF7aHiS0oFrCtYeprmE889jU33OHB0O-PyfPEm6yw-LNq9_JIMuc0GJWmJO0sYt1ZIb75vmEWO9i0pg6xv4m24HNsm6KusRPVsruUVHrhADbcgjbzt42fW1ONN6sj0l9yotkW1DtAewV2tKI82IdoQyVNtF_gSKtYpcsm2l0RGYSrQaXMujxCJEqsaWJqMZSlADmn8zjvSW-ZWlEry48rTVmraDdzjEa9x9FDHxedE7CEDCjFACN0qLm455oaxXcOsINLV7o0DgUF1CQCL3SVDimHJQt5amwTJ4gBDEFspHZPUCOZJ-oUWTyAlIMIqrnHiQCrigaKhxJgQuyGSraQXfqMyUJV3DS3mLFaD9n4mYGfWeZn5rfQbfXMItfUWHt3uwwFK9bXkjlGt97xXQLDd2V46uF11m7yEFZvNvra3el7xOafH2w2_WKGTk7cs__ZvULbb90ee30avpyjHSebb-ZXTRs1IGbqApBLKi6zyfkNCr3iBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+inverse+elastodynamic+data+reconstruction+problem&rft.jtitle=Journal+of+engineering+mathematics&rft.au=Borachok+Ihor&rft.au=Chapko+Roman&rft.au=Tomas%2C+Johansson+B&rft.date=2022-06-01&rft.pub=Springer+Nature+B.V&rft.issn=0022-0833&rft.eissn=1573-2703&rft.volume=134&rft.issue=1&rft_id=info:doi/10.1007%2Fs10665-022-10219-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0833&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0833&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0833&client=summon |