Tunneling field-effect transistors with two-dimensional BiN as the channel semiconductor
The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures due to the stringent criteria of both air stability and excellent gate-tunable electronic properties. Here, we report the performance limits of...
Saved in:
Published in | Applied physics letters Vol. 124; no. 14 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures due to the stringent criteria of both air stability and excellent gate-tunable electronic properties. Here, we report the performance limits of sub-10-nm double-gated monolayer (ML) BiN TFETs by utilizing first-principles quantum-transport simulations. We find that ML BiN possesses an indirect bandgap of 0.8 eV and effective masses of 0.24m0 and 2.24m0 for electrons and holes, respectively. The n-type BiN TFETs exhibit better performance than the p-type ones, and the on-state current can well satisfy the requirements of the International Roadmap for Devices and Systems for both high-performance and low-power standards. Notably, we find that the BiN TFETs exhibit distinguished gate controllability with an ultra-low subthreshold swing below 60 mV/decade even with a small gate length of 6 nm, which is superior to the existing field-effect transistors, such as black phosphorus TFETs, GeSe TFETs, and BiN metal–oxide–semiconductor field-effect transistors. Furthermore, the BiN TFETs are endowed with the potential to realize high switching speed and low-power consumption applications because of their extremely short delay time and ultra-low power-delay product. Our results reveal that the ML BiN is a highly competitive channel material for the next-generation TFETs. |
---|---|
AbstractList | The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures due to the stringent criteria of both air stability and excellent gate-tunable electronic properties. Here, we report the performance limits of sub-10-nm double-gated monolayer (ML) BiN TFETs by utilizing first-principles quantum-transport simulations. We find that ML BiN possesses an indirect bandgap of 0.8 eV and effective masses of 0.24m0 and 2.24m0 for electrons and holes, respectively. The n-type BiN TFETs exhibit better performance than the p-type ones, and the on-state current can well satisfy the requirements of the International Roadmap for Devices and Systems for both high-performance and low-power standards. Notably, we find that the BiN TFETs exhibit distinguished gate controllability with an ultra-low subthreshold swing below 60 mV/decade even with a small gate length of 6 nm, which is superior to the existing field-effect transistors, such as black phosphorus TFETs, GeSe TFETs, and BiN metal–oxide–semiconductor field-effect transistors. Furthermore, the BiN TFETs are endowed with the potential to realize high switching speed and low-power consumption applications because of their extremely short delay time and ultra-low power-delay product. Our results reveal that the ML BiN is a highly competitive channel material for the next-generation TFETs. |
Author | Wu, Yu-Ning Guo, Zhixin Wang, Kang Chen, Shiyou Yan, Saichao |
Author_xml | – sequence: 1 givenname: Saichao surname: Yan fullname: Yan, Saichao organization: Key Lab of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University – sequence: 2 givenname: Kang surname: Wang fullname: Wang, Kang organization: School of Microelectronics and Key Laboratory of Computational Physical Sciences (MOE), Fudan University – sequence: 3 givenname: Zhixin surname: Guo fullname: Guo, Zhixin organization: State Key Laboratory for Mechanical Behavior of Materials, Center for Spintronics and Quantum System, School of Materials Science and Engineering, Xi'an Jiaotong University – sequence: 4 givenname: Yu-Ning surname: Wu fullname: Wu, Yu-Ning organization: Key Lab of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University – sequence: 5 givenname: Shiyou surname: Chen fullname: Chen, Shiyou organization: School of Microelectronics and Key Laboratory of Computational Physical Sciences (MOE), Fudan University |
BookMark | eNp90F9LwzAQAPAgE9ymD36DgE8KnUmvTdNHHf6DoS8TfCtpmtiMLplJyvDbm7E9-3Tc8bvj7mZoYp1VCF1TsqCEwX25ILSmULEzNKWkqjKglE_QlBACGatLeoFmIWxSWuYAU_S1Hq1Vg7HfWBs1dJnSWsmIoxc2mBCdD3hvYo_j3mWd2apUdVYM-NG8YxFw7BWWvTjMwEFtjXS2G2Vqu0TnWgxBXZ3iHH0-P62Xr9nq4-Vt-bDKZM6rmIGStKw0ZW2rirbIcy1rKgjVeSGA8yop3kLbUsWZrIWuE9SMF5yAonnHYY5ujnN33v2MKsRm40afNgwNEADGCIciqdujkt6F4JVudt5shf9tKGkOj2vK5vS4ZO-ONkgTRUzn_oP_AKAvb34 |
CODEN | APPLAB |
Cites_doi | 10.1038/srep21786 10.1103/PhysRevApplied.16.044022 10.1039/C6NR08810D 10.1103/physrevb.63.245407 10.1109/TED.2013.2276888 10.1088/1361-6528/aae0cb 10.1039/C9NR07590A 10.1016/j.ceramint.2018.06.008 10.1038/natrevmats.2016.52 10.1016/j.physrep.2021.07.006 10.1126/science.1187597 10.1038/nature10679 10.1021/acs.nanolett.8b04417 10.1002/adma.201702522 10.1103/PhysRevX.4.031005 10.1021/acsnano.5b04036 10.1021/acs.nanolett.6b04576 10.1038/nature15387 10.1039/C8NR03191F 10.1126/science.1157996 10.1021/acsaelm.0c01019 10.1126/science.aaj1628 10.1039/D0NR02170A 10.1103/PhysRevApplied.13.044066 10.1109/TED.2016.2605144 10.1088/1361-6641/ab2cd8 10.1007/s12274-017-1895-6 10.1021/acs.nanolett.6b03999 10.1039/C7CP08678D 10.1002/anie.201507568 10.1038/srep06677 10.1088/1674-1056/24/8/087308 10.1038/nnano.2014.207 10.1109/JPROC.2010.2070470 10.1126/science.aah4698 10.1088/2053-1583/1/2/025001 10.1002/andp.201700087 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0191376 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0191376 apl |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 12204170 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2022YFA1402904 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 12174060 funderid: 10.13039/501100001809 – fundername: Science and Technology Commission of Shanghai Municipality grantid: Explorer project; 21TS1401000 funderid: 10.13039/501100003399 – fundername: Program for Professor of Special Appointment grantid: Eastern Scholar TP2019019 funderid: 10.13039/501100013285 – fundername: National Key Research and Development Program of China grantid: 2022YFA1404603 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 12334005 funderid: 10.13039/501100001809 |
GroupedDBID | -DZ -~X .DC 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c287t-3ec157f16bbe4b422fc91a01f24a3887c288b3bb1e86c9af96bbf684803e12d83 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 06:27:35 EDT 2025 Tue Jul 01 01:08:43 EDT 2025 Fri Jun 21 00:18:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c287t-3ec157f16bbe4b422fc91a01f24a3887c288b3bb1e86c9af96bbf684803e12d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-3931-7966 0009-0008-5345-9161 0000-0003-2671-5429 0000-0002-5654-9217 0000-0003-3970-3160 |
OpenAccessLink | https://pubs.aip.org/aip/apl/article-pdf/doi/10.1063/5.0191376/19869870/143502_1_5.0191376.pdf |
PQID | 3033660834 |
PQPubID | 2050678 |
PageCount | 6 |
ParticipantIDs | proquest_journals_3033660834 crossref_primary_10_1063_5_0191376 scitation_primary_10_1063_5_0191376 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240401 2024-04-01 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 20240401 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Fiori, Bonaccorso, Iannaccone, Palacios, Neumaier, Seabaugh, Banerjee, Colombo (c4) 2014 Nourbakhsh, Zubair, Sajjad, Tavakkoli, Chen, Fang, Ling, Kong, Dresselhaus, Kaxiras, Berggren, Antoniadis, Palacios (c10) 2016 Xu, Chen, Yang, Wang, Yin, Wang, Cheng, Liu, Xiong, Liu, He (c13) 2017 Theis, Solomon (c2) 2010 Guo, Pan, Zhao, Ren, Yao, Li, Lu (c33) 2020 Desai, Madhvapathy, Sachid, Llinas, Wang, Ahn, Pitner, Kim, Bokor, Hu, Wong, Javey (c7) 2016 Cai, Zhang, Zhang (c5) 2014 Zhou, Zhang, Guo, Wang, Lu, Ming, Li, Qu, Zeng (c36) 2020 Xie, Lin, Wang (c11) 2018 Gomez, Vicarelli, Prada, Island, Acharya, Blanter, Groenendijk, Buscema, Steele, Alvarez, Zandbergen, Palacios, Zant (c30) 2014 Seabaugh, Zhang (c3) 2010 Kumar, Janardhanan (c8) 2013 Huang, Zhu, Zhang, Hu, Zhang, Zhou, Guo, Xu, Zeng (c35) 2019 Xie, Liao, Wang, Yu, Du, Tang, Zhao, Zhang, Chen, Lu, Wang, Xie, Yang, Shi, Zhang (c19) 2017 Li, Xu, Xu, Zhang, Lu (c23) 2019 Taylor, Guo, Wang (c39) 2001 Chhowalla, Zhang (c16) 2016 Ionescu, Riel (c1) 2011 Cao, Logoteta, Özkaya, Biel, Cresti, Pala, Esseni (c40) 2016 Finge, Riederer, Mueller, Grap, Kallis, Knoch (c9) 2017 Zhang, Xie, Li, Yan, Li, Kan, Liu, Chen, Zeng (c34) 2016 Li, Tie, Li, Ye, Zhang, Zhang, Pan, Wang, Quhe, Pan, Lu (c25) 2018 Zhong, Quhe, Wang, Ni, Ye, Song, Pan, Yang, Yang, Lei, Shi, Lu (c38) 2016 Chang (c22) 2018 Huang, Ren, Li, Guo (c27) 2021 Li, Shi, Pan, Li, Xu, Xu, Zhang, Pan, Lu (c24) 2018 Ding, Liu, Yang, Gu, Fan, Lu, Zhao, Yu, Zhang, Huo, Chen (c32) 2021 Lu, Fan, Gong, Chen, ManduLa, Zhang, Yang, Jiang (c29) 2018 Miao, Zhang, Cai, Scherr, Wang (c6) 2015 Lee, Wei, Kysar, Hone (c15) 2008 Qiu, Zhang, Xiao, Yang, Zhong, Peng (c12) 2017 Zhong, Quhe, Wang, Shi, Lü (c14) 2015 Li, Xu, Lu (c26) 2019 Sarkar, Xie, Liu (c18) 2015 Quhe, Xu, Liu, Yang, Lu (c20) 2021 Malyi, Sopiha, Draxl, Persson (c31) 2017 Kang, Liu, Sarkar, Jena, Banerjee (c17) 2014 (2024040512450168300_c36) 2020; 13 (2024040512450168300_c4) 2014; 9 (2024040512450168300_c28) 2016 (2024040512450168300_c35) 2019; 19 (2024040512450168300_c16) 2016; 1 (2024040512450168300_c39) 2001; 63 (2024040512450168300_c26) 2019; 11 (2024040512450168300_c29) 2018; 20 (2024040512450168300_c20) 2021; 938 (2024040512450168300_c17) 2014; 4 (2024040512450168300_c24) 2018; 29 (2024040512450168300_c7) 2016; 354 (2024040512450168300_c27) 2021; 16 (2024040512450168300_c18) 2015; 526 2024040512450168300_c37 (2024040512450168300_c11) 2018; 44 (2024040512450168300_c1) 2011; 479 (2024040512450168300_c23) 2019; 34 (2024040512450168300_c19) 2017; 29 (2024040512450168300_c31) 2017; 9 (2024040512450168300_c14) 2015; 24 (2024040512450168300_c25) 2018; 11 (2024040512450168300_c15) 2008; 321 (2024040512450168300_c40) 2016; 63 (2024040512450168300_c38) 2016; 6 (2024040512450168300_c5) 2014; 4 (2024040512450168300_c6) 2015; 9 (2024040512450168300_c34) 2016; 55 (2024040512450168300_c22) 2018; 10 (2024040512450168300_c32) 2021; 3 (2024040512450168300_c8) 2013; 60 (2024040512450168300_c33) 2020; 12 (2024040512450168300_c30) 2014; 1 (2024040512450168300_c9) 2017; 529 2024040512450168300_c21 (2024040512450168300_c12) 2017; 355 (2024040512450168300_c3) 2010; 98 (2024040512450168300_c2) 2010; 327 (2024040512450168300_c13) 2017; 17 (2024040512450168300_c10) 2016; 16 |
References_xml | – start-page: 271 year: 2017 ident: c12 publication-title: Science – start-page: 99 year: 2016 ident: c7 publication-title: Science – start-page: 385 year: 2008 ident: c15 publication-title: Science – start-page: 2658 year: 2018 ident: c25 publication-title: Nano Res. – start-page: 1600 year: 2010 ident: c2 publication-title: Science – start-page: 2095 year: 2010 ident: c3 publication-title: Proc. IEEE – start-page: 2428 year: 2017 ident: c31 publication-title: Nanoscale – start-page: 1666 year: 2016 ident: c34 publication-title: Angew. Chem., Int. Ed. – start-page: 91 year: 2015 ident: c18 publication-title: Nature – start-page: 21786 year: 2016 ident: c38 publication-title: Sci. Rep. – start-page: 6677 year: 2014 ident: c5 publication-title: Sci. Rep. – start-page: 3285 year: 2013 ident: c8 publication-title: IEEE Trans. Electron Devices – start-page: 1065 year: 2017 ident: c13 publication-title: Nano Lett. – start-page: 031005 year: 2014 ident: c17 publication-title: Phys. Rev. X – start-page: 044066 year: 2020 ident: c36 publication-title: Phys. Rev. Appl. – start-page: 15443 year: 2020 ident: c33 publication-title: Nanoscale – start-page: 23392 year: 2019 ident: c26 publication-title: Nanoscale – start-page: 1 year: 2021 ident: c20 publication-title: Phys. Rep. – start-page: 044022 year: 2021 ident: c27 publication-title: Phys. Rev. Appl. – start-page: 5699 year: 2018 ident: c29 publication-title: Phys. Chem. Chem. Phys. – start-page: 1702522 year: 2017 ident: c19 publication-title: Adv. Mater. – start-page: 13652 year: 2018 ident: c22 publication-title: Nanoscale – start-page: 025001 year: 2014 ident: c30 publication-title: 2D Mater. – start-page: 485202 year: 2018 ident: c24 publication-title: Nanotechnology – start-page: 768 year: 2014 ident: c4 publication-title: Nat. Nanotechnol. – start-page: 245407 year: 2001 ident: c39 publication-title: Phys. Rev. B – start-page: 16052 year: 2016 ident: c16 publication-title: Nat. Rev. Mater. – start-page: 9236 year: 2015 ident: c6 publication-title: ACS Nano – start-page: 1700087 year: 2017 ident: c9 publication-title: Ann. Phys. – start-page: 15912 year: 2018 ident: c11 publication-title: Ceram. Int. – start-page: 1118 year: 2019 ident: c35 publication-title: Nano Lett. – start-page: 087308 year: 2015 ident: c14 publication-title: Chin. Phys. B – start-page: 085006 year: 2019 ident: c23 publication-title: Semicond. Sci. Technol. – start-page: 4388 year: 2016 ident: c40 publication-title: IEEE Trans. Electron Devices – start-page: 7798 year: 2016 ident: c10 publication-title: Nano Lett. – start-page: 329 year: 2011 ident: c1 publication-title: Nature – start-page: 1151 year: 2021 ident: c32 publication-title: ACS Appl. Electron. Mater. – volume: 6 start-page: 21786 year: 2016 ident: 2024040512450168300_c38 publication-title: Sci. Rep. doi: 10.1038/srep21786 – volume: 16 start-page: 044022 year: 2021 ident: 2024040512450168300_c27 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.044022 – volume: 9 start-page: 2428 year: 2017 ident: 2024040512450168300_c31 publication-title: Nanoscale doi: 10.1039/C6NR08810D – volume: 63 start-page: 245407 year: 2001 ident: 2024040512450168300_c39 publication-title: Phys. Rev. B doi: 10.1103/physrevb.63.245407 – volume: 60 start-page: 3285 year: 2013 ident: 2024040512450168300_c8 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2013.2276888 – volume: 29 start-page: 485202 year: 2018 ident: 2024040512450168300_c24 publication-title: Nanotechnology doi: 10.1088/1361-6528/aae0cb – volume: 11 start-page: 23392 year: 2019 ident: 2024040512450168300_c26 publication-title: Nanoscale doi: 10.1039/C9NR07590A – volume: 44 start-page: 15912 year: 2018 ident: 2024040512450168300_c11 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.06.008 – volume: 1 start-page: 16052 year: 2016 ident: 2024040512450168300_c16 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.52 – volume: 938 start-page: 1 year: 2021 ident: 2024040512450168300_c20 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2021.07.006 – volume: 327 start-page: 1600 year: 2010 ident: 2024040512450168300_c2 publication-title: Science doi: 10.1126/science.1187597 – volume: 479 start-page: 329 year: 2011 ident: 2024040512450168300_c1 publication-title: Nature doi: 10.1038/nature10679 – volume: 19 start-page: 1118 year: 2019 ident: 2024040512450168300_c35 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04417 – volume: 29 start-page: 1702522 year: 2017 ident: 2024040512450168300_c19 publication-title: Adv. Mater. doi: 10.1002/adma.201702522 – year: 2016 ident: 2024040512450168300_c28 – volume: 4 start-page: 031005 year: 2014 ident: 2024040512450168300_c17 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.4.031005 – volume: 9 start-page: 9236 year: 2015 ident: 2024040512450168300_c6 publication-title: ACS Nano doi: 10.1021/acsnano.5b04036 – volume: 17 start-page: 1065 year: 2017 ident: 2024040512450168300_c13 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04576 – ident: 2024040512450168300_c21 – volume: 526 start-page: 91 year: 2015 ident: 2024040512450168300_c18 publication-title: Nature doi: 10.1038/nature15387 – volume: 10 start-page: 13652 year: 2018 ident: 2024040512450168300_c22 publication-title: Nanoscale doi: 10.1039/C8NR03191F – volume: 321 start-page: 385 year: 2008 ident: 2024040512450168300_c15 publication-title: Science doi: 10.1126/science.1157996 – volume: 3 start-page: 1151 year: 2021 ident: 2024040512450168300_c32 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.0c01019 – volume: 355 start-page: 271 year: 2017 ident: 2024040512450168300_c12 publication-title: Science doi: 10.1126/science.aaj1628 – volume: 12 start-page: 15443 year: 2020 ident: 2024040512450168300_c33 publication-title: Nanoscale doi: 10.1039/D0NR02170A – volume: 13 start-page: 044066 year: 2020 ident: 2024040512450168300_c36 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.13.044066 – volume: 63 start-page: 4388 year: 2016 ident: 2024040512450168300_c40 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2016.2605144 – volume: 34 start-page: 085006 year: 2019 ident: 2024040512450168300_c23 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/ab2cd8 – volume: 11 start-page: 2658 year: 2018 ident: 2024040512450168300_c25 publication-title: Nano Res. doi: 10.1007/s12274-017-1895-6 – volume: 16 start-page: 7798 year: 2016 ident: 2024040512450168300_c10 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03999 – volume: 20 start-page: 5699 year: 2018 ident: 2024040512450168300_c29 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP08678D – volume: 55 start-page: 1666 year: 2016 ident: 2024040512450168300_c34 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507568 – volume: 4 start-page: 6677 year: 2014 ident: 2024040512450168300_c5 publication-title: Sci. Rep. doi: 10.1038/srep06677 – volume: 24 start-page: 087308 year: 2015 ident: 2024040512450168300_c14 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/24/8/087308 – volume: 9 start-page: 768 year: 2014 ident: 2024040512450168300_c4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.207 – volume: 98 start-page: 2095 year: 2010 ident: 2024040512450168300_c3 publication-title: Proc. IEEE doi: 10.1109/JPROC.2010.2070470 – volume: 354 start-page: 99 year: 2016 ident: 2024040512450168300_c7 publication-title: Science doi: 10.1126/science.aah4698 – ident: 2024040512450168300_c37 – volume: 1 start-page: 025001 year: 2014 ident: 2024040512450168300_c30 publication-title: 2D Mater. doi: 10.1088/2053-1583/1/2/025001 – volume: 529 start-page: 1700087 year: 2017 ident: 2024040512450168300_c9 publication-title: Ann. Phys. doi: 10.1002/andp.201700087 |
SSID | ssj0005233 |
Score | 2.446701 |
Snippet | The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Competitive materials Delay time Field effect transistors First principles Metal oxide semiconductors MOSFETs Power consumption Power management Semiconductor devices Semiconductor materials Transistors |
Title | Tunneling field-effect transistors with two-dimensional BiN as the channel semiconductor |
URI | http://dx.doi.org/10.1063/5.0191376 https://www.proquest.com/docview/3033660834 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ra9UwFA56h6gPQ6fi1U2C-naJtkmaNo9zU4a4i-CGV19KkqZ4YbRjbVH89Z40aW83JkxfyqWEcMmXnvOdw3fOQeh1aRIA01KiqBaEm0ITJTNDEohGqNTKMOrqnY-X4uiUf1wlq81kur66pNVvzO9r60r-B1V4B7i6Ktl_QHbcFF7Ab8AXnoAwPG-GcedUKr0W0gnRiBdnuLEPVdO3_wi1a-3PmhSujb9vwbF4t166-TKOc7rCX9hj0TiRfF257q_1xZSxDjTVp0CaxVlf_zMy8W8hgaqc_L7epOeDCVHBMTqFT9dnZb__WP9ajzfya9f7gI4sBxcaMhB0KlwZrCojQobGsdYb0ih1-c9gWwdL68ulhyvFrzXhwJng3F0zVRmz9Eqb7N7xqvOz22iLQlxAZ2hr__D405eJqoexYUii-0tDMynB3o5bXqYgm7jiLpAOr3-YUIyTB2g7xAZ43wP9EN2y1Q66P-kYuYPufPYwPEKrEXw8BR9PwMcOfHwFfAzgY9VgAB8H8PEl8B-j0w_vTw6OSBiTQQyEuy1h1sRJWsZCa8s1p7Q0MlZRXFKuGPgQWJVppnVsM2GkKiUsLEXGs4jZmBYZe4JmVV3ZpwhTkxaU2qKIpOVRwZVMgW4qRkshaRzpOXo5nFx-7ruh5L2KQbA8ycPxztHucKZ5-FiaHJgSEwL4Pp-jV-M5_32TZzda9Rzd21zIXTRrLzq7BySx1S_CxfgDcaVpRg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunneling+field-effect+transistors+with+two-dimensional+BiN+as+the+channel+semiconductor&rft.jtitle=Applied+physics+letters&rft.au=Yan%2C+Saichao&rft.au=Wang%2C+Kang&rft.au=Guo%2C+Zhixin&rft.au=Wu%2C+Yu-Ning&rft.date=2024-04-01&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=124&rft.issue=14&rft_id=info:doi/10.1063%2F5.0191376&rft.externalDocID=apl |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |