YOLO-Fish: A robust fish detection model to detect fish in realistic underwater environment
•Real-world Annotated dataset for Fish with various habitats, size and species.•An enhanced detection model with optimized upsampling to detect tiny fishes.•Spatial Pyramid Pooling (SPP) to handle the environmental complexity between different habitats. Over the last few years, several research work...
Saved in:
Published in | Ecological informatics Vol. 72; p. 101847 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Real-world Annotated dataset for Fish with various habitats, size and species.•An enhanced detection model with optimized upsampling to detect tiny fishes.•Spatial Pyramid Pooling (SPP) to handle the environmental complexity between different habitats.
Over the last few years, several research works have been performed to monitor fish in the underwater environment aimed for marine research, understanding ocean geography, and primarily for sustainable fisheries. Automating fish identification is very helpful, considering the time and cost of the manual process. However, it can be challenging to differentiate fish from the seabed and fish types from each other due to environmental challenges like low illumination, complex background, high variation in luminosity, free movement of fish, and high diversity of fish species. In this paper, we propose YOLO-Fish, a deep learning based fish detection model. We have proposed two models, YOLO-Fish-1 and YOLO-Fish-2. YOLO-Fish-1 enhances YOLOv3 by fixing the issue of upsampling step sizes of to reduce the misdetection of tiny fish. YOLO-Fish-2 further improves the model by adding Spatial Pyramid Pooling to the first model to add the capability to detect fish appearance in those dynamic environments. To test the models, we introduce two datasets: DeepFish and OzFish. The DeepFish dataset contains around 15k bounding box annotations across 4505 images, where images belong to 20 different fish habitats. The OzFish is another dataset comprised of about 43k bounding box annotations of wide varieties of fish across around 1800 images. YOLO-Fish1 and YOLO-Fish2 achieved average precision of 76.56% and 75.70%, respectively for fish detection in unconstrained real-world marine environments, which is significantly better than YOLOv3. Both of these models are lightweight compared to recent versions of YOLO like YOLOv4, yet the performances are very similar. |
---|---|
AbstractList | •Real-world Annotated dataset for Fish with various habitats, size and species.•An enhanced detection model with optimized upsampling to detect tiny fishes.•Spatial Pyramid Pooling (SPP) to handle the environmental complexity between different habitats.
Over the last few years, several research works have been performed to monitor fish in the underwater environment aimed for marine research, understanding ocean geography, and primarily for sustainable fisheries. Automating fish identification is very helpful, considering the time and cost of the manual process. However, it can be challenging to differentiate fish from the seabed and fish types from each other due to environmental challenges like low illumination, complex background, high variation in luminosity, free movement of fish, and high diversity of fish species. In this paper, we propose YOLO-Fish, a deep learning based fish detection model. We have proposed two models, YOLO-Fish-1 and YOLO-Fish-2. YOLO-Fish-1 enhances YOLOv3 by fixing the issue of upsampling step sizes of to reduce the misdetection of tiny fish. YOLO-Fish-2 further improves the model by adding Spatial Pyramid Pooling to the first model to add the capability to detect fish appearance in those dynamic environments. To test the models, we introduce two datasets: DeepFish and OzFish. The DeepFish dataset contains around 15k bounding box annotations across 4505 images, where images belong to 20 different fish habitats. The OzFish is another dataset comprised of about 43k bounding box annotations of wide varieties of fish across around 1800 images. YOLO-Fish1 and YOLO-Fish2 achieved average precision of 76.56% and 75.70%, respectively for fish detection in unconstrained real-world marine environments, which is significantly better than YOLOv3. Both of these models are lightweight compared to recent versions of YOLO like YOLOv4, yet the performances are very similar. |
ArticleNumber | 101847 |
Author | Shatabda, Swakkhar Muksit, Abdullah Al Haque, Md Rakibul Anwary, Arif Reza Hasan Bhuiyan Emon, Md. Fahad Hasan, Fakhrul |
Author_xml | – sequence: 1 givenname: Abdullah Al surname: Muksit fullname: Muksit, Abdullah Al organization: Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh – sequence: 2 givenname: Fakhrul surname: Hasan fullname: Hasan, Fakhrul organization: Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh – sequence: 3 givenname: Md. Fahad surname: Hasan Bhuiyan Emon fullname: Hasan Bhuiyan Emon, Md. Fahad organization: Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh – sequence: 4 givenname: Md Rakibul surname: Haque fullname: Haque, Md Rakibul organization: Department of Computer Science and Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh – sequence: 5 givenname: Arif Reza surname: Anwary fullname: Anwary, Arif Reza organization: Edinburgh Napier University, Edinburg, Scotland, United Kingdom – sequence: 6 givenname: Swakkhar surname: Shatabda fullname: Shatabda, Swakkhar email: swakkhar@cse.uiu.ac.bd organization: Department of Computer Science and Engineering, United International University, Dhaka 1212, Bangladesh |
BookMark | eNp9kM1OwzAQhH0oEm3hDTj4BRL8l8ThgFRVFJAi5QIHxMFKnLVw1drIdot4exKlZ06rndWMZr8VWjjvAKE7SnJKaHm_z0F760zOCGOTJEW1QEtaVCKrC0Gv0SrGPSGCS8mW6POjbdpsZ-PXA97g4PtTTNiMKx4ggU7WO3z0Axxw8hdpPluHA3QHG5PV-OQGCD9dgoDBnW3w7ggu3aAr0x0i3F7mGr3vnt62L1nTPr9uN02mmaxSxrggICXvKmNqRkhhxFDzghdy7NyXvJSykB3RAFqwmmhqoKo065kkjNa15Gsk5lwdfIwBjPoO9tiFX0WJmqCovZqhqAmKmqGMtsfZBmO3s4WgorbgNAw2jG-qwdv_A_4A9wRv-w |
CitedBy_id | crossref_primary_10_1016_j_mlwa_2024_100562 crossref_primary_10_3390_s24082430 crossref_primary_10_3390_ani14142022 crossref_primary_10_3390_app132312645 crossref_primary_10_3390_electronics12153231 crossref_primary_10_3389_fbuil_2023_1323792 crossref_primary_10_3390_s23198210 crossref_primary_10_1016_j_ecoinf_2023_102108 crossref_primary_10_3389_fmars_2024_1301024 crossref_primary_10_3390_app14125321 crossref_primary_10_3390_jmse11091658 crossref_primary_10_3390_s23052567 crossref_primary_10_3390_jmse11020320 crossref_primary_10_1007_s40009_023_01265_4 crossref_primary_10_3390_pr11041261 crossref_primary_10_3390_su16093675 crossref_primary_10_3390_electronics12132756 crossref_primary_10_3390_jmse12020195 crossref_primary_10_1007_s11042_023_16673_3 crossref_primary_10_3390_jmse11030542 crossref_primary_10_1016_j_ecoinf_2024_102680 crossref_primary_10_1061_JHEND8_HYENG_13496 crossref_primary_10_2166_hydro_2024_034 crossref_primary_10_1016_j_ecoinf_2024_102467 crossref_primary_10_3389_fmars_2023_1153416 crossref_primary_10_3390_s23063311 crossref_primary_10_1109_ACCESS_2023_3330968 crossref_primary_10_1016_j_ijleo_2023_170513 crossref_primary_10_1016_j_ecoinf_2023_102311 crossref_primary_10_1002_ece3_11070 crossref_primary_10_1080_19392699_2024_2346173 crossref_primary_10_1016_j_ecoinf_2023_102210 crossref_primary_10_1016_j_knosys_2023_111322 crossref_primary_10_1016_j_jksuci_2024_101971 crossref_primary_10_1109_JSTARS_2023_3299703 crossref_primary_10_3390_jmse12050784 crossref_primary_10_3389_fmars_2023_1129852 |
Cites_doi | 10.1109/CVPR.2017.106 10.1109/ICCV.2015.169 10.1038/s41598-020-71639-x 10.1016/j.ecoinf.2019.02.011 10.1109/TNNLS.2018.2876865 10.1109/TPAMI.2015.2389824 10.1109/CVPRW50498.2020.00203 10.1080/21642583.2021.1901156 10.1109/CVPR.2017.690 10.3390/app10093079 10.1109/TENSYMP50017.2020.9230991 10.1016/j.aquaeng.2020.102117 10.1109/CVPR.2016.91 10.1109/CVPR.2018.00745 10.1016/j.ecoinf.2019.05.004 10.1109/CVPR.2014.81 10.1038/s41524-020-00363-x 10.1109/CVPR.2018.00913 10.3390/app12125910 10.1016/j.ecoinf.2020.101088 10.1093/icesjms/fsz025 10.24843/LKJITI.2020.v11.i03.p03 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. |
Copyright_xml | – notice: 2022 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ecoinf.2022.101847 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
ExternalDocumentID | 10_1016_j_ecoinf_2022_101847 S1574954122002977 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A N~3 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPCBC SSA SSJ SSZ T5K ~G- AAHBH AAXKI AAYXX ADVLN AFJKZ AKRWK CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c287t-2340e883a7ff92005f4d935358574b6368858a0ceec4290c1fe77c2b280219983 |
IEDL.DBID | .~1 |
ISSN | 1574-9541 |
IngestDate | Thu Sep 26 16:14:34 EDT 2024 Fri Feb 23 02:38:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Underwater ecosystem Object Detection Fish detection Dataset Deep Learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c287t-2340e883a7ff92005f4d935358574b6368858a0ceec4290c1fe77c2b280219983 |
ParticipantIDs | crossref_primary_10_1016_j_ecoinf_2022_101847 elsevier_sciencedirect_doi_10_1016_j_ecoinf_2022_101847 |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationTitle | Ecological informatics |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tabassum, Shaira, Ullah, Md Sabbir, Al-Nur, Nakib Hossain, Shatabda, Swakkhar, 2020. Native vehicles classification on Bangladeshi roads using CNN with transfer learning. In: Proceedings of the 2020 IEEE Region 10 Symposium (TENSYMP), pp. 40–43. Szegedy, Christian, Toshev, Alexander, Erhan, Dumitru, 2013. Deep neural networks for object detection. Redmon, Joseph, Divvala, Santosh, Girshick, Ross, Farhadi, Ali, 2016. You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788. Salman, Siddiqui, Shafait, Mian, Shortis, Khurshid, Ulges, Schwanecke (b0170) 2020; 77 Zhao, Zheng, Shou-tao, Xindong (b0200) 2019; 30 Li, Tang, Gao (b0120) 2017 Hu, Jie, Shen, Li, Sun, Gang, 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141. Redmon, Joseph, Farhadi, Ali, 2018. Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767. Li, Cao (b0105) 2020 Salman, Maqbool, Khan, Jalal, Shafait (b0165) 2019; 51 Gai, Liu, Zhang, Jing (b0050) 2021; 9 Jalal, Salman, Mian, Shortis, Shafait (b0090) 2020; 57 Wang, He, Zhang (b0195) 2021; 2021 Labao, Naval (b0100) 2019; 52 Huang, Zheng, Sun, Yang, Liu (b0080) 2020; 10 Lin, Tsung-Yi, Dollár, Piotr, Girshick, Ross, He, Kaiming, Hariharan, Bharath, Belongie, Serge, 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2117–2125. Anantharajah, Ge, McCool, Denman, Fookes, Corke, Tjondronegoro, Sridharan (b0010) 2014 Australian Institute Of Marine Science, 2020. Ozfish dataset - machine learning dataset for baited remote underwater video stations. Horwath, Zakharov, Mégret, Stach (b0075) 2020; 6 Bochkovskiy, Alexey, Wang, Chien-Yao, Mark Liao, Hong-Yuan, 2020. Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. He, Zhang, Ren, Sun (b0070) 2015; 37 Dosovitskiy, Alexey, Beyer, Lucas, Kolesnikov, Alexander, Weissenborn, Dirk, Zhai, Xiaohua, Unterthiner, Thomas, Dehghani, Mostafa, Minderer, Matthias, Heigold, Georg, Gelly, Sylvain, et al., 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. Liu, Shu, Qi, Lu, Qin, Haifang, Shi, Jianping, Jia, Jiaya, 2018. Path aggregation network for instance segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8759–8768. Sabottke, Spieler (b0155) 2020; 2 Saleh, Laradji, Konovalov, Bradley, Vazquez, Sheaves (b0160) 2020; 10 Li, Shang, Hao, Yang (b0115) 2016 Cutter, Stierhoff, Zeng (b0030) 2015 Li, Shang, Qin, Chen (b0110) 2015 Hartigan, Wong (b0065) 1979; 28 Nour Eldeen, Khalifa, Taha, Hassanien (b0135) 2018 Wang, Chien-Yao, Mark Liao, Hong-Yuan, Wu, Yueh-Hua, Chen, Ping-Yang, Hsieh, Jun-Wei, Yeh, I-Hau, 2020. Cspnet: a new backbone that can enhance learning capability of cnn. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 390–391. Adiwinata, Sasaoka, Agung Bayupati, Sudana (b0005) 2020; 11 Veiga, Ochoa, Belackova, Bentes, Silva, Semião, Rodrigues (b0185) 2022; 12 Girshick, Ross, 2015. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp. 1440–1448. Cai, Miao, Wang, Pang, Liu, Song (b0025) 2020; 91 Fisher, R., Boom, B., Huang, P. Preliminary experiments with the fish4knowledge dataset. Algae, 49165 (49370), 99–58. Ren, He, Girshick, Sun (b0150) 2015; 28 Girshick, Ross, Donahue, Jeff, Darrell, Trevor, Malik, Jitendra, 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 580–587. Fao, 2020. The state of world fisheries and aquaculture 2020. Sustainability in action. Rome. Redmon, Joseph, Farhadi, Ali, 2017. Yolo9000: better, faster, stronger. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7263–7271. Saleh (10.1016/j.ecoinf.2022.101847_b0160) 2020; 10 Adiwinata (10.1016/j.ecoinf.2022.101847_b0005) 2020; 11 Li (10.1016/j.ecoinf.2022.101847_b0115) 2016 10.1016/j.ecoinf.2022.101847_b0015 10.1016/j.ecoinf.2022.101847_b0035 Anantharajah (10.1016/j.ecoinf.2022.101847_b0010) 2014 Cai (10.1016/j.ecoinf.2022.101847_b0025) 2020; 91 10.1016/j.ecoinf.2022.101847_b0085 10.1016/j.ecoinf.2022.101847_b0140 10.1016/j.ecoinf.2022.101847_b0040 Salman (10.1016/j.ecoinf.2022.101847_b0170) 2020; 77 Gai (10.1016/j.ecoinf.2022.101847_b0050) 2021; 9 10.1016/j.ecoinf.2022.101847_b0060 Sabottke (10.1016/j.ecoinf.2022.101847_b0155) 2020; 2 10.1016/j.ecoinf.2022.101847_b0045 10.1016/j.ecoinf.2022.101847_b0020 He (10.1016/j.ecoinf.2022.101847_b0070) 2015; 37 Ren (10.1016/j.ecoinf.2022.101847_b0150) 2015; 28 10.1016/j.ecoinf.2022.101847_b0180 Cutter (10.1016/j.ecoinf.2022.101847_b0030) 2015 Li (10.1016/j.ecoinf.2022.101847_b0105) 2020 Zhao (10.1016/j.ecoinf.2022.101847_b0200) 2019; 30 Hartigan (10.1016/j.ecoinf.2022.101847_b0065) 1979; 28 Wang (10.1016/j.ecoinf.2022.101847_b0195) 2021; 2021 10.1016/j.ecoinf.2022.101847_b0125 10.1016/j.ecoinf.2022.101847_b0145 Veiga (10.1016/j.ecoinf.2022.101847_b0185) 2022; 12 10.1016/j.ecoinf.2022.101847_b0095 Nour Eldeen (10.1016/j.ecoinf.2022.101847_b0135) 2018 Jalal (10.1016/j.ecoinf.2022.101847_b0090) 2020; 57 10.1016/j.ecoinf.2022.101847_b0055 Salman (10.1016/j.ecoinf.2022.101847_b0165) 2019; 51 Labao (10.1016/j.ecoinf.2022.101847_b0100) 2019; 52 10.1016/j.ecoinf.2022.101847_b0175 10.1016/j.ecoinf.2022.101847_b0130 Horwath (10.1016/j.ecoinf.2022.101847_b0075) 2020; 6 Huang (10.1016/j.ecoinf.2022.101847_b0080) 2020; 10 Li (10.1016/j.ecoinf.2022.101847_b0110) 2015 Li (10.1016/j.ecoinf.2022.101847_b0120) 2017 10.1016/j.ecoinf.2022.101847_b0190 |
References_xml | – start-page: 385 year: 2020 end-page: 390 ident: b0105 article-title: A review of object detection techniques publication-title: 2020 5th International Conference on Electromechanical Control Technology and Transportation (ICECTT) contributor: fullname: Cao – volume: 12 start-page: 5910 year: 2022 ident: b0185 article-title: Autonomous Temporal Pseudo-Labeling for Fish Detection publication-title: Appl. Sci. contributor: fullname: Rodrigues – volume: 57 year: 2020 ident: b0090 article-title: Fish detection and species classification in underwater environments using deep learning with temporal information publication-title: Ecol. Inform. contributor: fullname: Shafait – start-page: 1 year: 2015 end-page: 5 ident: b0110 article-title: Fast accurate fish detection and recognition of underwater images with fast r-cnn publication-title: OCEANS 2015-MTS/IEEE contributor: fullname: Chen – start-page: 1 year: 2016 end-page: 5 ident: b0115 article-title: Accelerating fish detection and recognition by sharing cnns with objectness learning publication-title: OCEANS 2016-Shanghai contributor: fullname: Yang – volume: 2 year: 2020 ident: b0155 article-title: The effect of image resolution on deep learning in radiography publication-title: Radiol.: Artif. Intell. contributor: fullname: Spieler – volume: 10 start-page: 1 year: 2020 end-page: 10 ident: b0160 article-title: A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis publication-title: Sci. Rep. contributor: fullname: Sheaves – volume: 51 start-page: 44 year: 2019 end-page: 51 ident: b0165 article-title: Real-time fish detection in complex backgrounds using probabilistic background modelling publication-title: Ecol. Inform. contributor: fullname: Shafait – volume: 28 start-page: 91 year: 2015 end-page: 99 ident: b0150 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Sun – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: b0070 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. contributor: fullname: Sun – volume: 52 start-page: 103 year: 2019 end-page: 121 ident: b0100 article-title: Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild publication-title: Ecol. Inform. contributor: fullname: Naval – volume: 6 start-page: 1 year: 2020 end-page: 9 ident: b0075 article-title: Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images publication-title: npj Comput. Mater. contributor: fullname: Stach – start-page: 57 year: 2015 end-page: 62 ident: b0030 article-title: Automated detection of rockfish in unconstrained underwater videos using haar cascades and a new image dataset: labeled fishes in the wild publication-title: 2015 IEEE Winter Applications and Computer Vision Workshops contributor: fullname: Zeng – volume: 10 start-page: 3079 year: 2020 ident: b0080 article-title: Optimized yolov3 algorithm and its application in traffic flow detections publication-title: Appl. Sci. contributor: fullname: Liu – volume: 11 start-page: 144 year: 2020 ident: b0005 article-title: Fish species recognition with faster r-cnn inception-v2 using qut fish dataset publication-title: Lontar Komputer: Jurnal Ilmiah Teknolologi Informasi contributor: fullname: Sudana – start-page: 347 year: 2018 end-page: 356 ident: b0135 article-title: Aquarium family fish species identification system using deep neural networks publication-title: International Conference on Advanced Intelligent Systems and Informatics contributor: fullname: Hassanien – volume: 30 start-page: 3212 year: 2019 end-page: 3232 ident: b0200 article-title: Object detection with deep learning: a review publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Xindong – volume: 9 start-page: 314 year: 2021 end-page: 321 ident: b0050 article-title: An improved tiny yolov3 for real-time object detection publication-title: Syst. Sci. Control Eng. contributor: fullname: Jing – volume: 2021 year: 2021 ident: b0195 article-title: High-accuracy real-time fish detection based on self-build dataset and rird-yolov3 publication-title: Complexity contributor: fullname: Zhang – start-page: 309 year: 2014 end-page: 316 ident: b0010 article-title: Local inter-session variability modelling for object classification publication-title: IEEE Winter Conference on Applications of Computer Vision contributor: fullname: Sridharan – start-page: 1 year: 2017 end-page: 5 ident: b0120 article-title: Deep but lightweight neural networks for fish detection publication-title: OCEANS 2017-Aberdeen contributor: fullname: Gao – volume: 28 start-page: 100 year: 1979 end-page: 108 ident: b0065 article-title: Algorithm as 136: a k-means clustering algorithm publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.) contributor: fullname: Wong – volume: 77 start-page: 1295 year: 2020 end-page: 1307 ident: b0170 article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system publication-title: ICES J. Mar. Sci. contributor: fullname: Schwanecke – volume: 91 year: 2020 ident: b0025 article-title: A modified yolov3 model for fish detection based on mobilenetv1 as backbone publication-title: Aquacult. Eng. contributor: fullname: Song – ident: 10.1016/j.ecoinf.2022.101847_b0125 doi: 10.1109/CVPR.2017.106 – volume: 2021 year: 2021 ident: 10.1016/j.ecoinf.2022.101847_b0195 article-title: High-accuracy real-time fish detection based on self-build dataset and rird-yolov3 publication-title: Complexity contributor: fullname: Wang – ident: 10.1016/j.ecoinf.2022.101847_b0055 doi: 10.1109/ICCV.2015.169 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ecoinf.2022.101847_b0160 article-title: A realistic fish-habitat dataset to evaluate algorithms for underwater visual analysis publication-title: Sci. Rep. doi: 10.1038/s41598-020-71639-x contributor: fullname: Saleh – start-page: 347 year: 2018 ident: 10.1016/j.ecoinf.2022.101847_b0135 article-title: Aquarium family fish species identification system using deep neural networks contributor: fullname: Nour Eldeen – volume: 51 start-page: 44 year: 2019 ident: 10.1016/j.ecoinf.2022.101847_b0165 article-title: Real-time fish detection in complex backgrounds using probabilistic background modelling publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2019.02.011 contributor: fullname: Salman – volume: 30 start-page: 3212 issue: 11 year: 2019 ident: 10.1016/j.ecoinf.2022.101847_b0200 article-title: Object detection with deep learning: a review publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2018.2876865 contributor: fullname: Zhao – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10.1016/j.ecoinf.2022.101847_b0070 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 contributor: fullname: He – ident: 10.1016/j.ecoinf.2022.101847_b0190 doi: 10.1109/CVPRW50498.2020.00203 – ident: 10.1016/j.ecoinf.2022.101847_b0015 – volume: 9 start-page: 314 issue: 1 year: 2021 ident: 10.1016/j.ecoinf.2022.101847_b0050 article-title: An improved tiny yolov3 for real-time object detection publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2021.1901156 contributor: fullname: Gai – start-page: 385 year: 2020 ident: 10.1016/j.ecoinf.2022.101847_b0105 article-title: A review of object detection techniques contributor: fullname: Li – start-page: 1 year: 2016 ident: 10.1016/j.ecoinf.2022.101847_b0115 article-title: Accelerating fish detection and recognition by sharing cnns with objectness learning contributor: fullname: Li – start-page: 1 year: 2017 ident: 10.1016/j.ecoinf.2022.101847_b0120 article-title: Deep but lightweight neural networks for fish detection contributor: fullname: Li – ident: 10.1016/j.ecoinf.2022.101847_b0140 doi: 10.1109/CVPR.2017.690 – volume: 10 start-page: 3079 issue: 9 year: 2020 ident: 10.1016/j.ecoinf.2022.101847_b0080 article-title: Optimized yolov3 algorithm and its application in traffic flow detections publication-title: Appl. Sci. doi: 10.3390/app10093079 contributor: fullname: Huang – volume: 28 start-page: 91 year: 2015 ident: 10.1016/j.ecoinf.2022.101847_b0150 article-title: Faster r-cnn: towards real-time object detection with region proposal networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Ren – start-page: 309 year: 2014 ident: 10.1016/j.ecoinf.2022.101847_b0010 article-title: Local inter-session variability modelling for object classification contributor: fullname: Anantharajah – ident: 10.1016/j.ecoinf.2022.101847_b0180 doi: 10.1109/TENSYMP50017.2020.9230991 – volume: 91 year: 2020 ident: 10.1016/j.ecoinf.2022.101847_b0025 article-title: A modified yolov3 model for fish detection based on mobilenetv1 as backbone publication-title: Aquacult. Eng. doi: 10.1016/j.aquaeng.2020.102117 contributor: fullname: Cai – ident: 10.1016/j.ecoinf.2022.101847_b0145 doi: 10.1109/CVPR.2016.91 – ident: 10.1016/j.ecoinf.2022.101847_b0040 – ident: 10.1016/j.ecoinf.2022.101847_b0085 doi: 10.1109/CVPR.2018.00745 – ident: 10.1016/j.ecoinf.2022.101847_b0175 – ident: 10.1016/j.ecoinf.2022.101847_b0020 – volume: 52 start-page: 103 year: 2019 ident: 10.1016/j.ecoinf.2022.101847_b0100 article-title: Cascaded deep network systems with linked ensemble components for underwater fish detection in the wild publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2019.05.004 contributor: fullname: Labao – volume: 2 issue: 1 year: 2020 ident: 10.1016/j.ecoinf.2022.101847_b0155 article-title: The effect of image resolution on deep learning in radiography publication-title: Radiol.: Artif. Intell. contributor: fullname: Sabottke – ident: 10.1016/j.ecoinf.2022.101847_b0035 – start-page: 57 year: 2015 ident: 10.1016/j.ecoinf.2022.101847_b0030 article-title: Automated detection of rockfish in unconstrained underwater videos using haar cascades and a new image dataset: labeled fishes in the wild contributor: fullname: Cutter – ident: 10.1016/j.ecoinf.2022.101847_b0095 – volume: 28 start-page: 100 issue: 1 year: 1979 ident: 10.1016/j.ecoinf.2022.101847_b0065 article-title: Algorithm as 136: a k-means clustering algorithm publication-title: J. R. Stat. Soc. Ser. C (Appl. Stat.) contributor: fullname: Hartigan – start-page: 1 year: 2015 ident: 10.1016/j.ecoinf.2022.101847_b0110 article-title: Fast accurate fish detection and recognition of underwater images with fast r-cnn contributor: fullname: Li – ident: 10.1016/j.ecoinf.2022.101847_b0060 doi: 10.1109/CVPR.2014.81 – volume: 6 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ecoinf.2022.101847_b0075 article-title: Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-00363-x contributor: fullname: Horwath – ident: 10.1016/j.ecoinf.2022.101847_b0130 doi: 10.1109/CVPR.2018.00913 – volume: 12 start-page: 5910 year: 2022 ident: 10.1016/j.ecoinf.2022.101847_b0185 article-title: Autonomous Temporal Pseudo-Labeling for Fish Detection publication-title: Appl. Sci. doi: 10.3390/app12125910 contributor: fullname: Veiga – ident: 10.1016/j.ecoinf.2022.101847_b0045 – volume: 57 year: 2020 ident: 10.1016/j.ecoinf.2022.101847_b0090 article-title: Fish detection and species classification in underwater environments using deep learning with temporal information publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101088 contributor: fullname: Jalal – volume: 77 start-page: 1295 issue: 4 year: 2020 ident: 10.1016/j.ecoinf.2022.101847_b0170 article-title: Automatic fish detection in underwater videos by a deep neural network-based hybrid motion learning system publication-title: ICES J. Mar. Sci. doi: 10.1093/icesjms/fsz025 contributor: fullname: Salman – volume: 11 start-page: 144 issue: 3 year: 2020 ident: 10.1016/j.ecoinf.2022.101847_b0005 article-title: Fish species recognition with faster r-cnn inception-v2 using qut fish dataset publication-title: Lontar Komputer: Jurnal Ilmiah Teknolologi Informasi doi: 10.24843/LKJITI.2020.v11.i03.p03 contributor: fullname: Adiwinata |
SSID | ssj0043882 |
Score | 2.5500333 |
Snippet | •Real-world Annotated dataset for Fish with various habitats, size and species.•An enhanced detection model with optimized upsampling to detect tiny... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 101847 |
SubjectTerms | Dataset Deep Learning Fish detection Object Detection Underwater ecosystem |
Title | YOLO-Fish: A robust fish detection model to detect fish in realistic underwater environment |
URI | https://dx.doi.org/10.1016/j.ecoinf.2022.101847 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DEbyInzg_Rg5e49okbVJvY2zMr-2gg4mH0qQpTKQbtUO8-Lf7krYyQTx4a9I8KC_p-_1e-z4Qush4lHgmjYj9zUO4Cnx45zLwWgEeUsqVFtzmO9-Pw9GU38yCWQv1m1wYG1ZZ2_7KpjtrXc90a212l_N598EPBLB77lPqOjDZjHIO8Adn-vLzO8yDM-kaRtnFxK5u0udcjBd4eLCP4CVSaqekbbLyGzytQc5wF-3UXBH3qsfZQy2T76Otgasz_XGAnp8mdxNie5df4R4uFmr1VuIMhjg1pYuwyrFrdIPLRT1V3Z7nGKjiqyvRjG0SWfEOjLPAa0lvh2g6HDz2R6TulUA0-DwloYx7RkqWiCyL7JeijKcRCxh4A4KrkIVSBjLxABI1IJCn_cwIoamiEkAeXC52hDbyRW6OEaYgCrxOMQVXAPARGAGqFaOpSAIT6jYijYriZVUSI25ixV7iSqWxVWlcqbSNRKPH-MfWxmC1_5Q8-bfkKdq2oyru5AxtlMXKnAN7KFXHHY8O2uxd347GXwB4wjU |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInoRP3F-5uC1rkvSJvU2xsbUfRzcYOIhNG0KE-lG7RAv_u2-pK1MEA_e2iQPykv6fr_Xvg-ErhMWhK6OA8f85nGY8lrwziXgtQI8xISpiDOT7zwc-f0pu595sxrqVLkwJqyytP2FTbfWuhxpltpsLufz5mPL48DuWYsQ24GJb6BNZvgxHOqbz-84D0aF7RhlVjtmeZU_Z4O8wMWDjQQ3kRAzJEyXld_waQ1zentotySLuF08zz6q6fQAbXVtoemPQ_T8NB6MHdO8_Ba3cbZQq7ccJ3CLY53bEKsU2043OF-UQ8X0PMXAFV9tjWZsssiyd6CcGV7LejtC01530uk7ZbMEJwKnJ3cIZa4WgoY8SQLzqShhcUA9Cu4AZ8qnvhCeCF3AxAggyI1aieY8IooIQHnwuegxqqeLVJ8gTEAUiJ2iCq4A4QOwAiRSlMQ89LQfNZBTqUgui5oYsgoWe5GFSqVRqSxU2kC80qP8sbcSzPafkqf_lrxC2_3JcCAHd6OHM7RjZooglHNUz7OVvgAqkatLe1S-AMi1w84 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-Fish%3A+A+robust+fish+detection+model+to+detect+fish+in+realistic+underwater+environment&rft.jtitle=Ecological+informatics&rft.au=Muksit%2C+Abdullah+Al&rft.au=Hasan%2C+Fakhrul&rft.au=Hasan+Bhuiyan+Emon%2C+Md.+Fahad&rft.au=Haque%2C+Md+Rakibul&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=1574-9541&rft.volume=72&rft_id=info:doi/10.1016%2Fj.ecoinf.2022.101847&rft.externalDocID=S1574954122002977 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon |