Tunneling field-effect transistors with two-dimensional BiN as the channel semiconductor

The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures due to the stringent criteria of both air stability and excellent gate-tunable electronic properties. Here, we report the performance limits of...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 124; no. 14
Main Authors Yan, Saichao, Wang, Kang, Guo, Zhixin, Wu, Yu-Ning, Chen, Shiyou
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures due to the stringent criteria of both air stability and excellent gate-tunable electronic properties. Here, we report the performance limits of sub-10-nm double-gated monolayer (ML) BiN TFETs by utilizing first-principles quantum-transport simulations. We find that ML BiN possesses an indirect bandgap of 0.8 eV and effective masses of 0.24m0 and 2.24m0 for electrons and holes, respectively. The n-type BiN TFETs exhibit better performance than the p-type ones, and the on-state current can well satisfy the requirements of the International Roadmap for Devices and Systems for both high-performance and low-power standards. Notably, we find that the BiN TFETs exhibit distinguished gate controllability with an ultra-low subthreshold swing below 60 mV/decade even with a small gate length of 6 nm, which is superior to the existing field-effect transistors, such as black phosphorus TFETs, GeSe TFETs, and BiN metal–oxide–semiconductor field-effect transistors. Furthermore, the BiN TFETs are endowed with the potential to realize high switching speed and low-power consumption applications because of their extremely short delay time and ultra-low power-delay product. Our results reveal that the ML BiN is a highly competitive channel material for the next-generation TFETs.
AbstractList The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures due to the stringent criteria of both air stability and excellent gate-tunable electronic properties. Here, we report the performance limits of sub-10-nm double-gated monolayer (ML) BiN TFETs by utilizing first-principles quantum-transport simulations. We find that ML BiN possesses an indirect bandgap of 0.8 eV and effective masses of 0.24m0 and 2.24m0 for electrons and holes, respectively. The n-type BiN TFETs exhibit better performance than the p-type ones, and the on-state current can well satisfy the requirements of the International Roadmap for Devices and Systems for both high-performance and low-power standards. Notably, we find that the BiN TFETs exhibit distinguished gate controllability with an ultra-low subthreshold swing below 60 mV/decade even with a small gate length of 6 nm, which is superior to the existing field-effect transistors, such as black phosphorus TFETs, GeSe TFETs, and BiN metal–oxide–semiconductor field-effect transistors. Furthermore, the BiN TFETs are endowed with the potential to realize high switching speed and low-power consumption applications because of their extremely short delay time and ultra-low power-delay product. Our results reveal that the ML BiN is a highly competitive channel material for the next-generation TFETs.
Author Wu, Yu-Ning
Guo, Zhixin
Wang, Kang
Chen, Shiyou
Yan, Saichao
Author_xml – sequence: 1
  givenname: Saichao
  surname: Yan
  fullname: Yan, Saichao
  organization: Key Lab of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University
– sequence: 2
  givenname: Kang
  surname: Wang
  fullname: Wang, Kang
  organization: School of Microelectronics and Key Laboratory of Computational Physical Sciences (MOE), Fudan University
– sequence: 3
  givenname: Zhixin
  surname: Guo
  fullname: Guo, Zhixin
  organization: State Key Laboratory for Mechanical Behavior of Materials, Center for Spintronics and Quantum System, School of Materials Science and Engineering, Xi'an Jiaotong University
– sequence: 4
  givenname: Yu-Ning
  surname: Wu
  fullname: Wu, Yu-Ning
  organization: Key Lab of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University
– sequence: 5
  givenname: Shiyou
  surname: Chen
  fullname: Chen, Shiyou
  organization: School of Microelectronics and Key Laboratory of Computational Physical Sciences (MOE), Fudan University
BookMark eNp90F9LwzAQAPAgE9ymD36DgE8KnUmvTdNHHf6DoS8TfCtpmtiMLplJyvDbm7E9-3Tc8bvj7mZoYp1VCF1TsqCEwX25ILSmULEzNKWkqjKglE_QlBACGatLeoFmIWxSWuYAU_S1Hq1Vg7HfWBs1dJnSWsmIoxc2mBCdD3hvYo_j3mWd2apUdVYM-NG8YxFw7BWWvTjMwEFtjXS2G2Vqu0TnWgxBXZ3iHH0-P62Xr9nq4-Vt-bDKZM6rmIGStKw0ZW2rirbIcy1rKgjVeSGA8yop3kLbUsWZrIWuE9SMF5yAonnHYY5ujnN33v2MKsRm40afNgwNEADGCIciqdujkt6F4JVudt5shf9tKGkOj2vK5vS4ZO-ONkgTRUzn_oP_AKAvb34
CODEN APPLAB
Cites_doi 10.1038/srep21786
10.1103/PhysRevApplied.16.044022
10.1039/C6NR08810D
10.1103/physrevb.63.245407
10.1109/TED.2013.2276888
10.1088/1361-6528/aae0cb
10.1039/C9NR07590A
10.1016/j.ceramint.2018.06.008
10.1038/natrevmats.2016.52
10.1016/j.physrep.2021.07.006
10.1126/science.1187597
10.1038/nature10679
10.1021/acs.nanolett.8b04417
10.1002/adma.201702522
10.1103/PhysRevX.4.031005
10.1021/acsnano.5b04036
10.1021/acs.nanolett.6b04576
10.1038/nature15387
10.1039/C8NR03191F
10.1126/science.1157996
10.1021/acsaelm.0c01019
10.1126/science.aaj1628
10.1039/D0NR02170A
10.1103/PhysRevApplied.13.044066
10.1109/TED.2016.2605144
10.1088/1361-6641/ab2cd8
10.1007/s12274-017-1895-6
10.1021/acs.nanolett.6b03999
10.1039/C7CP08678D
10.1002/anie.201507568
10.1038/srep06677
10.1088/1674-1056/24/8/087308
10.1038/nnano.2014.207
10.1109/JPROC.2010.2070470
10.1126/science.aah4698
10.1088/2053-1583/1/2/025001
10.1002/andp.201700087
ContentType Journal Article
Copyright Author(s)
2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0191376
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0191376
apl
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12204170
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA1402904
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 12174060
  funderid: 10.13039/501100001809
– fundername: Science and Technology Commission of Shanghai Municipality
  grantid: Explorer project; 21TS1401000
  funderid: 10.13039/501100003399
– fundername: Program for Professor of Special Appointment
  grantid: Eastern Scholar TP2019019
  funderid: 10.13039/501100013285
– fundername: National Key Research and Development Program of China
  grantid: 2022YFA1404603
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 12334005
  funderid: 10.13039/501100001809
GroupedDBID -DZ
-~X
.DC
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c287t-3ec157f16bbe4b422fc91a01f24a3887c288b3bb1e86c9af96bbf684803e12d83
ISSN 0003-6951
IngestDate Mon Jun 30 06:27:35 EDT 2025
Tue Jul 01 01:08:43 EDT 2025
Fri Jun 21 00:18:56 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c287t-3ec157f16bbe4b422fc91a01f24a3887c288b3bb1e86c9af96bbf684803e12d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-3931-7966
0009-0008-5345-9161
0000-0003-2671-5429
0000-0002-5654-9217
0000-0003-3970-3160
OpenAccessLink https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0191376/19869870/143502_1_5.0191376.pdf
PQID 3033660834
PQPubID 2050678
PageCount 6
ParticipantIDs proquest_journals_3033660834
crossref_primary_10_1063_5_0191376
scitation_primary_10_1063_5_0191376
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240401
2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 20240401
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Fiori, Bonaccorso, Iannaccone, Palacios, Neumaier, Seabaugh, Banerjee, Colombo (c4) 2014
Nourbakhsh, Zubair, Sajjad, Tavakkoli, Chen, Fang, Ling, Kong, Dresselhaus, Kaxiras, Berggren, Antoniadis, Palacios (c10) 2016
Xu, Chen, Yang, Wang, Yin, Wang, Cheng, Liu, Xiong, Liu, He (c13) 2017
Theis, Solomon (c2) 2010
Guo, Pan, Zhao, Ren, Yao, Li, Lu (c33) 2020
Desai, Madhvapathy, Sachid, Llinas, Wang, Ahn, Pitner, Kim, Bokor, Hu, Wong, Javey (c7) 2016
Cai, Zhang, Zhang (c5) 2014
Zhou, Zhang, Guo, Wang, Lu, Ming, Li, Qu, Zeng (c36) 2020
Xie, Lin, Wang (c11) 2018
Gomez, Vicarelli, Prada, Island, Acharya, Blanter, Groenendijk, Buscema, Steele, Alvarez, Zandbergen, Palacios, Zant (c30) 2014
Seabaugh, Zhang (c3) 2010
Kumar, Janardhanan (c8) 2013
Huang, Zhu, Zhang, Hu, Zhang, Zhou, Guo, Xu, Zeng (c35) 2019
Xie, Liao, Wang, Yu, Du, Tang, Zhao, Zhang, Chen, Lu, Wang, Xie, Yang, Shi, Zhang (c19) 2017
Li, Xu, Xu, Zhang, Lu (c23) 2019
Taylor, Guo, Wang (c39) 2001
Chhowalla, Zhang (c16) 2016
Ionescu, Riel (c1) 2011
Cao, Logoteta, Özkaya, Biel, Cresti, Pala, Esseni (c40) 2016
Finge, Riederer, Mueller, Grap, Kallis, Knoch (c9) 2017
Zhang, Xie, Li, Yan, Li, Kan, Liu, Chen, Zeng (c34) 2016
Li, Tie, Li, Ye, Zhang, Zhang, Pan, Wang, Quhe, Pan, Lu (c25) 2018
Zhong, Quhe, Wang, Ni, Ye, Song, Pan, Yang, Yang, Lei, Shi, Lu (c38) 2016
Chang (c22) 2018
Huang, Ren, Li, Guo (c27) 2021
Li, Shi, Pan, Li, Xu, Xu, Zhang, Pan, Lu (c24) 2018
Ding, Liu, Yang, Gu, Fan, Lu, Zhao, Yu, Zhang, Huo, Chen (c32) 2021
Lu, Fan, Gong, Chen, ManduLa, Zhang, Yang, Jiang (c29) 2018
Miao, Zhang, Cai, Scherr, Wang (c6) 2015
Lee, Wei, Kysar, Hone (c15) 2008
Qiu, Zhang, Xiao, Yang, Zhong, Peng (c12) 2017
Zhong, Quhe, Wang, Shi, Lü (c14) 2015
Li, Xu, Lu (c26) 2019
Sarkar, Xie, Liu (c18) 2015
Quhe, Xu, Liu, Yang, Lu (c20) 2021
Malyi, Sopiha, Draxl, Persson (c31) 2017
Kang, Liu, Sarkar, Jena, Banerjee (c17) 2014
(2024040512450168300_c36) 2020; 13
(2024040512450168300_c4) 2014; 9
(2024040512450168300_c28) 2016
(2024040512450168300_c35) 2019; 19
(2024040512450168300_c16) 2016; 1
(2024040512450168300_c39) 2001; 63
(2024040512450168300_c26) 2019; 11
(2024040512450168300_c29) 2018; 20
(2024040512450168300_c20) 2021; 938
(2024040512450168300_c17) 2014; 4
(2024040512450168300_c24) 2018; 29
(2024040512450168300_c7) 2016; 354
(2024040512450168300_c27) 2021; 16
(2024040512450168300_c18) 2015; 526
2024040512450168300_c37
(2024040512450168300_c11) 2018; 44
(2024040512450168300_c1) 2011; 479
(2024040512450168300_c23) 2019; 34
(2024040512450168300_c19) 2017; 29
(2024040512450168300_c31) 2017; 9
(2024040512450168300_c14) 2015; 24
(2024040512450168300_c25) 2018; 11
(2024040512450168300_c15) 2008; 321
(2024040512450168300_c40) 2016; 63
(2024040512450168300_c38) 2016; 6
(2024040512450168300_c5) 2014; 4
(2024040512450168300_c6) 2015; 9
(2024040512450168300_c34) 2016; 55
(2024040512450168300_c22) 2018; 10
(2024040512450168300_c32) 2021; 3
(2024040512450168300_c8) 2013; 60
(2024040512450168300_c33) 2020; 12
(2024040512450168300_c30) 2014; 1
(2024040512450168300_c9) 2017; 529
2024040512450168300_c21
(2024040512450168300_c12) 2017; 355
(2024040512450168300_c3) 2010; 98
(2024040512450168300_c2) 2010; 327
(2024040512450168300_c13) 2017; 17
(2024040512450168300_c10) 2016; 16
References_xml – start-page: 271
  year: 2017
  ident: c12
  publication-title: Science
– start-page: 99
  year: 2016
  ident: c7
  publication-title: Science
– start-page: 385
  year: 2008
  ident: c15
  publication-title: Science
– start-page: 2658
  year: 2018
  ident: c25
  publication-title: Nano Res.
– start-page: 1600
  year: 2010
  ident: c2
  publication-title: Science
– start-page: 2095
  year: 2010
  ident: c3
  publication-title: Proc. IEEE
– start-page: 2428
  year: 2017
  ident: c31
  publication-title: Nanoscale
– start-page: 1666
  year: 2016
  ident: c34
  publication-title: Angew. Chem., Int. Ed.
– start-page: 91
  year: 2015
  ident: c18
  publication-title: Nature
– start-page: 21786
  year: 2016
  ident: c38
  publication-title: Sci. Rep.
– start-page: 6677
  year: 2014
  ident: c5
  publication-title: Sci. Rep.
– start-page: 3285
  year: 2013
  ident: c8
  publication-title: IEEE Trans. Electron Devices
– start-page: 1065
  year: 2017
  ident: c13
  publication-title: Nano Lett.
– start-page: 031005
  year: 2014
  ident: c17
  publication-title: Phys. Rev. X
– start-page: 044066
  year: 2020
  ident: c36
  publication-title: Phys. Rev. Appl.
– start-page: 15443
  year: 2020
  ident: c33
  publication-title: Nanoscale
– start-page: 23392
  year: 2019
  ident: c26
  publication-title: Nanoscale
– start-page: 1
  year: 2021
  ident: c20
  publication-title: Phys. Rep.
– start-page: 044022
  year: 2021
  ident: c27
  publication-title: Phys. Rev. Appl.
– start-page: 5699
  year: 2018
  ident: c29
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 1702522
  year: 2017
  ident: c19
  publication-title: Adv. Mater.
– start-page: 13652
  year: 2018
  ident: c22
  publication-title: Nanoscale
– start-page: 025001
  year: 2014
  ident: c30
  publication-title: 2D Mater.
– start-page: 485202
  year: 2018
  ident: c24
  publication-title: Nanotechnology
– start-page: 768
  year: 2014
  ident: c4
  publication-title: Nat. Nanotechnol.
– start-page: 245407
  year: 2001
  ident: c39
  publication-title: Phys. Rev. B
– start-page: 16052
  year: 2016
  ident: c16
  publication-title: Nat. Rev. Mater.
– start-page: 9236
  year: 2015
  ident: c6
  publication-title: ACS Nano
– start-page: 1700087
  year: 2017
  ident: c9
  publication-title: Ann. Phys.
– start-page: 15912
  year: 2018
  ident: c11
  publication-title: Ceram. Int.
– start-page: 1118
  year: 2019
  ident: c35
  publication-title: Nano Lett.
– start-page: 087308
  year: 2015
  ident: c14
  publication-title: Chin. Phys. B
– start-page: 085006
  year: 2019
  ident: c23
  publication-title: Semicond. Sci. Technol.
– start-page: 4388
  year: 2016
  ident: c40
  publication-title: IEEE Trans. Electron Devices
– start-page: 7798
  year: 2016
  ident: c10
  publication-title: Nano Lett.
– start-page: 329
  year: 2011
  ident: c1
  publication-title: Nature
– start-page: 1151
  year: 2021
  ident: c32
  publication-title: ACS Appl. Electron. Mater.
– volume: 6
  start-page: 21786
  year: 2016
  ident: 2024040512450168300_c38
  publication-title: Sci. Rep.
  doi: 10.1038/srep21786
– volume: 16
  start-page: 044022
  year: 2021
  ident: 2024040512450168300_c27
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.16.044022
– volume: 9
  start-page: 2428
  year: 2017
  ident: 2024040512450168300_c31
  publication-title: Nanoscale
  doi: 10.1039/C6NR08810D
– volume: 63
  start-page: 245407
  year: 2001
  ident: 2024040512450168300_c39
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.63.245407
– volume: 60
  start-page: 3285
  year: 2013
  ident: 2024040512450168300_c8
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2013.2276888
– volume: 29
  start-page: 485202
  year: 2018
  ident: 2024040512450168300_c24
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aae0cb
– volume: 11
  start-page: 23392
  year: 2019
  ident: 2024040512450168300_c26
  publication-title: Nanoscale
  doi: 10.1039/C9NR07590A
– volume: 44
  start-page: 15912
  year: 2018
  ident: 2024040512450168300_c11
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.06.008
– volume: 1
  start-page: 16052
  year: 2016
  ident: 2024040512450168300_c16
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.52
– volume: 938
  start-page: 1
  year: 2021
  ident: 2024040512450168300_c20
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2021.07.006
– volume: 327
  start-page: 1600
  year: 2010
  ident: 2024040512450168300_c2
  publication-title: Science
  doi: 10.1126/science.1187597
– volume: 479
  start-page: 329
  year: 2011
  ident: 2024040512450168300_c1
  publication-title: Nature
  doi: 10.1038/nature10679
– volume: 19
  start-page: 1118
  year: 2019
  ident: 2024040512450168300_c35
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04417
– volume: 29
  start-page: 1702522
  year: 2017
  ident: 2024040512450168300_c19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702522
– year: 2016
  ident: 2024040512450168300_c28
– volume: 4
  start-page: 031005
  year: 2014
  ident: 2024040512450168300_c17
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.4.031005
– volume: 9
  start-page: 9236
  year: 2015
  ident: 2024040512450168300_c6
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04036
– volume: 17
  start-page: 1065
  year: 2017
  ident: 2024040512450168300_c13
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04576
– ident: 2024040512450168300_c21
– volume: 526
  start-page: 91
  year: 2015
  ident: 2024040512450168300_c18
  publication-title: Nature
  doi: 10.1038/nature15387
– volume: 10
  start-page: 13652
  year: 2018
  ident: 2024040512450168300_c22
  publication-title: Nanoscale
  doi: 10.1039/C8NR03191F
– volume: 321
  start-page: 385
  year: 2008
  ident: 2024040512450168300_c15
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 3
  start-page: 1151
  year: 2021
  ident: 2024040512450168300_c32
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.0c01019
– volume: 355
  start-page: 271
  year: 2017
  ident: 2024040512450168300_c12
  publication-title: Science
  doi: 10.1126/science.aaj1628
– volume: 12
  start-page: 15443
  year: 2020
  ident: 2024040512450168300_c33
  publication-title: Nanoscale
  doi: 10.1039/D0NR02170A
– volume: 13
  start-page: 044066
  year: 2020
  ident: 2024040512450168300_c36
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.13.044066
– volume: 63
  start-page: 4388
  year: 2016
  ident: 2024040512450168300_c40
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2016.2605144
– volume: 34
  start-page: 085006
  year: 2019
  ident: 2024040512450168300_c23
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/ab2cd8
– volume: 11
  start-page: 2658
  year: 2018
  ident: 2024040512450168300_c25
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1895-6
– volume: 16
  start-page: 7798
  year: 2016
  ident: 2024040512450168300_c10
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03999
– volume: 20
  start-page: 5699
  year: 2018
  ident: 2024040512450168300_c29
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP08678D
– volume: 55
  start-page: 1666
  year: 2016
  ident: 2024040512450168300_c34
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507568
– volume: 4
  start-page: 6677
  year: 2014
  ident: 2024040512450168300_c5
  publication-title: Sci. Rep.
  doi: 10.1038/srep06677
– volume: 24
  start-page: 087308
  year: 2015
  ident: 2024040512450168300_c14
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/24/8/087308
– volume: 9
  start-page: 768
  year: 2014
  ident: 2024040512450168300_c4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.207
– volume: 98
  start-page: 2095
  year: 2010
  ident: 2024040512450168300_c3
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2010.2070470
– volume: 354
  start-page: 99
  year: 2016
  ident: 2024040512450168300_c7
  publication-title: Science
  doi: 10.1126/science.aah4698
– ident: 2024040512450168300_c37
– volume: 1
  start-page: 025001
  year: 2014
  ident: 2024040512450168300_c30
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/1/2/025001
– volume: 529
  start-page: 1700087
  year: 2017
  ident: 2024040512450168300_c9
  publication-title: Ann. Phys.
  doi: 10.1002/andp.201700087
SSID ssj0005233
Score 2.446701
Snippet The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Competitive materials
Delay time
Field effect transistors
First principles
Metal oxide semiconductors
MOSFETs
Power consumption
Power management
Semiconductor devices
Semiconductor materials
Transistors
Title Tunneling field-effect transistors with two-dimensional BiN as the channel semiconductor
URI http://dx.doi.org/10.1063/5.0191376
https://www.proquest.com/docview/3033660834
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9UwFA56h6gPQ6fi1U2C-naJtkmaNo9zU4a4i-CGV19KkqZ4YbRjbVH89Z40aW83JkxfyqWEcMmXnvOdw3fOQeh1aRIA01KiqBaEm0ITJTNDEohGqNTKMOrqnY-X4uiUf1wlq81kur66pNVvzO9r60r-B1V4B7i6Ktl_QHbcFF7Ab8AXnoAwPG-GcedUKr0W0gnRiBdnuLEPVdO3_wi1a-3PmhSujb9vwbF4t166-TKOc7rCX9hj0TiRfF257q_1xZSxDjTVp0CaxVlf_zMy8W8hgaqc_L7epOeDCVHBMTqFT9dnZb__WP9ajzfya9f7gI4sBxcaMhB0KlwZrCojQobGsdYb0ih1-c9gWwdL68ulhyvFrzXhwJng3F0zVRmz9Eqb7N7xqvOz22iLQlxAZ2hr__D405eJqoexYUii-0tDMynB3o5bXqYgm7jiLpAOr3-YUIyTB2g7xAZ43wP9EN2y1Q66P-kYuYPufPYwPEKrEXw8BR9PwMcOfHwFfAzgY9VgAB8H8PEl8B-j0w_vTw6OSBiTQQyEuy1h1sRJWsZCa8s1p7Q0MlZRXFKuGPgQWJVppnVsM2GkKiUsLEXGs4jZmBYZe4JmVV3ZpwhTkxaU2qKIpOVRwZVMgW4qRkshaRzpOXo5nFx-7ruh5L2KQbA8ycPxztHucKZ5-FiaHJgSEwL4Pp-jV-M5_32TZzda9Rzd21zIXTRrLzq7BySx1S_CxfgDcaVpRg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunneling+field-effect+transistors+with+two-dimensional+BiN+as+the+channel+semiconductor&rft.jtitle=Applied+physics+letters&rft.au=Yan%2C+Saichao&rft.au=Wang%2C+Kang&rft.au=Guo%2C+Zhixin&rft.au=Wu%2C+Yu-Ning&rft.date=2024-04-01&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=124&rft.issue=14&rft_id=info:doi/10.1063%2F5.0191376&rft.externalDocID=apl
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon