YOLO-Fish: A robust fish detection model to detect fish in realistic underwater environment

•Real-world Annotated dataset for Fish with various habitats, size and species.•An enhanced detection model with optimized upsampling to detect tiny fishes.•Spatial Pyramid Pooling (SPP) to handle the environmental complexity between different habitats. Over the last few years, several research work...

Full description

Saved in:
Bibliographic Details
Published inEcological informatics Vol. 72; p. 101847
Main Authors Muksit, Abdullah Al, Hasan, Fakhrul, Hasan Bhuiyan Emon, Md. Fahad, Haque, Md Rakibul, Anwary, Arif Reza, Shatabda, Swakkhar
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Real-world Annotated dataset for Fish with various habitats, size and species.•An enhanced detection model with optimized upsampling to detect tiny fishes.•Spatial Pyramid Pooling (SPP) to handle the environmental complexity between different habitats. Over the last few years, several research works have been performed to monitor fish in the underwater environment aimed for marine research, understanding ocean geography, and primarily for sustainable fisheries. Automating fish identification is very helpful, considering the time and cost of the manual process. However, it can be challenging to differentiate fish from the seabed and fish types from each other due to environmental challenges like low illumination, complex background, high variation in luminosity, free movement of fish, and high diversity of fish species. In this paper, we propose YOLO-Fish, a deep learning based fish detection model. We have proposed two models, YOLO-Fish-1 and YOLO-Fish-2. YOLO-Fish-1 enhances YOLOv3 by fixing the issue of upsampling step sizes of to reduce the misdetection of tiny fish. YOLO-Fish-2 further improves the model by adding Spatial Pyramid Pooling to the first model to add the capability to detect fish appearance in those dynamic environments. To test the models, we introduce two datasets: DeepFish and OzFish. The DeepFish dataset contains around 15k bounding box annotations across 4505 images, where images belong to 20 different fish habitats. The OzFish is another dataset comprised of about 43k bounding box annotations of wide varieties of fish across around 1800 images. YOLO-Fish1 and YOLO-Fish2 achieved average precision of 76.56% and 75.70%, respectively for fish detection in unconstrained real-world marine environments, which is significantly better than YOLOv3. Both of these models are lightweight compared to recent versions of YOLO like YOLOv4, yet the performances are very similar.
AbstractList •Real-world Annotated dataset for Fish with various habitats, size and species.•An enhanced detection model with optimized upsampling to detect tiny fishes.•Spatial Pyramid Pooling (SPP) to handle the environmental complexity between different habitats. Over the last few years, several research works have been performed to monitor fish in the underwater environment aimed for marine research, understanding ocean geography, and primarily for sustainable fisheries. Automating fish identification is very helpful, considering the time and cost of the manual process. However, it can be challenging to differentiate fish from the seabed and fish types from each other due to environmental challenges like low illumination, complex background, high variation in luminosity, free movement of fish, and high diversity of fish species. In this paper, we propose YOLO-Fish, a deep learning based fish detection model. We have proposed two models, YOLO-Fish-1 and YOLO-Fish-2. YOLO-Fish-1 enhances YOLOv3 by fixing the issue of upsampling step sizes of to reduce the misdetection of tiny fish. YOLO-Fish-2 further improves the model by adding Spatial Pyramid Pooling to the first model to add the capability to detect fish appearance in those dynamic environments. To test the models, we introduce two datasets: DeepFish and OzFish. The DeepFish dataset contains around 15k bounding box annotations across 4505 images, where images belong to 20 different fish habitats. The OzFish is another dataset comprised of about 43k bounding box annotations of wide varieties of fish across around 1800 images. YOLO-Fish1 and YOLO-Fish2 achieved average precision of 76.56% and 75.70%, respectively for fish detection in unconstrained real-world marine environments, which is significantly better than YOLOv3. Both of these models are lightweight compared to recent versions of YOLO like YOLOv4, yet the performances are very similar.
ArticleNumber 101847
Author Shatabda, Swakkhar
Muksit, Abdullah Al
Haque, Md Rakibul
Anwary, Arif Reza
Hasan Bhuiyan Emon, Md. Fahad
Hasan, Fakhrul
Author_xml – sequence: 1
  givenname: Abdullah Al
  surname: Muksit
  fullname: Muksit, Abdullah Al
  organization: Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh
– sequence: 2
  givenname: Fakhrul
  surname: Hasan
  fullname: Hasan, Fakhrul
  organization: Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh
– sequence: 3
  givenname: Md. Fahad
  surname: Hasan Bhuiyan Emon
  fullname: Hasan Bhuiyan Emon, Md. Fahad
  organization: Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh
– sequence: 4
  givenname: Md Rakibul
  surname: Haque
  fullname: Haque, Md Rakibul
  organization: Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
– sequence: 5
  givenname: Arif Reza
  surname: Anwary
  fullname: Anwary, Arif Reza
  organization: Edinburgh Napier University, Edinburg, Scotland, United Kingdom
– sequence: 6
  givenname: Swakkhar
  surname: Shatabda
  fullname: Shatabda, Swakkhar
  email: swakkhar@cse.uiu.ac.bd
  organization: Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh
BookMark eNp9kM1OwzAQhH0oEm3hDTj4BRL8l8ThgFRVFJAi5QIHxMFKnLVw1drIdot4exKlZ06rndWMZr8VWjjvAKE7SnJKaHm_z0F760zOCGOTJEW1QEtaVCKrC0Gv0SrGPSGCS8mW6POjbdpsZ-PXA97g4PtTTNiMKx4ggU7WO3z0Axxw8hdpPluHA3QHG5PV-OQGCD9dgoDBnW3w7ggu3aAr0x0i3F7mGr3vnt62L1nTPr9uN02mmaxSxrggICXvKmNqRkhhxFDzghdy7NyXvJSykB3RAFqwmmhqoKo065kkjNa15Gsk5lwdfIwBjPoO9tiFX0WJmqCovZqhqAmKmqGMtsfZBmO3s4WgorbgNAw2jG-qwdv_A_4A9wRv-w
CitedBy_id crossref_primary_10_1016_j_mlwa_2024_100562
crossref_primary_10_3390_s24082430
crossref_primary_10_3390_ani14142022
crossref_primary_10_3390_app132312645
crossref_primary_10_3390_electronics12153231
crossref_primary_10_3389_fbuil_2023_1323792
crossref_primary_10_3390_s23198210
crossref_primary_10_1016_j_ecoinf_2023_102108
crossref_primary_10_3389_fmars_2024_1301024
crossref_primary_10_3390_app14125321
crossref_primary_10_3390_jmse11091658
crossref_primary_10_3390_s23052567
crossref_primary_10_3390_jmse11020320
crossref_primary_10_1007_s40009_023_01265_4
crossref_primary_10_3390_pr11041261
crossref_primary_10_3390_su16093675
crossref_primary_10_3390_electronics12132756
crossref_primary_10_3390_jmse12020195
crossref_primary_10_1007_s11042_023_16673_3
crossref_primary_10_3390_jmse11030542
crossref_primary_10_1016_j_ecoinf_2024_102680
crossref_primary_10_1061_JHEND8_HYENG_13496
crossref_primary_10_2166_hydro_2024_034
crossref_primary_10_1016_j_ecoinf_2024_102467
crossref_primary_10_3389_fmars_2023_1153416
crossref_primary_10_3390_s23063311
crossref_primary_10_1109_ACCESS_2023_3330968
crossref_primary_10_1016_j_ijleo_2023_170513
crossref_primary_10_1016_j_ecoinf_2023_102311
crossref_primary_10_1002_ece3_11070
crossref_primary_10_1080_19392699_2024_2346173
crossref_primary_10_1016_j_ecoinf_2023_102210
crossref_primary_10_1016_j_knosys_2023_111322
crossref_primary_10_1016_j_jksuci_2024_101971
crossref_primary_10_1109_JSTARS_2023_3299703
crossref_primary_10_3390_jmse12050784
crossref_primary_10_3389_fmars_2023_1129852
Cites_doi 10.1109/CVPR.2017.106
10.1109/ICCV.2015.169
10.1038/s41598-020-71639-x
10.1016/j.ecoinf.2019.02.011
10.1109/TNNLS.2018.2876865
10.1109/TPAMI.2015.2389824
10.1109/CVPRW50498.2020.00203
10.1080/21642583.2021.1901156
10.1109/CVPR.2017.690
10.3390/app10093079
10.1109/TENSYMP50017.2020.9230991
10.1016/j.aquaeng.2020.102117
10.1109/CVPR.2016.91
10.1109/CVPR.2018.00745
10.1016/j.ecoinf.2019.05.004
10.1109/CVPR.2014.81
10.1038/s41524-020-00363-x
10.1109/CVPR.2018.00913
10.3390/app12125910
10.1016/j.ecoinf.2020.101088
10.1093/icesjms/fsz025
10.24843/LKJITI.2020.v11.i03.p03
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ecoinf.2022.101847
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
ExternalDocumentID 10_1016_j_ecoinf_2022_101847
S1574954122002977
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
~G-
AAHBH
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c287t-2340e883a7ff92005f4d935358574b6368858a0ceec4290c1fe77c2b280219983
IEDL.DBID .~1
ISSN 1574-9541
IngestDate Thu Sep 26 16:14:34 EDT 2024
Fri Feb 23 02:38:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Underwater ecosystem
Object Detection
Fish detection
Dataset
Deep Learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c287t-2340e883a7ff92005f4d935358574b6368858a0ceec4290c1fe77c2b280219983
ParticipantIDs crossref_primary_10_1016_j_ecoinf_2022_101847
elsevier_sciencedirect_doi_10_1016_j_ecoinf_2022_101847
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Ecological informatics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tabassum, Shaira, Ullah, Md Sabbir, Al-Nur, Nakib Hossain, Shatabda, Swakkhar, 2020. Native vehicles classification on Bangladeshi roads using CNN with transfer learning. In: Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), pp. 40–43.
Szegedy, Christian, Toshev, Alexander, Erhan, Dumitru, 2013. Deep neural networks for object detection.
Redmon, Joseph, Divvala, Santosh, Girshick, Ross, Farhadi, Ali, 2016. You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788.
Salman, Siddiqui, Shafait, Mian, Shortis, Khurshid, Ulges, Schwanecke (b0170) 2020; 77
Zhao, Zheng, Shou-tao, Xindong (b0200) 2019; 30
Li, Tang, Gao (b0120) 2017
Hu, Jie, Shen, Li, Sun, Gang, 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141.
Redmon, Joseph, Farhadi, Ali, 2018. Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767.
Li, Cao (b0105) 2020
Salman, Maqbool, Khan, Jalal, Shafait (b0165) 2019; 51
Gai, Liu, Zhang, Jing (b0050) 2021; 9
Jalal, Salman, Mian, Shortis, Shafait (b0090) 2020; 57
Wang, He, Zhang (b0195) 2021; 2021
Labao, Naval (b0100) 2019; 52
Huang, Zheng, Sun, Yang, Liu (b0080) 2020; 10
Lin, Tsung-Yi, Dollár, Piotr, Girshick, Ross, He, Kaiming, Hariharan, Bharath, Belongie, Serge, 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125.
Anantharajah, Ge, McCool, Denman, Fookes, Corke, Tjondronegoro, Sridharan (b0010) 2014
Australian Institute Of Marine Science, 2020. Ozfish dataset - machine learning dataset for baited remote underwater video stations.
Horwath, Zakharov, Mégret, Stach (b0075) 2020; 6
Bochkovskiy, Alexey, Wang, Chien-Yao, Mark Liao, Hong-Yuan, 2020. Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
He, Zhang, Ren, Sun (b0070) 2015; 37
Dosovitskiy, Alexey, Beyer, Lucas, Kolesnikov, Alexander, Weissenborn, Dirk, Zhai, Xiaohua, Unterthiner, Thomas, Dehghani, Mostafa, Minderer, Matthias, Heigold, Georg, Gelly, Sylvain, et al., 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
Liu, Shu, Qi, Lu, Qin, Haifang, Shi, Jianping, Jia, Jiaya, 2018. Path aggregation network for instance segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8759–8768.
Sabottke, Spieler (b0155) 2020; 2
Saleh, Laradji, Konovalov, Bradley, Vazquez, Sheaves (b0160) 2020; 10
Li, Shang, Hao, Yang (b0115) 2016
Cutter, Stierhoff, Zeng (b0030) 2015
Li, Shang, Qin, Chen (b0110) 2015
Hartigan, Wong (b0065) 1979; 28
Nour Eldeen, Khalifa, Taha, Hassanien (b0135) 2018
Wang, Chien-Yao, Mark Liao, Hong-Yuan, Wu, Yueh-Hua, Chen, Ping-Yang, Hsieh, Jun-Wei, Yeh, I-Hau, 2020. Cspnet: a new backbone that can enhance learning capability of cnn. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 390–391.
Adiwinata, Sasaoka, Agung Bayupati, Sudana (b0005) 2020; 11
Veiga, Ochoa, Belackova, Bentes, Silva, Semião, Rodrigues (b0185) 2022; 12
Girshick, Ross, 2015. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448.
Cai, Miao, Wang, Pang, Liu, Song (b0025) 2020; 91
Fisher, R., Boom, B., Huang, P. Preliminary experiments with the fish4knowledge dataset. Algae, 49165 (49370), 99–58.
Ren, He, Girshick, Sun (b0150) 2015; 28
Girshick, Ross, Donahue, Jeff, Darrell, Trevor, Malik, Jitendra, 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587.
Fao, 2020. The state of world fisheries and aquaculture 2020. Sustainability in action. Rome.
Redmon, Joseph, Farhadi, Ali, 2017. Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271.
Saleh (10.1016/j.ecoinf.2022.101847_b0160) 2020; 10
Adiwinata (10.1016/j.ecoinf.2022.101847_b0005) 2020; 11
Li (10.1016/j.ecoinf.2022.101847_b0115) 2016
10.1016/j.ecoinf.2022.101847_b0015
10.1016/j.ecoinf.2022.101847_b0035
Anantharajah (10.1016/j.ecoinf.2022.101847_b0010) 2014
Cai (10.1016/j.ecoinf.2022.101847_b0025) 2020; 91
10.1016/j.ecoinf.2022.101847_b0085
10.1016/j.ecoinf.2022.101847_b0140
10.1016/j.ecoinf.2022.101847_b0040
Salman (10.1016/j.ecoinf.2022.101847_b0170) 2020; 77
Gai (10.1016/j.ecoinf.2022.101847_b0050) 2021; 9
10.1016/j.ecoinf.2022.101847_b0060
Sabottke (10.1016/j.ecoinf.2022.101847_b0155) 2020; 2
10.1016/j.ecoinf.2022.101847_b0045
10.1016/j.ecoinf.2022.101847_b0020
He (10.1016/j.ecoinf.2022.101847_b0070) 2015; 37
Ren (10.1016/j.ecoinf.2022.101847_b0150) 2015; 28
10.1016/j.ecoinf.2022.101847_b0180
Cutter (10.1016/j.ecoinf.2022.101847_b0030) 2015
Li (10.1016/j.ecoinf.2022.101847_b0105) 2020
Zhao (10.1016/j.ecoinf.2022.101847_b0200) 2019; 30
Hartigan (10.1016/j.ecoinf.2022.101847_b0065) 1979; 28
Wang (10.1016/j.ecoinf.2022.101847_b0195) 2021; 2021
10.1016/j.ecoinf.2022.101847_b0125
10.1016/j.ecoinf.2022.101847_b0145
Veiga (10.1016/j.ecoinf.2022.101847_b0185) 2022; 12
10.1016/j.ecoinf.2022.101847_b0095
Nour Eldeen (10.1016/j.ecoinf.2022.101847_b0135) 2018
Jalal (10.1016/j.ecoinf.2022.101847_b0090) 2020; 57
10.1016/j.ecoinf.2022.101847_b0055
Salman (10.1016/j.ecoinf.2022.101847_b0165) 2019; 51
Labao (10.1016/j.ecoinf.2022.101847_b0100) 2019; 52
10.1016/j.ecoinf.2022.101847_b0175
10.1016/j.ecoinf.2022.101847_b0130
Horwath (10.1016/j.ecoinf.2022.101847_b0075) 2020; 6
Huang (10.1016/j.ecoinf.2022.101847_b0080) 2020; 10
Li (10.1016/j.ecoinf.2022.101847_b0110) 2015
Li (10.1016/j.ecoinf.2022.101847_b0120) 2017
10.1016/j.ecoinf.2022.101847_b0190
References_xml – start-page: 385
  year: 2020
  end-page: 390
  ident: b0105
  article-title: A review of object detection techniques
  publication-title: 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT)
  contributor:
    fullname: Cao
– volume: 12
  start-page: 5910
  year: 2022
  ident: b0185
  article-title: Autonomous Temporal Pseudo-Labeling for Fish Detection
  publication-title: Appl. Sci.
  contributor:
    fullname: Rodrigues
– volume: 57
  year: 2020
  ident: b0090
  article-title: Fish detection and species classification in underwater environments using deep learning with temporal information
  publication-title: Ecol. Inform.
  contributor:
    fullname: Shafait
– start-page: 1
  year: 2015
  end-page: 5
  ident: b0110
  article-title: Fast accurate fish detection and recognition of underwater images with fast r-cnn
  publication-title: OCEANS 2015-MTS/IEEE
  contributor:
    fullname: Chen
– start-page: 1
  year: 2016
  end-page: 5
  ident: b0115
  article-title: Accelerating fish detection and recognition by sharing cnns with objectness learning
  publication-title: OCEANS 2016-Shanghai
  contributor:
    fullname: Yang
– volume: 2
  year: 2020
  ident: b0155
  article-title: The effect of image resolution on deep learning in radiography
  publication-title: Radiol.: Artif. Intell.
  contributor:
    fullname: Spieler
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0160
  article-title: A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis
  publication-title: Sci. Rep.
  contributor:
    fullname: Sheaves
– volume: 51
  start-page: 44
  year: 2019
  end-page: 51
  ident: b0165
  article-title: Real-time fish detection in complex backgrounds using probabilistic background modelling
  publication-title: Ecol. Inform.
  contributor:
    fullname: Shafait
– volume: 28
  start-page: 91
  year: 2015
  end-page: 99
  ident: b0150
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Sun
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b0070
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  contributor:
    fullname: Sun
– volume: 52
  start-page: 103
  year: 2019
  end-page: 121
  ident: b0100
  article-title: Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild
  publication-title: Ecol. Inform.
  contributor:
    fullname: Naval
– volume: 6
  start-page: 1
  year: 2020
  end-page: 9
  ident: b0075
  article-title: Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images
  publication-title: npj Comput. Mater.
  contributor:
    fullname: Stach
– start-page: 57
  year: 2015
  end-page: 62
  ident: b0030
  article-title: Automated detection of rockfish in unconstrained underwater videos using haar cascades and a new image dataset: labeled fishes in the wild
  publication-title: 2015 IEEE Winter Applications and Computer Vision Workshops
  contributor:
    fullname: Zeng
– volume: 10
  start-page: 3079
  year: 2020
  ident: b0080
  article-title: Optimized yolov3 algorithm and its application in traffic flow detections
  publication-title: Appl. Sci.
  contributor:
    fullname: Liu
– volume: 11
  start-page: 144
  year: 2020
  ident: b0005
  article-title: Fish species recognition with faster r-cnn inception-v2 using qut fish dataset
  publication-title: Lontar Komputer: Jurnal Ilmiah Teknolologi Informasi
  contributor:
    fullname: Sudana
– start-page: 347
  year: 2018
  end-page: 356
  ident: b0135
  article-title: Aquarium family fish species identification system using deep neural networks
  publication-title: International Conference on Advanced Intelligent Systems and Informatics
  contributor:
    fullname: Hassanien
– volume: 30
  start-page: 3212
  year: 2019
  end-page: 3232
  ident: b0200
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Xindong
– volume: 9
  start-page: 314
  year: 2021
  end-page: 321
  ident: b0050
  article-title: An improved tiny yolov3 for real-time object detection
  publication-title: Syst. Sci. Control Eng.
  contributor:
    fullname: Jing
– volume: 2021
  year: 2021
  ident: b0195
  article-title: High-accuracy real-time fish detection based on self-build dataset and rird-yolov3
  publication-title: Complexity
  contributor:
    fullname: Zhang
– start-page: 309
  year: 2014
  end-page: 316
  ident: b0010
  article-title: Local inter-session variability modelling for object classification
  publication-title: IEEE Winter Conference on Applications of Computer Vision
  contributor:
    fullname: Sridharan
– start-page: 1
  year: 2017
  end-page: 5
  ident: b0120
  article-title: Deep but lightweight neural networks for fish detection
  publication-title: OCEANS 2017-Aberdeen
  contributor:
    fullname: Gao
– volume: 28
  start-page: 100
  year: 1979
  end-page: 108
  ident: b0065
  article-title: Algorithm as 136: a k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.)
  contributor:
    fullname: Wong
– volume: 77
  start-page: 1295
  year: 2020
  end-page: 1307
  ident: b0170
  article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system
  publication-title: ICES J. Mar. Sci.
  contributor:
    fullname: Schwanecke
– volume: 91
  year: 2020
  ident: b0025
  article-title: A modified yolov3 model for fish detection based on mobilenetv1 as backbone
  publication-title: Aquacult. Eng.
  contributor:
    fullname: Song
– ident: 10.1016/j.ecoinf.2022.101847_b0125
  doi: 10.1109/CVPR.2017.106
– volume: 2021
  year: 2021
  ident: 10.1016/j.ecoinf.2022.101847_b0195
  article-title: High-accuracy real-time fish detection based on self-build dataset and rird-yolov3
  publication-title: Complexity
  contributor:
    fullname: Wang
– ident: 10.1016/j.ecoinf.2022.101847_b0055
  doi: 10.1109/ICCV.2015.169
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101847_b0160
  article-title: A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-71639-x
  contributor:
    fullname: Saleh
– start-page: 347
  year: 2018
  ident: 10.1016/j.ecoinf.2022.101847_b0135
  article-title: Aquarium family fish species identification system using deep neural networks
  contributor:
    fullname: Nour Eldeen
– volume: 51
  start-page: 44
  year: 2019
  ident: 10.1016/j.ecoinf.2022.101847_b0165
  article-title: Real-time fish detection in complex backgrounds using probabilistic background modelling
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2019.02.011
  contributor:
    fullname: Salman
– volume: 30
  start-page: 3212
  issue: 11
  year: 2019
  ident: 10.1016/j.ecoinf.2022.101847_b0200
  article-title: Object detection with deep learning: a review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
  contributor:
    fullname: Zhao
– volume: 37
  start-page: 1904
  issue: 9
  year: 2015
  ident: 10.1016/j.ecoinf.2022.101847_b0070
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
  contributor:
    fullname: He
– ident: 10.1016/j.ecoinf.2022.101847_b0190
  doi: 10.1109/CVPRW50498.2020.00203
– ident: 10.1016/j.ecoinf.2022.101847_b0015
– volume: 9
  start-page: 314
  issue: 1
  year: 2021
  ident: 10.1016/j.ecoinf.2022.101847_b0050
  article-title: An improved tiny yolov3 for real-time object detection
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2021.1901156
  contributor:
    fullname: Gai
– start-page: 385
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101847_b0105
  article-title: A review of object detection techniques
  contributor:
    fullname: Li
– start-page: 1
  year: 2016
  ident: 10.1016/j.ecoinf.2022.101847_b0115
  article-title: Accelerating fish detection and recognition by sharing cnns with objectness learning
  contributor:
    fullname: Li
– start-page: 1
  year: 2017
  ident: 10.1016/j.ecoinf.2022.101847_b0120
  article-title: Deep but lightweight neural networks for fish detection
  contributor:
    fullname: Li
– ident: 10.1016/j.ecoinf.2022.101847_b0140
  doi: 10.1109/CVPR.2017.690
– volume: 10
  start-page: 3079
  issue: 9
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101847_b0080
  article-title: Optimized yolov3 algorithm and its application in traffic flow detections
  publication-title: Appl. Sci.
  doi: 10.3390/app10093079
  contributor:
    fullname: Huang
– volume: 28
  start-page: 91
  year: 2015
  ident: 10.1016/j.ecoinf.2022.101847_b0150
  article-title: Faster r-cnn: towards real-time object detection with region proposal networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Ren
– start-page: 309
  year: 2014
  ident: 10.1016/j.ecoinf.2022.101847_b0010
  article-title: Local inter-session variability modelling for object classification
  contributor:
    fullname: Anantharajah
– ident: 10.1016/j.ecoinf.2022.101847_b0180
  doi: 10.1109/TENSYMP50017.2020.9230991
– volume: 91
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101847_b0025
  article-title: A modified yolov3 model for fish detection based on mobilenetv1 as backbone
  publication-title: Aquacult. Eng.
  doi: 10.1016/j.aquaeng.2020.102117
  contributor:
    fullname: Cai
– ident: 10.1016/j.ecoinf.2022.101847_b0145
  doi: 10.1109/CVPR.2016.91
– ident: 10.1016/j.ecoinf.2022.101847_b0040
– ident: 10.1016/j.ecoinf.2022.101847_b0085
  doi: 10.1109/CVPR.2018.00745
– ident: 10.1016/j.ecoinf.2022.101847_b0175
– ident: 10.1016/j.ecoinf.2022.101847_b0020
– volume: 52
  start-page: 103
  year: 2019
  ident: 10.1016/j.ecoinf.2022.101847_b0100
  article-title: Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2019.05.004
  contributor:
    fullname: Labao
– volume: 2
  issue: 1
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101847_b0155
  article-title: The effect of image resolution on deep learning in radiography
  publication-title: Radiol.: Artif. Intell.
  contributor:
    fullname: Sabottke
– ident: 10.1016/j.ecoinf.2022.101847_b0035
– start-page: 57
  year: 2015
  ident: 10.1016/j.ecoinf.2022.101847_b0030
  article-title: Automated detection of rockfish in unconstrained underwater videos using haar cascades and a new image dataset: labeled fishes in the wild
  contributor:
    fullname: Cutter
– ident: 10.1016/j.ecoinf.2022.101847_b0095
– volume: 28
  start-page: 100
  issue: 1
  year: 1979
  ident: 10.1016/j.ecoinf.2022.101847_b0065
  article-title: Algorithm as 136: a k-means clustering algorithm
  publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.)
  contributor:
    fullname: Hartigan
– start-page: 1
  year: 2015
  ident: 10.1016/j.ecoinf.2022.101847_b0110
  article-title: Fast accurate fish detection and recognition of underwater images with fast r-cnn
  contributor:
    fullname: Li
– ident: 10.1016/j.ecoinf.2022.101847_b0060
  doi: 10.1109/CVPR.2014.81
– volume: 6
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101847_b0075
  article-title: Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00363-x
  contributor:
    fullname: Horwath
– ident: 10.1016/j.ecoinf.2022.101847_b0130
  doi: 10.1109/CVPR.2018.00913
– volume: 12
  start-page: 5910
  year: 2022
  ident: 10.1016/j.ecoinf.2022.101847_b0185
  article-title: Autonomous Temporal Pseudo-Labeling for Fish Detection
  publication-title: Appl. Sci.
  doi: 10.3390/app12125910
  contributor:
    fullname: Veiga
– ident: 10.1016/j.ecoinf.2022.101847_b0045
– volume: 57
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101847_b0090
  article-title: Fish detection and species classification in underwater environments using deep learning with temporal information
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101088
  contributor:
    fullname: Jalal
– volume: 77
  start-page: 1295
  issue: 4
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101847_b0170
  article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/fsz025
  contributor:
    fullname: Salman
– volume: 11
  start-page: 144
  issue: 3
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101847_b0005
  article-title: Fish species recognition with faster r-cnn inception-v2 using qut fish dataset
  publication-title: Lontar Komputer: Jurnal Ilmiah Teknolologi Informasi
  doi: 10.24843/LKJITI.2020.v11.i03.p03
  contributor:
    fullname: Adiwinata
SSID ssj0043882
Score 2.5500333
Snippet •Real-world Annotated dataset for Fish with various habitats, size and species.•An enhanced detection model with optimized upsampling to detect tiny...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 101847
SubjectTerms Dataset
Deep Learning
Fish detection
Object Detection
Underwater ecosystem
Title YOLO-Fish: A robust fish detection model to detect fish in realistic underwater environment
URI https://dx.doi.org/10.1016/j.ecoinf.2022.101847
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEbyInzg_Rg5e49okbVJvY2zMr-2gg4mH0qQpTKQbtUO8-Lf7krYyQTx4a9I8KC_p-_1e-z4Qush4lHgmjYj9zUO4Cnx45zLwWgEeUsqVFtzmO9-Pw9GU38yCWQv1m1wYG1ZZ2_7KpjtrXc90a212l_N598EPBLB77lPqOjDZjHIO8Adn-vLzO8yDM-kaRtnFxK5u0udcjBd4eLCP4CVSaqekbbLyGzytQc5wF-3UXBH3qsfZQy2T76Otgasz_XGAnp8mdxNie5df4R4uFmr1VuIMhjg1pYuwyrFrdIPLRT1V3Z7nGKjiqyvRjG0SWfEOjLPAa0lvh2g6HDz2R6TulUA0-DwloYx7RkqWiCyL7JeijKcRCxh4A4KrkIVSBjLxABI1IJCn_cwIoamiEkAeXC52hDbyRW6OEaYgCrxOMQVXAPARGAGqFaOpSAIT6jYijYriZVUSI25ixV7iSqWxVWlcqbSNRKPH-MfWxmC1_5Q8-bfkKdq2oyru5AxtlMXKnAN7KFXHHY8O2uxd347GXwB4wjU
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInoRP3F-5uC1rkvSJvU2xsbUfRzcYOIhNG0KE-lG7RAv_u2-pK1MEA_e2iQPykv6fr_Xvg-ErhMWhK6OA8f85nGY8lrwziXgtQI8xISpiDOT7zwc-f0pu595sxrqVLkwJqyytP2FTbfWuhxpltpsLufz5mPL48DuWYsQ24GJb6BNZvgxHOqbz-84D0aF7RhlVjtmeZU_Z4O8wMWDjQQ3kRAzJEyXld_waQ1zentotySLuF08zz6q6fQAbXVtoemPQ_T8NB6MHdO8_Ba3cbZQq7ccJ3CLY53bEKsU2043OF-UQ8X0PMXAFV9tjWZsssiyd6CcGV7LejtC01530uk7ZbMEJwKnJ3cIZa4WgoY8SQLzqShhcUA9Cu4AZ8qnvhCeCF3AxAggyI1aieY8IooIQHnwuegxqqeLVJ8gTEAUiJ2iCq4A4QOwAiRSlMQ89LQfNZBTqUgui5oYsgoWe5GFSqVRqSxU2kC80qP8sbcSzPafkqf_lrxC2_3JcCAHd6OHM7RjZooglHNUz7OVvgAqkatLe1S-AMi1w84
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-Fish%3A+A+robust+fish+detection+model+to+detect+fish+in+realistic+underwater+environment&rft.jtitle=Ecological+informatics&rft.au=Muksit%2C+Abdullah+Al&rft.au=Hasan%2C+Fakhrul&rft.au=Hasan+Bhuiyan+Emon%2C+Md.+Fahad&rft.au=Haque%2C+Md+Rakibul&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=1574-9541&rft.volume=72&rft_id=info:doi/10.1016%2Fj.ecoinf.2022.101847&rft.externalDocID=S1574954122002977
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon