Reconstruction of stable states of spiral vortex beams
Using an asymptotic approach and an experiment supported by computer simulation, we analyzed processes of restoring structural stability and transitions to new stable states of spiral vortex beams subject to perturbations by curly apertures. Using a tetragonal beam as an example, we considered three...
Saved in:
Published in | Kompʹûternaâ optika Vol. 46; no. 1; pp. 5 - 15 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Samara National Research University
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using an asymptotic approach and an experiment supported by computer simulation, we analyzed processes of restoring structural stability and transitions to new stable states of spiral vortex beams subject to perturbations by curly apertures. Using a tetragonal beam as an example, we considered three perturbation scenarios: 1) asymmetric perturbation, when an opaque screen covers the caustic only on one side of the square, 2) symmetric perturbation, when the curly aperture covers the entire beam except for a narrow caustic region, and 3) symmetric perturbation, when the curly aperture screens only a narrow region of the caustic without affecting the rest of the beam. At the same time, the asymptotic calculation was carried out for all types of polygonal beams. It was shown that if the curly aperture did not destroy the caustic region of the spiral beam, it was able to self-heal in the far diffraction zone. If the perturbation even locally destroyed a part of the caustics, then the perturbed beam passed into a new stable state through chains of creation and annihilation of optical vortices (dislocation reactions). |
---|---|
AbstractList | Using an asymptotic approach and an experiment supported by computer simulation, we analyzed processes of restoring structural stability and transitions to new stable states of spiral vortex beams subject to perturbations by curly apertures. Using a tetragonal beam as an example, we considered three perturbation scenarios: 1) asymmetric perturbation, when an opaque screen covers the caustic only on one side of the square, 2) symmetric perturbation, when the curly aperture covers the entire beam except for a narrow caustic region, and 3) symmetric perturbation, when the curly aperture screens only a narrow region of the caustic without affecting the rest of the beam. At the same time, the asymptotic calculation was carried out for all types of polygonal beams. It was shown that if the curly aperture did not destroy the caustic region of the spiral beam, it was able to self-heal in the far diffraction zone. If the perturbation even locally destroyed a part of the caustics, then the perturbed beam passed into a new stable state through chains of creation and annihilation of optical vortices (dislocation reactions). |
Author | Volyar, A.V. Akimova, Y.E. Bretsko, M.V. Abramochkin, E.G. |
Author_xml | – sequence: 1 givenname: A.V. surname: Volyar fullname: Volyar, A.V. – sequence: 2 givenname: E.G. surname: Abramochkin fullname: Abramochkin, E.G. – sequence: 3 givenname: Y.E. surname: Akimova fullname: Akimova, Y.E. – sequence: 4 givenname: M.V. surname: Bretsko fullname: Bretsko, M.V. |
BookMark | eNp9kM1OwzAQhC0EEqX0BTjlBQL-S2IfUcVPpUqVEJyttbNGqdK4sg2CtydpgQMHTiuNdmZ3vgtyOoQBCbli9JoprpobLhkva9bocrkpGRX8hMx-tVMyo0zIksuKn5NFSltK6eiqmWQzUj-hC0PK8c3lLgxF8EXKYHucRsZ0EPZdhL54DzHjR2ERdumSnHnoEy6-55y83N89Lx_L9eZhtbxdl268kEtOofVSS8prz20D2rfa8UoLB1iBFZpL2dZcthX3jVXWj3uoPW0laFFXTMzJ6pjbBtiafex2ED9NgM4chBBfDcTcuR6Nb8BbKSSVQkhEtIgegKOiVeuVUmOWOma5GFKK6I3rxo5j6xyh6w2j5oDTTOjMhM4sN2bCOVr5H-vPK_-YvgB6GHnm |
CitedBy_id | crossref_primary_10_3390_photonics9060407 crossref_primary_10_3103_S1060992X24700322 crossref_primary_10_1134_S2635167622060064 |
Cites_doi | 10.1038/nature01007 10.1364/ao.46.008284 10.1109/JPHOT.2017.2772350 10.1364/ao.396557 10.1038/ncomms4248 10.1364/josaa.391153 10.1364/oe.26.026946 10.18287/2412-6179-2016-40-5-605-624 10.1063/1.2995174 10.1364/josaa.31.000603 10.1140/epjd/e2012-30343-6 10.1364/oe.21.020544 10.1364/josaa.36.001089 10.1080/09500349808231706 10.1103/physreva.95.063838 10.18287/2412-6179-co-1009 10.1002/lpor.201100031 10.1364/optica.414397 10.1070/pu2004v047n12abeh001802 10.1038/s41566-021-00780-4 10.1103/physreva.102.031501 10.1016/s0030-3992(00)00061-x 10.1364/josaa.35.001021 10.1364/josa.63.000445 10.1038/s41377-019-0194-2 10.1364/ol.39.006819 10.1098/rsta.1979.0039 10.18287/2412-6179-co-885 10.1098/rspa.2006.1683 10.18287/2412-6179-co-747 10.1038/nphoton.2010.204 10.1364/ol.3.000115 10.1364/ol.44.005687 10.1088/978-1-6817-4437-7ch9 10.1007/978-1-4612-3940-6 10.1016/s0079-6638(08)70215-4 |
ContentType | Journal Article |
CorporateAuthor | Physics and Technology Institute (Academic Unit) of V.I. Vernadsky Crimean Federal University Lebedev Physical Institute |
CorporateAuthor_xml | – name: Lebedev Physical Institute – name: Physics and Technology Institute (Academic Unit) of V.I. Vernadsky Crimean Federal University |
DBID | AAYXX CITATION DOA |
DOI | 10.18287/2412-6179-CO-1032 |
DatabaseName | CrossRef DOAJ DIrectory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2412-6179 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_f7afb43404334eeebeefaa2e805df888 10_18287_2412_6179_CO_1032 |
GroupedDBID | 642 AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c287t-20adf494026f2b7a9fd9c2593cae5ab39244d624d52f7b8bf26fe9f0d4a936513 |
IEDL.DBID | DOA |
ISSN | 0134-2452 |
IngestDate | Wed Aug 27 01:05:38 EDT 2025 Tue Jul 01 03:11:55 EDT 2025 Thu Apr 24 23:11:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c287t-20adf494026f2b7a9fd9c2593cae5ab39244d624d52f7b8bf26fe9f0d4a936513 |
OpenAccessLink | https://doaj.org/article/f7afb43404334eeebeefaa2e805df888 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f7afb43404334eeebeefaa2e805df888 crossref_citationtrail_10_18287_2412_6179_CO_1032 crossref_primary_10_18287_2412_6179_CO_1032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Kompʹûternaâ optika |
PublicationYear | 2022 |
Publisher | Samara National Research University |
Publisher_xml | – name: Samara National Research University |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref0 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref37 – ident: ref3 doi: 10.1038/nature01007 – ident: ref15 doi: 10.1364/ao.46.008284 – ident: ref14 doi: 10.1109/JPHOT.2017.2772350 – ident: ref35 doi: 10.1364/ao.396557 – ident: ref6 doi: 10.1038/ncomms4248 – ident: ref33 doi: 10.1364/josaa.391153 – ident: ref5 doi: 10.1364/oe.26.026946 – ident: ref10 doi: 10.18287/2412-6179-2016-40-5-605-624 – ident: ref29 doi: 10.1063/1.2995174 – ident: ref9 doi: 10.1364/josaa.31.000603 – ident: ref13 doi: 10.1140/epjd/e2012-30343-6 – ident: ref24 doi: 10.1364/oe.21.020544 – ident: ref23 doi: 10.1364/josaa.36.001089 – ident: ref32 doi: 10.1080/09500349808231706 – ident: ref16 doi: 10.1103/physreva.95.063838 – ident: ref28 doi: 10.18287/2412-6179-co-1009 – ident: ref17 – ident: ref7 doi: 10.1002/lpor.201100031 – ident: ref20 doi: 10.1364/optica.414397 – ident: ref22 doi: 10.1070/pu2004v047n12abeh001802 – ident: ref19 doi: 10.1038/s41566-021-00780-4 – ident: ref21 doi: 10.1103/physreva.102.031501 – ident: ref36 doi: 10.1016/s0030-3992(00)00061-x – ident: ref11 doi: 10.1364/josaa.35.001021 – ident: ref0 doi: 10.1364/josa.63.000445 – ident: ref2 doi: 10.1038/s41377-019-0194-2 – ident: ref12 doi: 10.1364/ol.39.006819 – ident: ref25 doi: 10.1098/rsta.1979.0039 – ident: ref27 doi: 10.18287/2412-6179-co-885 – ident: ref26 doi: 10.1098/rspa.2006.1683 – ident: ref34 doi: 10.18287/2412-6179-co-747 – ident: ref4 doi: 10.1038/nphoton.2010.204 – ident: ref1 doi: 10.1364/ol.3.000115 – ident: ref30 doi: 10.1364/ol.44.005687 – ident: ref8 doi: 10.1088/978-1-6817-4437-7ch9 – ident: ref31 doi: 10.1007/978-1-4612-3940-6 – ident: ref18 doi: 10.1016/s0079-6638(08)70215-4 |
SSID | ssj0002876141 |
Score | 2.2436361 |
Snippet | Using an asymptotic approach and an experiment supported by computer simulation, we analyzed processes of restoring structural stability and transitions to new... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 5 |
SubjectTerms | spiral beam structural stability vortex spectrum |
Title | Reconstruction of stable states of spiral vortex beams |
URI | https://doaj.org/article/f7afb43404334eeebeefaa2e805df888 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbeiPKSBzZkNYkfjUeoqCok6EKlbpYd-wZUWqRWiJ_fuySUssDCFMmyHevOyd1n333H2E0sMxPRVRZSAwhlcyWChkDJ7mBSlpfGU6Lw07MZTdTjVE-3Sn1RTFhDD9wIrgd9D0FJIoGRKiV8ZwLvi1RmOgLCN_r7os3bAlOv9ZERwnPVFCOUStD1YpsxQwTvPTRbBSXHWTEYC6KU-2GVtsj7ayszPGB7rXvI75plHbKdND9i-62ryNsPcXnMDMHGb_JXvgCObl6YJV5nCC3rBrpDn_EPCqf95CH5t-UJmwwfXgYj0ZZAEBWuc4V72EdQFkGegSL0vYVoK0QssvJJ-4DOjVLRFCrqAvqhDID9koUsKm-l0bk8ZZ35Yp7OGMdRuoyVxnm88hRfohIC1ByVVOGz6rL8SwSuavnBqUzFzBFOILE5EpsjsbnB2JHYuux2M-a9Ycf4tfc9SXbTk5it6wbUt2v17f7S9_l_THLBdgtKY6ijry9ZB7WVrtC5WIXreh-tAfx3ySY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+stable+states+of+spiral+vortex+beams&rft.jtitle=Komp%CA%B9%C3%BBterna%C3%A2+optika&rft.au=A.V.+Volyar&rft.au=E.G.+Abramochkin&rft.au=Y.E.+Akimova&rft.au=M.V.+Bretsko&rft.date=2022-02-01&rft.pub=Samara+National+Research+University&rft.issn=0134-2452&rft.eissn=2412-6179&rft.volume=46&rft.issue=1&rft.spage=5&rft.epage=15&rft_id=info:doi/10.18287%2F2412-6179-CO-1032&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f7afb43404334eeebeefaa2e805df888 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0134-2452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0134-2452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0134-2452&client=summon |