Modeling and Analysis of Data Prediction Technique Based on Linear Regression Model (DP-LRM) for Cluster-Based Sensor Networks
Recent developments in information gathering procedures and the collection of big data over a period of time as a result of introducing high computing devices pose new challenges in sensor networks. Data prediction has emerged as a key area of research to reduce transmission cost acting as principle...
Saved in:
Published in | International journal of ambient computing and intelligence Vol. 12; no. 4; pp. 98 - 117 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hershey
IGI Global
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1941-6237 1941-6245 |
DOI | 10.4018/IJACI.2021100106 |
Cover
Loading…
Abstract | Recent developments in information gathering procedures and the collection of big data over a period of time as a result of introducing high computing devices pose new challenges in sensor networks. Data prediction has emerged as a key area of research to reduce transmission cost acting as principle analytic tool. The transformation of huge amount of data into an equivalent reduced dataset and maintaining data accuracy and integrity is the prerequisite of any sensor network application. To overcome these challenges, a data prediction technique is suggested to reduce transmission of redundant data by developing a regression model on linear descriptors on continuous sensed data values. The proposed model addresses the basic issues involved in data aggregation. It uses a buffer based linear filter algorithm which compares all incoming values and establishes a correlation between them. The cluster head is accountable for predicting data values in the same time slot, calculates the deviation of data values, and propagates the predicted values to the sink. |
---|---|
AbstractList | Recent developments in information gathering procedures and the collection of big data over a period of time as a result of introducing high computing devices pose new challenges in sensor networks. Data prediction has emerged as a key area of research to reduce transmission cost acting as principle analytic tool. The transformation of huge amount of data into an equivalent reduced dataset and maintaining data accuracy and integrity is the prerequisite of any sensor network application. To overcome these challenges, a data prediction technique is suggested to reduce transmission of redundant data by developing a regression model on linear descriptors on continuous sensed data values. The proposed model addresses the basic issues involved in data aggregation. It uses a buffer based linear filter algorithm which compares all incoming values and establishes a correlation between them. The cluster head is accountable for predicting data values in the same time slot, calculates the deviation of data values, and propagates the predicted values to the sink. |
Audience | Academic |
Author | Jain, Khushboo Dev, Amita Agarwal, Arun |
AuthorAffiliation | DIT University, India Guru Gobind Singh Indraprastha University, India Indira Gandhi Delhi Technical University for Women, India |
AuthorAffiliation_xml | – name: DIT University, India – name: Guru Gobind Singh Indraprastha University, India – name: Indira Gandhi Delhi Technical University for Women, India |
Author_xml | – sequence: 1 givenname: Khushboo surname: Jain fullname: Jain, Khushboo organization: DIT University, India – sequence: 2 givenname: Arun surname: Agarwal fullname: Agarwal, Arun organization: Guru Gobind Singh Indraprastha University, India – sequence: 3 givenname: Amita surname: Dev fullname: Dev, Amita organization: Indira Gandhi Delhi Technical University for Women, India |
BookMark | eNp9kUtv1DAUhSPUSvTBnqUlNiCR4nfi5TCFMmgKVSlry-M4qUuwi68j1A2_HacBKiHByldX5xz53O-w2gsxuKp6SvAJx6R9tXm_Wm9OKKaEYEywfFQdEMVJLSkXe39m1jyuDgFuMJYCi-ag-nEeOzf6MCATOrQKZrwDDyj26NRkgy6S67zNPgZ05ex18N8mh14bcB0qq60PziR06YbkAGbRfRp6fnpRby_PX6A-JrQeJ8gu1YvrkwtQlh9c_h7TFziu9nszgnvy6z2qPr99c7V-V28_nm3Wq21tadvkmlqKMZetEJgoS9XOWsY540pi2rUOS0V6pQzuGGetFTvaip0zriOqMYorzI6qZ0vubYqlAmR9E6dU2oKmipFWSkJlUb1cVIMZnd5NUPqVXgH8cJ1hMBOAXjVCMVFO3hQ5XuQ2RYDken2b_FeT7jTBeoai76HoByjFIv-yWJ_NfN-cjB__ZzxbjH7wD3-fwekCTv8Gp2OvZ3D_yiGU_QTtUqfg |
CitedBy_id | crossref_primary_10_1007_s11277_022_10034_3 crossref_primary_10_1002_cpe_6898 crossref_primary_10_1002_dac_5952 crossref_primary_10_1007_s11277_022_09492_6 crossref_primary_10_1109_ACCESS_2022_3175522 crossref_primary_10_1007_s11235_024_01182_x crossref_primary_10_1002_ett_4674 crossref_primary_10_1007_s11277_024_11503_7 crossref_primary_10_1080_15325008_2023_2196682 crossref_primary_10_1155_2022_4606128 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2021 IGI Global Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
Copyright_xml | – notice: COPYRIGHT 2021 IGI Global – notice: Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
DBID | AAYXX CITATION N95 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.4018/IJACI.2021100106 |
DatabaseName | CrossRef Gale Business: Insights Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Computer Science Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1941-6245 |
EndPage | 117 |
ExternalDocumentID | A759354017 10_4018_IJACI_2021100106 ling_and_Analysis_of_Data10_4018_IJACI_202110010612 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | 0R 4.4 AAYVP ABEPT ADEKF ALMA_UNASSIGNED_HOLDINGS BTFVE BYHXH CBWLS CDTDJ CIGCI CNQXE COVLG CTSEY EBS HZ JRD MV1 NEEBM O9- RIF 0R~ AAYXX ABJCF ACOJC AFKRA ARAPS BAAKF BENPR BGLVJ CCPQU CITATION H13 HCIFZ HZ~ IAO ICD IMI ITC K7- M7S N95 PHGZM PHGZT PTHSS 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c287t-2c20046855019c29bcc344349602d8e0691f99a0d3438c5b285beaed197a94903 |
IEDL.DBID | BENPR |
ISSN | 1941-6237 |
IngestDate | Sun Jul 13 04:17:33 EDT 2025 Fri May 23 02:28:41 EDT 2025 Tue Jul 01 01:40:29 EDT 2025 Thu Apr 24 23:03:23 EDT 2025 Tue Sep 28 09:52:50 EDT 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c287t-2c20046855019c29bcc344349602d8e0691f99a0d3438c5b285beaed197a94903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4166-2591 |
PQID | 2931866126 |
PQPubID | 2045866 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2931866126 crossref_primary_10_4018_IJACI_2021100106 igi_journals_ling_and_Analysis_of_Data10_4018_IJACI_202110010612 gale_businessinsightsgauss_A759354017 crossref_citationtrail_10_4018_IJACI_2021100106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hershey |
PublicationPlace_xml | – name: Hershey |
PublicationTitle | International journal of ambient computing and intelligence |
PublicationYear | 2021 |
Publisher | IGI Global |
Publisher_xml | – name: IGI Global |
SSID | ssj0065057 |
Score | 2.299876 |
Snippet | Recent developments in information gathering procedures and the collection of big data over a period of time as a result of introducing high computing devices... |
SourceID | proquest gale crossref igi |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 98 |
SubjectTerms | Algorithms Big Data Clusters Cost analysis Data management Information management Linear filters Methods Regression models Sensors |
Title | Modeling and Analysis of Data Prediction Technique Based on Linear Regression Model (DP-LRM) for Cluster-Based Sensor Networks |
URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJACI.2021100106 https://www.proquest.com/docview/2931866126 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07b9swECZqZ-nSd1GnacChBZqBsChRoji1jhM3CRrDcBMgG0HxYQQI5DSy1_723klUjaJoFg2USAn8qLv7-PiOkI-Zd1VpCsO85IEJJwNTKg9MpsEmlSiyJOB558t5cXYtLm7ymzjh1sRtlb1NbA21W1ucIx-DW0JtNp4WX-5_MswahaurMYXGgOyBCS7zIdk7Pp0vlr0tLjD8bteVBWfg6GW3UAmcohyfX0ym50AQkQEhMfrLMUXzPLhd3f5jpFvPM3tBnsWQkU46jF-SJ75-RZ736Rho_Dtfk1-Y1wxPl1NTO9qrjdB1oCdmY-jiAddkEAd61Qu30mNwYo5CEXBSGPN06Vfdxtiatq3RzycL9n15eUQhuKXTuy3qKrCu1g9gwFA47zaSN2_I9ez0anrGYnoFZoEmbVhqW3aMimZc2VRV1mZCoIB8krrSJ4XiQSmTuExkpc0r6N_KG--4kkYJlWRvybBe1_4doTyrIM7waZC5EkEEVcmC2xwlR10mSzMi475vtY3a45gC404DB0E0dIuG3qExIkd_atx3uhuPPPsJ4dIxbSdcGpzYaFZm2zR6At-Ek1tcjshXwFPHn7TRiIgGRHSPiF4HjYj870U8HZGDfjDs2tkNzf3Hb78nT7Gxbi_gARluHrb-A8Q0m-qQDMrZt8M4fH8D7j_xWg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELb6OMCF8hShBXygEj1YWXufPiBIk1ZJm0RRSKXeXK_XjipVSekmQlz4SfxGZnbXRAjRWy978O56V_7smfn8-IaQD6Et8kwnmtmUOxYVqWNSxo6lwpkgj5IwcHjeeTRO-hfR2WV8uUV--bMwuK3S28TKUBdLg3PkbXBLqM3GRfL59hvDrFG4uupTaNTd4tz--A6Urfw06AG-h0Kcnsy6fdZkFWAG2MGKCVORQhTy4tIImRsTRhHqpgeiyGyQSO6k1EERRmFm4lxkcW61LbhMtYxkEEK922QXwgwJo2j3-GQ8mXrbn2C4X61jR5xBYJHWC6PAYbL24KzTHQAhRcaFROwvR9i4g-3r-fU_TqHydKdPyZMmRKWduk89I1t28Zzs-fQPtLEGL8hPzKOGp9mpXhTUq5vQpaM9vdJ0codrQIg7nXmhWHoMTrOgUAQcGBqTTu283oi7oFVt9GNvwobT0RGFYJp2b9ao48Dqt74C44bCcb1xvXxJLh6k4V-RncVyYV8TysMc4horXBrLyEVO5mnCTYwSp0WYZrpF2r5tlWm0zjHlxo0CzoNoqAoNtUGjRY7-vHFb63zc8-whwqWaNKFwKXEipZzrdVmqDvwTTqbxtEW-AJ6qMQqlQkQUIKI8ImrpFCLyvw9x0SIHvjNs6tkMhTf3335PHvVno6EaDsbn--QxVlzvQzwgO6u7tX0L8dQqf9d0YkquHnrc_AbudysI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Analysis+of+Data+Prediction+Technique+Based+on+Linear+Regression+Model+%28DP-LRM%29+for+Cluster-Based+Sensor+Networks&rft.jtitle=International+journal+of+ambient+computing+and+intelligence&rft.au=Agarwal%2C+Arun&rft.au=Jain%2C+Khushboo&rft.au=Dev%2C+Amita&rft.date=2021-10-01&rft.issn=1941-6237&rft.eissn=1941-6245&rft.volume=12&rft.issue=4&rft.spage=98&rft.epage=117&rft_id=info:doi/10.4018%2FIJACI.2021100106&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_IJACI_2021100106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-6237&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-6237&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-6237&client=summon |