Measurement of high water-cut heavy oil flow based on differential pressure of swirling flow

Real-time measurement of heavy oil production is critical to ensure stable production. Due to the complex kinematic characteristics of heavy oil, existing methods cannot accurately measure its flow rate and water cut. In this paper, a novel method is proposed to measure the high water-cut heavy oil...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 36; no. 1
Main Authors Wang, Zhi-Hui, Zhang, Xing-Kai, Liao, Rui-Quan, Ma, Zhi-Xiong, Wang, Dong, Yang, Wei-Xia
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Real-time measurement of heavy oil production is critical to ensure stable production. Due to the complex kinematic characteristics of heavy oil, existing methods cannot accurately measure its flow rate and water cut. In this paper, a novel method is proposed to measure the high water-cut heavy oil flow by using the differential pressure of the two-phase swirling flow in the pipe. For the swirling flow in the pipe, the radial differential pressure and the axial differential pressure exist simultaneously, which are very sensitive to the flow rate and water cut. The formation mechanism of the two kinds of differential pressure is analyzed theoretically, and their relationship with flow rate and water cut is studied by experiment and numerical simulation. The measurement model of heavy oil–water two-phase flow on the above relations is validated by field experiments. The radial differential pressure is only related to the two-phase flow rate, varying exponentially with the flow rate when the oil viscosity is greater than 10 000 mPa s. This characteristic is very useful for the heavy oil–water two-phase flow measurement. The axial differential pressure decreases with the increase in water cut in cases of water cut <85%, while it increases with the water cut in cases of water cut >85%. With the increase in water cut, the ratio of axial differential pressure to radial differential pressure first decreases and then increases. The relative errors of the established measurement model for flow rate and water cut are 0.19%–17.92% and 0.21%–15.5%, respectively, and more than 70% of the measurements with a relative error of less than 10%. The study of the heavy oil–water two-phase flow measurement method can optimize the measurement cost and accelerate the process of intelligent oilfield construction.
AbstractList Real-time measurement of heavy oil production is critical to ensure stable production. Due to the complex kinematic characteristics of heavy oil, existing methods cannot accurately measure its flow rate and water cut. In this paper, a novel method is proposed to measure the high water-cut heavy oil flow by using the differential pressure of the two-phase swirling flow in the pipe. For the swirling flow in the pipe, the radial differential pressure and the axial differential pressure exist simultaneously, which are very sensitive to the flow rate and water cut. The formation mechanism of the two kinds of differential pressure is analyzed theoretically, and their relationship with flow rate and water cut is studied by experiment and numerical simulation. The measurement model of heavy oil–water two-phase flow on the above relations is validated by field experiments. The radial differential pressure is only related to the two-phase flow rate, varying exponentially with the flow rate when the oil viscosity is greater than 10 000 mPa s. This characteristic is very useful for the heavy oil–water two-phase flow measurement. The axial differential pressure decreases with the increase in water cut in cases of water cut <85%, while it increases with the water cut in cases of water cut >85%. With the increase in water cut, the ratio of axial differential pressure to radial differential pressure first decreases and then increases. The relative errors of the established measurement model for flow rate and water cut are 0.19%–17.92% and 0.21%–15.5%, respectively, and more than 70% of the measurements with a relative error of less than 10%. The study of the heavy oil–water two-phase flow measurement method can optimize the measurement cost and accelerate the process of intelligent oilfield construction.
Author Yang, Wei-Xia
Zhang, Xing-Kai
Liao, Rui-Quan
Wang, Dong
Wang, Zhi-Hui
Ma, Zhi-Xiong
Author_xml – sequence: 1
  givenname: Zhi-Hui
  orcidid: 0000-0002-2741-6925
  surname: Wang
  fullname: Wang, Zhi-Hui
– sequence: 2
  givenname: Xing-Kai
  orcidid: 0000-0001-9207-6528
  surname: Zhang
  fullname: Zhang, Xing-Kai
– sequence: 3
  givenname: Rui-Quan
  surname: Liao
  fullname: Liao, Rui-Quan
– sequence: 4
  givenname: Zhi-Xiong
  surname: Ma
  fullname: Ma, Zhi-Xiong
– sequence: 5
  givenname: Dong
  orcidid: 0000-0003-4606-968X
  surname: Wang
  fullname: Wang, Dong
– sequence: 6
  givenname: Wei-Xia
  surname: Yang
  fullname: Yang, Wei-Xia
BookMark eNp90M9LwzAUB_AgE9ymB_-DgCeFzqRJk_Yow18w8aI3oaTJy5bRNTNpLfvvbd3Ont47fL7fB2-GJo1vAKFrShaUCHafLQjNs1TQMzSlJC8SKYSYjLskiRCMXqBZjFtCCCtSMUVfb6BiF2AHTYu9xRu33uBetRAS3bV4A-rngL2rsa19jysVwWDfYOOshTBknKrxPkAcO8Z87F2oXbP-85fo3Ko6wtVpztHn0-PH8iVZvT-_Lh9WiU5z2SaUGlMAB8VJRZTminFODWggzFQgC0kFt1QbXonCSCsrRgRX3KZmYEwXbI5ujr374L87iG259V1ohpNlWqQkzTMh-aBuj0oHH2MAW-6D26lwKCkpx-eVWXl63mDvjjZq16rW-eYf_AufwnEj
CODEN PHFLE6
Cites_doi 10.1088/1361-6501/aaf8ec
10.1016/S0955-5986(98)00054-5
10.11949/j.issn.0438-1157.20180493
10.1080/01496395.2014.967406
10.16076/j.cnki.cjhd.2020.04.002
10.1016/0955-5986(89)90010-1
10.1016/j.heliyon.2023.e15397
10.1016/j.petrol.2019.02.012
10.3390/s23094462
10.1002/ceat.200900129
10.1109/TIM.2016.2540862
10.1109/JSEN.2020.3047603
10.1109/JSEN.2022.3228642
10.1016/j.expthermflusci.2018.10.010
10.1016/j.seppur.2016.11.049
10.1016/j.petrol.2022.110142
10.1002/mop.33451
10.1016/j.cherd.2017.12.030
10.11949/0438-1157.20201008
10.1016/j.flowmeasinst.2018.02.002
10.2118/208592-PA
10.16085/j.issn.1000-6613.2021-1489
10.1016/j.flowmeasinst.2012.11.002
10.1016/S0955-5986(03)00024-4
10.1016/S0301-9322(99)00029-4
10.1088/1755-1315/1127/1/012016
10.1016/j.flowmeasinst.2011.03.007
10.1016/j.flowmeasinst.2022.102304
10.3969/j.issn.1007-3426.2021.01.017
10.1016/S1001-6058(16)60670-4
10.1016/j.flowmeasinst.2015.09.005
10.1088/1361-6501/ab83a1
10.15832/ankutbd.433830
10.1016/j.egyr.2022.09.099
10.1109/TIM.2003.809087
10.1016/S0920-4105(03)00048-2
10.1088/1742-6596/2437/1/012024
10.1016/j.ijmultiphaseflow.2019.103190
10.1088/1361-6501/aa79c8
10.1016/j.petrol.2021.109848
10.2118/74689-JPT
10.3321/j.issn:0438-1157.2000.02.017
10.1016/j.flowmeasinst.2017.02.002
ContentType Journal Article
Copyright Author(s)
2024 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2024 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0185261
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0185261
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62173049
  funderid: 10.13039/501100001809
– fundername: The Open Foundation of Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University (Ministry of Education & Hubei Province), No. UOG2024-25
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAYXX
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c287t-11dd9e4ea40b0ac4a3441dece03dbe797164f1cd4b69d7f7b3064a4f2d41d3c93
ISSN 1070-6631
IngestDate Thu Oct 10 18:26:13 EDT 2024
Fri Aug 23 01:48:41 EDT 2024
Fri Jun 21 00:13:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c287t-11dd9e4ea40b0ac4a3441dece03dbe797164f1cd4b69d7f7b3064a4f2d41d3c93
ORCID 0000-0001-9207-6528
0000-0002-2741-6925
0000-0003-4606-968X
OpenAccessLink https://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0185261/19330844/013341_1_5.0185261.pdf
PQID 2920285674
PQPubID 2050667
PageCount 16
ParticipantIDs crossref_primary_10_1063_5_0185261
proquest_journals_2920285674
scitation_primary_10_1063_5_0185261
PublicationCentury 2000
PublicationDate 20240100
2024-01-01
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2024
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Deng, Li, Wei (c9) 2011
Rafi, Anggoro (c30) 2023
Vakamalla, Mangadoddy (c36) 2017
Desamala, Vijayan, Dasari, Dasmahapatra, Mandal (c10) 2016
Wang, Li, Hen (c38) 2020
Li, Guo, Gao (c23) 2000
Gao, Yang, Zhai (c14) 2016
Niu, Wang, Wei, Yang, Yu (c27) 2020
Jing, Yin, Zhu (c22) 2019
Yang, Hu, Ha (c45) 2021
Wang, Wang, Yang, Zhang (c41) 2015
Zeng, Li, Liu (c49) 2023
Skea, Hall (c32) 1999
Zhang, Zhang, Wang (c52) 2021
Barrufet, Setiadarma (c4) 2003
Yang, Wang, Niu (c46) 2018
Arif, Seppänen, Kolehmainen, Vauhkonen (c3) 2023
Gu, Liu, Hou (c16) 2020
Hammer, Tollefsen, Olsvik (c18) 1989
Zhang, Liu, Deng (c51) 2017
Pun, Hamad, Ahmed, Ugwu (c29) 2023
Abdulredha, Hussain, Abdullah (c1) 2022
Gudala, Naiya, Govindarajan (c17) 2022
Jin, Lian, Yang, He, Guo (c21) 2013
Zhang, Yang, Li (c50) 2023
Noroozi, Hashemabadi (c28) 2009
Huang, Wang, Li (c20) 2003
Wei, Wang, Niu (c43) 2019
Chen, Wang, Peng (c7) 2022
Dong, Jiang, Qiao, Xu (c11) 2003
Falcone, Hewitt, Alimonti, Harrison (c13) 2002
Wu, Guo, Deng (c44) 2023
Chen, Hou, Li (c6) 2015
Demir, Yurdem, Yazgi (c8) 2019
Huang, Deng, Guan, Chen, Hua (c19) 2018
Rasel, Straiton, Marashdeh, Teixeira (c31) 2021
Wang, Wang, Dong (c39) 2018
Yang, Wang, Niu (c47) 2019
Wang, Zhang, Liao (c42) 2021
George, Torczynski, Shollenberger, O'Hern, Ceccio (c15) 2000
Sun, Jing, Zhou (c33) 2015
Wang, Wang, Niu (c40) 2017
Yu, Wan, Jia (c48) 2023
Niu, Dong, Yang, Wei, Yu (c26) 2018
(2024013113343556500_c15) 2000; 26
(2024013113343556500_c41) 2015; 46
ANSYS, Inc. (2024013113343556500_c2) 2021
(2024013113343556500_c3) 2023; 23
(2024013113343556500_c36) 2017; 176
(2024013113343556500_c8) 2019; 25
(2024013113343556500_c17) 2022; 211
(2024013113343556500_c12) 2013
(2024013113343556500_c19) 2018; 130
(2024013113343556500_c38) 2020; 71
(2024013113343556500_c44) 2023; 23
(2024013113343556500_c5) 1989
(2024013113343556500_c10) 2016; 28
(2024013113343556500_c25) 2002
(2024013113343556500_c43) 2019; 124
(2024013113343556500_c20) 2003; 52
(2024013113343556500_c30) 2023; 1127
(2024013113343556500_c11) 2003; 14
(2024013113343556500_c47) 2019; 101
(2024013113343556500_c37) 2009
(2024013113343556500_c7) 2022; 8
(2024013113343556500_c22) 2019; 176
Technical Committee ISO/TC 30 (2024013113343556500_c34) 2003
(2024013113343556500_c18) 1989; 1
(2024013113343556500_c9) 2011; 22
(2024013113343556500_c16) 2020; 35
(2024013113343556500_c51) 2017; 28
(2024013113343556500_c14) 2016; 65
(2024013113343556500_c4) 2003; 40
(2024013113343556500_c52) 2021; 50
(2024013113343556500_c31) 2021; 21
(2024013113343556500_c33) 2015; 10
(2024013113343556500_c39) 2018; 69
(2024013113343556500_c1) 2022; 209
(2024013113343556500_c40) 2017; 54
(2024013113343556500_c6) 2015; 50
(2024013113343556500_c21) 2013; 31
(2024013113343556500_c32) 1999; 10
(2024013113343556500_c42) 2021; 37
Technical Committee ISO/TC 30 (2024013113343556500_c35) 2005
(2024013113343556500_c49) 2023; 65
(2024013113343556500_c50) 2023; 2437
(2024013113343556500_c26) 2018; 30
(2024013113343556500_c27) 2020; 31
(2024013113343556500_c46) 2018; 60
(2024013113343556500_c23) 2000; 51
(2024013113343556500_c29) 2023; 9
(2024013113343556500_c13) 2002; 54
(2024013113343556500_c28) 2009; 32
(2024013113343556500_c45) 2021; 40
(2024013113343556500_c48) 2023; 89
References_xml – start-page: 781
  year: 2015
  ident: c6
  article-title: The effect of pressure parameters of a novel dynamic hydroswirler on the separation efficiency and split ratio
  publication-title: Sep. Sci. Technol.
  contributor:
    fullname: Li
– start-page: e15397
  year: 2023
  ident: c29
  article-title: Experimental investigation of the parameters that affect droplet size and distribution for design calculations of two-phase separators
  publication-title: Heliyon
  contributor:
    fullname: Ugwu
– start-page: 33
  year: 2015
  ident: c41
  article-title: Phase-isolation of upward oil-water flow using centrifugal method
  publication-title: Flow Meas. Instrum.
  contributor:
    fullname: Zhang
– start-page: 549
  year: 2000
  ident: c15
  article-title: Validation of electrical-impedance tomography for measurements of material distribution in two-phase flows
  publication-title: Int. J. Multiphase Flow
  contributor:
    fullname: Ceccio
– start-page: 1690
  year: 2016
  ident: c14
  article-title: four-sector conductance method for measuring and characterizing low-velocity oil-water two-phase flows
  publication-title: IEEE Trans. Instrum. Meas.
  contributor:
    fullname: Zhai
– start-page: 78
  year: 2018
  ident: c46
  article-title: Gas-liquid two-phase flow measurements by the electromagnetic flowmeter combined with a phase-isolation method
  publication-title: Flow Meas. Instrum.
  contributor:
    fullname: Niu
– start-page: 239
  year: 2000
  ident: c23
  article-title: Flow patterns of oil-water limited liquid two-phase flow in helically coiled tubes
  publication-title: J. Chem. Ind. Eng.
  contributor:
    fullname: Gao
– start-page: 095301
  year: 2017
  ident: c51
  article-title: Experimental measurement of oil-water two-phase flow by data fusion of electrical tomography sensors and venturi pipe
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Deng
– start-page: 266
  year: 2018
  ident: c19
  article-title: Development of a novel high-efficiency dynamic hydroswirler for oil-water separation
  publication-title: Chem. Eng. Res. Des.
  contributor:
    fullname: Hua
– start-page: 47
  year: 2023
  ident: c49
  article-title: Measurement system of ultra-low moisture cut in oil based on the microwave transmission method
  publication-title: Microwave Opt. Technol. Lett.
  contributor:
    fullname: Liu
– start-page: 17
  year: 2003
  ident: c4
  article-title: Experimental viscosities of heavy oil mixtures up to 450 K and high pressures using a mercury capillary viscometer
  publication-title: J. Pet. Sci. Eng.
  contributor:
    fullname: Setiadarma
– start-page: 102304
  year: 2023
  ident: c48
  article-title: Extracting reference voltages from measurement voltages for oil-water two-phase flow measurement of electrical impedance tomography
  publication-title: Flow Meas. Instrum.
  contributor:
    fullname: Jia
– start-page: 55
  year: 2013
  ident: c21
  article-title: The parameters measurement of air-water two phase flow using the electrical resistance tomography (ERT) technique in a bubble column
  publication-title: Flow Meas. Instrum.
  contributor:
    fullname: Guo
– start-page: 107
  year: 2021
  ident: c42
  article-title: Study on pressure drop characteristics of a two-stage swirler separato
  publication-title: SPE Prod. Oper.
  contributor:
    fullname: Liao
– start-page: 183
  year: 2003
  ident: c11
  article-title: Application of electrical resistance tomography to two-phase pipe flow parameters measurement
  publication-title: Flow Meas. Instrum.
  contributor:
    fullname: Xu
– start-page: 51
  year: 1989
  ident: c18
  article-title: Capacitance transducers for non-intrusive measurement of water in heavy oil
  publication-title: Flow Meas. Instrum.
  contributor:
    fullname: Olsvik
– start-page: 1282
  year: 2015
  ident: c33
  article-title: Pressure drop study of extra-heavy heavy oil-water flow in a horizontal pipe
  publication-title: China Sci. Paper
  contributor:
    fullname: Zhou
– start-page: 025301
  year: 2018
  ident: c26
  article-title: Void fraction measurement using imaging and phase isolation method in horizontal annular flow
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Yu
– start-page: 6441
  year: 2021
  ident: c45
  article-title: A two-parameter measurement method for intra-tubular phase-separated high water cut the oil-water two-phase flow
  publication-title: Chem. Prog.
  contributor:
    fullname: Ha
– start-page: 1121
  year: 2019
  ident: c22
  article-title: Viscosity and contact angle prediction of low water-containing heavy heavy oil diluted with light oil
  publication-title: J. Pet. Sci. Eng.
  contributor:
    fullname: Zhu
– start-page: 151
  year: 1999
  ident: c32
  article-title: Effects of water in oil and oil in water on single-phase flowmeters
  publication-title: Flow Meas. Instrum.
  contributor:
    fullname: Hall
– start-page: 7702
  year: 2021
  ident: c31
  article-title: Toward water volume fraction calculation in multi-phase flows using electrical capacitance tomography sensors
  publication-title: IEEE Sens. J.
  contributor:
    fullname: Teixeira
– start-page: 7
  year: 2003
  ident: c20
  article-title: Application of electrical capacitance tomography to the void fraction measurement of two-phase flow
  publication-title: IEEE Trans. Instrum. Meas.
  contributor:
    fullname: Li
– start-page: 095303
  year: 2020
  ident: c27
  article-title: Liquid flow measurement using phase isolation and imaging method in horizontal gas-liquid two phase flow
  publication-title: Meas. Sci. Technol.
  contributor:
    fullname: Yu
– start-page: 103190
  year: 2019
  ident: c43
  article-title: A novel centrifugal gas liquid pipe separator for high velocity wet gas separation
  publication-title: Int. J. Multiphase Flow
  contributor:
    fullname: Niu
– start-page: 87
  year: 2019
  ident: c47
  article-title: Measurement of vertical gas-liquid two-phase flow by an electromagnetic flowmeter and image processing based on the phase-isolation
  publication-title: Exp. Therm. Fluid Sci.
  contributor:
    fullname: Niu
– start-page: 101
  year: 2021
  ident: c52
  article-title: Water cut measurement by radio frequency method under the condition of oil-water two-phase spiral flow
  publication-title: Chem. Eng. Oil Gas
  contributor:
    fullname: Wang
– start-page: 90
  year: 2022
  ident: c7
  article-title: Study on water fraction of oil–gas–water three-phase flow based on electrical methods
  publication-title: Energy Rep.
  contributor:
    fullname: Peng
– start-page: 110142
  year: 2022
  ident: c17
  article-title: Heavy oil-water dispersed flows in horizontal pipelines using bio-additives with energy analysis: Experimental and numerical investigations
  publication-title: J. Pet. Sci. Eng.
  contributor:
    fullname: Govindarajan
– start-page: 23
  year: 2017
  ident: c36
  article-title: Numerical simulation of industrial hydroswirlers performance: Role of turbulence modelling
  publication-title: Sep. Purif. Technol.
  contributor:
    fullname: Mangadoddy
– start-page: 177
  year: 2017
  ident: c40
  article-title: Mass flowrate measurement using the swirl motion in circular conduits
  publication-title: Flow Meas. Instrum.
  contributor:
    fullname: Niu
– start-page: 2900
  year: 2023
  ident: c44
  article-title: Application of array imaging algorithm in horizontal well oil–water two-phase water holdup measurement
  publication-title: IEEE Sens. J.
  contributor:
    fullname: Deng
– start-page: 012024
  year: 2023
  ident: c50
  article-title: Research and application of automatic heavy oil metering system
  publication-title: J. Phys.: Conf. Ser.
  contributor:
    fullname: Li
– start-page: 5049
  year: 2018
  ident: c39
  article-title: Radial differential pressure used in multiphase flow metering based on phase-isolation
  publication-title: CIESC J.
  contributor:
    fullname: Dong
– start-page: 5515
  year: 2020
  ident: c38
  article-title: Application of intra-pipe phase-separated dual differential pressure in multiphase flow dual-parameter measurements
  publication-title: J. Chem. Eng.
  contributor:
    fullname: Hen
– start-page: 77
  year: 2002
  ident: c13
  article-title: Multiphase flow metering: Current trends and future developments
  publication-title: J. Pet. Technol.
  contributor:
    fullname: Harrison
– start-page: 4462
  year: 2023
  ident: c3
  article-title: Dual-modal electrical imaging of two-phase flow-experimental evaluation of the state estimation approach
  publication-title: Sensors
  contributor:
    fullname: Vauhkonen
– start-page: 272
  year: 2011
  ident: c9
  article-title: Theoretical study of vertical slug flow measurement by data fusion from electromagnetic flowmeter and electrical resistance tomography
  publication-title: Flow Meas. Instrum.
  contributor:
    fullname: Wei
– start-page: 420
  year: 2020
  ident: c16
  article-title: Study on the factors influencing the aggregation of oil droplets in a deflector-type cyclonic field
  publication-title: Hydrodyn. Res. Prog. A: Ser.
  contributor:
    fullname: Hou
– start-page: 354
  year: 2019
  ident: c8
  article-title: Measurement and prediction of total friction losses in drip irrigation laterals with cylindrical integrated in-line drip emitters using CFD analysis method
  publication-title: J. Agric. Sci.
  contributor:
    fullname: Yazgi
– start-page: 1885
  year: 2009
  ident: c28
  article-title: CFD simulation of inlet design effect on deoiling hydroswirler separation efficiency
  publication-title: Chem. Eng. Technol.
  contributor:
    fullname: Hashemabadi
– start-page: 012016
  year: 2023
  ident: c30
  article-title: Preliminary prioritization on steam flood injection in oil field using random forest regression method
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
  contributor:
    fullname: Anggoro
– start-page: 109848
  year: 2022
  ident: c1
  article-title: Water-in-oil emulsion stability and demulsification via surface-active compounds: A review
  publication-title: J. Pet. Sci. Eng.
  contributor:
    fullname: Abdullah
– start-page: 658
  year: 2016
  ident: c10
  article-title: Prediction of oil-water flow patterns, radial distribution of volume fraction, pressure and velocity during separated flows in horizontal pipe
  publication-title: J. Hydrodyn.
  contributor:
    fullname: Mandal
– volume: 30
  start-page: 025301
  year: 2018
  ident: 2024013113343556500_c26
  article-title: Void fraction measurement using imaging and phase isolation method in horizontal annular flow
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aaf8ec
– volume: 10
  start-page: 151
  year: 1999
  ident: 2024013113343556500_c32
  article-title: Effects of water in oil and oil in water on single-phase flowmeters
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/S0955-5986(98)00054-5
– volume: 69
  start-page: 5049
  year: 2018
  ident: 2024013113343556500_c39
  article-title: Radial differential pressure used in multiphase flow metering based on phase-isolation
  publication-title: CIESC J.
  doi: 10.11949/j.issn.0438-1157.20180493
– volume: 50
  start-page: 781
  year: 2015
  ident: 2024013113343556500_c6
  article-title: The effect of pressure parameters of a novel dynamic hydroswirler on the separation efficiency and split ratio
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2014.967406
– volume: 35
  start-page: 420
  year: 2020
  ident: 2024013113343556500_c16
  article-title: Study on the factors influencing the aggregation of oil droplets in a deflector-type cyclonic field
  publication-title: Hydrodyn. Res. Prog. A: Ser.
  doi: 10.16076/j.cnki.cjhd.2020.04.002
– volume: 1
  start-page: 51
  year: 1989
  ident: 2024013113343556500_c18
  article-title: Capacitance transducers for non-intrusive measurement of water in heavy oil
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/0955-5986(89)90010-1
– volume: 9
  start-page: e15397
  year: 2023
  ident: 2024013113343556500_c29
  article-title: Experimental investigation of the parameters that affect droplet size and distribution for design calculations of two-phase separators
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15397
– year: 2003
  ident: 2024013113343556500_c34
  article-title: Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full. I. General principles and requirements
  contributor:
    fullname: Technical Committee ISO/TC 30
– volume-title: ANSYS Fluent User's Guide, Release 2021 R1
  year: 2021
  ident: 2024013113343556500_c2
  contributor:
    fullname: ANSYS, Inc.
– volume: 176
  start-page: 1121
  year: 2019
  ident: 2024013113343556500_c22
  article-title: Viscosity and contact angle prediction of low water-containing heavy heavy oil diluted with light oil
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2019.02.012
– volume-title: Proficient ANSYS
  year: 2002
  ident: 2024013113343556500_c25
– volume: 23
  start-page: 4462
  year: 2023
  ident: 2024013113343556500_c3
  article-title: Dual-modal electrical imaging of two-phase flow-experimental evaluation of the state estimation approach
  publication-title: Sensors
  doi: 10.3390/s23094462
– volume: 32
  start-page: 1885
  year: 2009
  ident: 2024013113343556500_c28
  article-title: CFD simulation of inlet design effect on deoiling hydroswirler separation efficiency
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.200900129
– year: 2009
  ident: 2024013113343556500_c37
  article-title: Experimental study on high viscosity oil/water flow in horizontal and vertical pipes
– volume: 65
  start-page: 1690
  year: 2016
  ident: 2024013113343556500_c14
  article-title: four-sector conductance method for measuring and characterizing low-velocity oil-water two-phase flows
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2016.2540862
– volume: 21
  start-page: 7702
  year: 2021
  ident: 2024013113343556500_c31
  article-title: Toward water volume fraction calculation in multi-phase flows using electrical capacitance tomography sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3047603
– volume: 23
  start-page: 2900
  year: 2023
  ident: 2024013113343556500_c44
  article-title: Application of array imaging algorithm in horizontal well oil–water two-phase water holdup measurement
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3228642
– volume: 101
  start-page: 87
  year: 2019
  ident: 2024013113343556500_c47
  article-title: Measurement of vertical gas-liquid two-phase flow by an electromagnetic flowmeter and image processing based on the phase-isolation
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2018.10.010
– volume: 176
  start-page: 23
  year: 2017
  ident: 2024013113343556500_c36
  article-title: Numerical simulation of industrial hydroswirlers performance: Role of turbulence modelling
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2016.11.049
– volume: 211
  start-page: 110142
  year: 2022
  ident: 2024013113343556500_c17
  article-title: Heavy oil-water dispersed flows in horizontal pipelines using bio-additives with energy analysis: Experimental and numerical investigations
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2022.110142
– volume: 65
  start-page: 47
  year: 2023
  ident: 2024013113343556500_c49
  article-title: Measurement system of ultra-low moisture cut in oil based on the microwave transmission method
  publication-title: Microwave Opt. Technol. Lett.
  doi: 10.1002/mop.33451
– volume: 130
  start-page: 266
  year: 2018
  ident: 2024013113343556500_c19
  article-title: Development of a novel high-efficiency dynamic hydroswirler for oil-water separation
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2017.12.030
– volume: 10
  start-page: 1282
  year: 2015
  ident: 2024013113343556500_c33
  article-title: Pressure drop study of extra-heavy heavy oil-water flow in a horizontal pipe
  publication-title: China Sci. Paper
– volume: 71
  start-page: 5515
  year: 2020
  ident: 2024013113343556500_c38
  article-title: Application of intra-pipe phase-separated dual differential pressure in multiphase flow dual-parameter measurements
  publication-title: J. Chem. Eng.
  doi: 10.11949/0438-1157.20201008
– volume: 60
  start-page: 78
  year: 2018
  ident: 2024013113343556500_c46
  article-title: Gas-liquid two-phase flow measurements by the electromagnetic flowmeter combined with a phase-isolation method
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2018.02.002
– volume: 37
  start-page: 107
  year: 2021
  ident: 2024013113343556500_c42
  article-title: Study on pressure drop characteristics of a two-stage swirler separato
  publication-title: SPE Prod. Oper.
  doi: 10.2118/208592-PA
– volume: 40
  start-page: 6441
  year: 2021
  ident: 2024013113343556500_c45
  article-title: A two-parameter measurement method for intra-tubular phase-separated high water cut the oil-water two-phase flow
  publication-title: Chem. Prog.
  doi: 10.16085/j.issn.1000-6613.2021-1489
– volume: 31
  start-page: 55
  year: 2013
  ident: 2024013113343556500_c21
  article-title: The parameters measurement of air-water two phase flow using the electrical resistance tomography (ERT) technique in a bubble column
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2012.11.002
– volume: 14
  start-page: 183
  year: 2003
  ident: 2024013113343556500_c11
  article-title: Application of electrical resistance tomography to two-phase pipe flow parameters measurement
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/S0955-5986(03)00024-4
– volume: 26
  start-page: 549
  year: 2000
  ident: 2024013113343556500_c15
  article-title: Validation of electrical-impedance tomography for measurements of material distribution in two-phase flows
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(99)00029-4
– volume: 1127
  start-page: 012016
  year: 2023
  ident: 2024013113343556500_c30
  article-title: Preliminary prioritization on steam flood injection in oil field using random forest regression method
  publication-title: IOP Conf. Ser.: Earth Environ. Sci.
  doi: 10.1088/1755-1315/1127/1/012016
– volume: 22
  start-page: 272
  year: 2011
  ident: 2024013113343556500_c9
  article-title: Theoretical study of vertical slug flow measurement by data fusion from electromagnetic flowmeter and electrical resistance tomography
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2011.03.007
– start-page: 54
  volume-title: Multiphase Flow Metering
  year: 2013
  ident: 2024013113343556500_c12
– volume: 89
  start-page: 102304
  year: 2023
  ident: 2024013113343556500_c48
  article-title: Extracting reference voltages from measurement voltages for oil-water two-phase flow measurement of electrical impedance tomography
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2022.102304
– volume: 50
  start-page: 101
  year: 2021
  ident: 2024013113343556500_c52
  article-title: Water cut measurement by radio frequency method under the condition of oil-water two-phase spiral flow
  publication-title: Chem. Eng. Oil Gas
  doi: 10.3969/j.issn.1007-3426.2021.01.017
– volume: 28
  start-page: 658
  year: 2016
  ident: 2024013113343556500_c10
  article-title: Prediction of oil-water flow patterns, radial distribution of volume fraction, pressure and velocity during separated flows in horizontal pipe
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(16)60670-4
– volume: 46
  start-page: 33
  year: 2015
  ident: 2024013113343556500_c41
  article-title: Phase-isolation of upward oil-water flow using centrifugal method
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2015.09.005
– volume: 31
  start-page: 095303
  year: 2020
  ident: 2024013113343556500_c27
  article-title: Liquid flow measurement using phase isolation and imaging method in horizontal gas-liquid two phase flow
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab83a1
– volume-title: Petroleum Gas-Liquid Two-Phase Pipe Flow
  year: 1989
  ident: 2024013113343556500_c5
– volume: 25
  start-page: 354
  year: 2019
  ident: 2024013113343556500_c8
  article-title: Measurement and prediction of total friction losses in drip irrigation laterals with cylindrical integrated in-line drip emitters using CFD analysis method
  publication-title: J. Agric. Sci.
  doi: 10.15832/ankutbd.433830
– volume: 8
  start-page: 90
  year: 2022
  ident: 2024013113343556500_c7
  article-title: Study on water fraction of oil–gas–water three-phase flow based on electrical methods
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.09.099
– volume: 52
  start-page: 7
  year: 2003
  ident: 2024013113343556500_c20
  article-title: Application of electrical capacitance tomography to the void fraction measurement of two-phase flow
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2003.809087
– volume: 40
  start-page: 17
  year: 2003
  ident: 2024013113343556500_c4
  article-title: Experimental viscosities of heavy oil mixtures up to 450 K and high pressures using a mercury capillary viscometer
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/S0920-4105(03)00048-2
– year: 2005
  ident: 2024013113343556500_c35
  article-title: Measurement of fluid flow—Procedures for the evaluation of uncertainties
  contributor:
    fullname: Technical Committee ISO/TC 30
– volume: 2437
  start-page: 012024
  year: 2023
  ident: 2024013113343556500_c50
  article-title: Research and application of automatic heavy oil metering system
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/2437/1/012024
– volume: 124
  start-page: 103190
  year: 2019
  ident: 2024013113343556500_c43
  article-title: A novel centrifugal gas liquid pipe separator for high velocity wet gas separation
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2019.103190
– volume: 28
  start-page: 095301
  year: 2017
  ident: 2024013113343556500_c51
  article-title: Experimental measurement of oil-water two-phase flow by data fusion of electrical tomography sensors and venturi pipe
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa79c8
– volume: 209
  start-page: 109848
  year: 2022
  ident: 2024013113343556500_c1
  article-title: Water-in-oil emulsion stability and demulsification via surface-active compounds: A review
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109848
– volume: 54
  start-page: 77
  year: 2002
  ident: 2024013113343556500_c13
  article-title: Multiphase flow metering: Current trends and future developments
  publication-title: J. Pet. Technol.
  doi: 10.2118/74689-JPT
– volume: 51
  start-page: 239
  year: 2000
  ident: 2024013113343556500_c23
  article-title: Flow patterns of oil-water limited liquid two-phase flow in helically coiled tubes
  publication-title: J. Chem. Ind. Eng.
  doi: 10.3321/j.issn:0438-1157.2000.02.017
– volume: 54
  start-page: 177
  year: 2017
  ident: 2024013113343556500_c40
  article-title: Mass flowrate measurement using the swirl motion in circular conduits
  publication-title: Flow Meas. Instrum.
  doi: 10.1016/j.flowmeasinst.2017.02.002
SSID ssj0003926
Score 2.47319
Snippet Real-time measurement of heavy oil production is critical to ensure stable production. Due to the complex kinematic characteristics of heavy oil, existing...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Publisher
SubjectTerms Differential pressure
Error analysis
Flow measurement
Flow velocity
Kinematics
Mathematical models
Measurement methods
Oil fields
Pipes
Swirling
Two phase flow
Title Measurement of high water-cut heavy oil flow based on differential pressure of swirling flow
URI http://dx.doi.org/10.1063/5.0185261
https://www.proquest.com/docview/2920285674
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA7aIvpia7V0tUqwvi3RuWSSyaOUliJtfdmFfRCGyWWgsOyUdtbS_npPbjNTq6K-DEtIDsv5Mme-c0kOQh-k0EwlXJIk14ZQyWtSqrImuTJNpmhhuEu0n52zkzn9sigWQ2NId7qkkx_V3S_PlfwPqjAGuNpTsv-AbC8UBuA34AtPQBief4Xx2RDgc6QPHO3pDZDHK6LWneWA32-n7cVy2izbm6n9XmmbG4g9UTobLHd1sDaJAOttKyd3Ot3OH7NWVyaqXNFHs1xfaH-9kxA0xhFC2CCjP4UN-nzQvZqEIG5kD8EiECAlfqEJY6UgnPlmKdGI-ltMxpvlgW0GMgQKtbeklkXG0uEDFJPu51-r4_npaTU7Wsweo80MTAdzxZhD0Q6wOearSP3findFsfxTL_g-wxjchqfAKXx5w4hBzLbR80D98WeP4wv0yKx20FZwA3Awstc76EnQz0v0bQQwbhtsAcY9wNgBjAFgbAHDDmDcrvAYYBwBtusjwG7-KzQ_PpodnpDQDoMocGs7kqZaC0NNTROZ1IrWOVBZbWzDNy3hnbKeb5MqTSUTmjdcWueypk2mYVquRL6LNlbtyuwhbJSotUy4gvlUUi3KRMuaF0WZ6bxI1QS9jyqsLv2tJ5WrVmB5VVRBzxO0H5VbhZfiurLNz7KyYJxO0EGv8N8Lef1nIW_Qs2Hz7qON7mpt3gIL7OQ7tzF-APN4Xwc
link.rule.ids 315,783,787,27936,27937
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+high+water-cut+heavy+oil+flow+based+on+differential+pressure+of+swirling+flow&rft.jtitle=Physics+of+fluids+%281994%29&rft.date=2024-01-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=36&rft.issue=1&rft_id=info:doi/10.1063%2F5.0185261&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon