Characterization of Long Non-coding RNAs Modified by m6A RNA Methylation in Skeletal Myogenesis

Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N 6 -methyladenosine (m 6 A) plays important r...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 9; p. 762669
Main Authors Xie, Shu-Juan, Tao, Shuang, Diao, Li-Ting, Li, Pan-Long, Chen, Wei-Cai, Zhou, Zhi-Gang, Hu, Yan-Xia, Hou, Ya-Rui, Lei, Hang, Xu, Wan-Yi, Chen, Wen-Jie, Peng, Yan-Wen, Zhang, Qi, Xiao, Zhen-Dong
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 13.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N 6 -methyladenosine (m 6 A) plays important roles in various biological processes, making it essential to profile m 6 A modification on a transcriptome-wide scale in developing muscle. Patterns of m 6 A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m 6 A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m 6 A-lncRNAs harbor the consensus m 6 A motif “DRACH” along lncRNA transcripts. Interestingly, we found that m 6 A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m 6 A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m 6 A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m 6 A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle.
AbstractList Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N 6 -methyladenosine (m 6 A) plays important roles in various biological processes, making it essential to profile m 6 A modification on a transcriptome-wide scale in developing muscle. Patterns of m 6 A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m 6 A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m 6 A-lncRNAs harbor the consensus m 6 A motif “DRACH” along lncRNA transcripts. Interestingly, we found that m 6 A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m 6 A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m 6 A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m 6 A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle.
Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various biological processes, making it essential to profile m6A modification on a transcriptome-wide scale in developing muscle. Patterns of m6A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m6A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m6A-lncRNAs harbor the consensus m6A motif "DRACH" along lncRNA transcripts. Interestingly, we found that m6A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m6A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m6A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m6A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle.Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various biological processes, making it essential to profile m6A modification on a transcriptome-wide scale in developing muscle. Patterns of m6A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m6A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m6A-lncRNAs harbor the consensus m6A motif "DRACH" along lncRNA transcripts. Interestingly, we found that m6A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m6A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m6A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m6A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle.
Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various biological processes, making it essential to profile m6A modification on a transcriptome-wide scale in developing muscle. Patterns of m6A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m6A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m6A-lncRNAs harbor the consensus m6A motif “DRACH” along lncRNA transcripts. Interestingly, we found that m6A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m6A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m6A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m6A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle.
Author Peng, Yan-Wen
Zhang, Qi
Lei, Hang
Tao, Shuang
Hu, Yan-Xia
Zhou, Zhi-Gang
Chen, Wei-Cai
Diao, Li-Ting
Xie, Shu-Juan
Xu, Wan-Yi
Chen, Wen-Jie
Li, Pan-Long
Hou, Ya-Rui
Xiao, Zhen-Dong
AuthorAffiliation 1 Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
2 Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
3 Department of Orthopedics, First Affiliated Hospital, Jinan University , Guangzhou , China
AuthorAffiliation_xml – name: 2 Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
– name: 3 Department of Orthopedics, First Affiliated Hospital, Jinan University , Guangzhou , China
– name: 1 Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
Author_xml – sequence: 1
  givenname: Shu-Juan
  surname: Xie
  fullname: Xie, Shu-Juan
– sequence: 2
  givenname: Shuang
  surname: Tao
  fullname: Tao, Shuang
– sequence: 3
  givenname: Li-Ting
  surname: Diao
  fullname: Diao, Li-Ting
– sequence: 4
  givenname: Pan-Long
  surname: Li
  fullname: Li, Pan-Long
– sequence: 5
  givenname: Wei-Cai
  surname: Chen
  fullname: Chen, Wei-Cai
– sequence: 6
  givenname: Zhi-Gang
  surname: Zhou
  fullname: Zhou, Zhi-Gang
– sequence: 7
  givenname: Yan-Xia
  surname: Hu
  fullname: Hu, Yan-Xia
– sequence: 8
  givenname: Ya-Rui
  surname: Hou
  fullname: Hou, Ya-Rui
– sequence: 9
  givenname: Hang
  surname: Lei
  fullname: Lei, Hang
– sequence: 10
  givenname: Wan-Yi
  surname: Xu
  fullname: Xu, Wan-Yi
– sequence: 11
  givenname: Wen-Jie
  surname: Chen
  fullname: Chen, Wen-Jie
– sequence: 12
  givenname: Yan-Wen
  surname: Peng
  fullname: Peng, Yan-Wen
– sequence: 13
  givenname: Qi
  surname: Zhang
  fullname: Zhang, Qi
– sequence: 14
  givenname: Zhen-Dong
  surname: Xiao
  fullname: Xiao, Zhen-Dong
BookMark eNp9kUtvGyEUhVGVqnk0P6C7WXYzzvCGTSXL6iOSnUp9SN0hhrnYpGNIYVzJ_fXFdlQ1XXSBOLrc83HhXKKzmCIg9Ap3M0qVvvEOxnFGOoJnUhAh9DN0QYgWraDs29lf-hxdl3LfdR0mXHJFX6BzyiQhnMkLZBYbm62bIIdfdgopNsk3yxTXzV2KrUtDqPLT3bw0q6p9gKHp981WzA_FZgXTZj-efCE2n7_DCJMdm9U-rSFCCeUleu7tWOD6cb9CX9-9_bL40C4_vr9dzJetI0rq1nIFilsGHkvZ-8FKDt1grXOag2DeiZ5q1jFbl3NK9IxxrIlgSnIrCdArdHviDsnem4cctjbvTbLBHAspr43NU3AjmPpVxDHoGQXMmAelLZOSS6WHjjjqK-vNifWw67cwOIhTtuMT6NOTGDZmnX4axes8FFfA60dATj92UCazDeUQl42QdsUQrjFh9aW6tuJTq8uplAz-zzW4M4eczTFnc8jZnHKuHvmPx4XpGEKdJoz_cf4GnTSvAg
CitedBy_id crossref_primary_10_3389_fcell_2022_929183
crossref_primary_10_1016_j_biopha_2024_117041
crossref_primary_10_3390_cells11223654
crossref_primary_10_3390_cells11213497
crossref_primary_10_3389_fgene_2022_974357
crossref_primary_10_1016_j_ijbiomac_2024_132057
crossref_primary_10_1038_s41588_023_01598_2
crossref_primary_10_3390_ijms23094600
crossref_primary_10_3390_ijms242015161
crossref_primary_10_1016_j_heliyon_2024_e30640
crossref_primary_10_1016_j_yexcr_2022_113299
crossref_primary_10_1111_cpr_13294
crossref_primary_10_1186_s11658_024_00618_1
Cites_doi 10.3389/fcell.2021.670435
10.1038/s41418-018-0063-1
10.3389/fcell.2020.00870
10.1155/2016/8367534
10.1089/cmb.2017.0096
10.1038/s41587-019-0201-4
10.1080/15476286.2018.1431494
10.1038/nrg.2016.169
10.1146/annurev-cellbio-100616-060758
10.1073/pnas.2005868117
10.1016/j.molcel.2019.04.025
10.1016/j.tibs.2012.12.006
10.1002/ijc.28721
10.1016/j.ceb.2010.03.003
10.3389/fcell.2021.628339
10.1016/j.bbrc.2021.03.035
10.1242/dev.131771
10.1038/s41418-020-0508-1
10.1016/j.gendis.2020.03.005
10.1186/s13059-014-0550-8
10.1038/s41419-019-1399-2
10.1093/bioinformatics/btt171
10.1007/s11427-013-4547-4
10.1186/s13072-019-0253-1
10.1016/j.molcel.2010.05.004
10.1038/ncb2902
10.1111/jcmm.15073
10.1038/s41420-021-00497-x
10.1101/cshperspect.a008342
10.1038/cr.2014.3
10.1016/j.cell.2017.05.045
10.1038/nbt.1754
10.1126/science.1231776
10.1093/nar/gkaa347
10.1016/j.devcel.2015.05.009
10.3389/fcell.2021.744171
10.1038/ncomms10026
10.1038/s41420-020-00328-5
10.1016/j.omtn.2020.08.032
10.1016/j.omtn.2021.04.002
10.1038/s41422-018-0040-8
10.1242/dev.084665
10.7150/ijbs.56251
10.1038/sj.onc.1203965
10.1016/bs.ctdb.2016.08.003
10.1155/2021/9955691
10.1038/s41556-020-00595-5
10.1016/j.stem.2015.01.016
10.1101/gad.1416906
10.1089/omi.2011.0118
10.3389/fcell.2019.00228
10.1155/2020/2830565
10.1371/journal.pone.0193898
10.1002/jcsm.12623
10.3389/fcell.2019.00394
10.1016/j.omtn.2019.10.028
10.1186/s13045-019-0805-7
10.3389/fcell.2019.00116
10.1093/nar/gku365
10.1016/j.cell.2013.06.020
10.1093/nar/gky130
10.1016/j.yexcr.2021.112492
10.1093/bioinformatics/btp352
10.1093/bioinformatics/btq033
10.1038/nrg3724
10.1038/emboj.2013.182
10.1098/rsob.170119
10.1016/j.molcel.2019.09.032
10.1007/s11427-020-1856-5
10.1038/nrg2369
10.1038/nature20149
10.1038/cr.2015.21
10.1371/journal.pgen.1000617
10.1038/nature14281
10.1038/nature14234
10.1083/jcb.201304152
10.1093/bioinformatics/btt656
10.1038/ncomms14016
10.15252/embr.201847468
10.1038/cddis.2017.122
10.1016/j.cell.2011.09.028
10.1016/j.tig.2021.06.014
10.1038/nature19342
10.18632/aging.102330
ContentType Journal Article
Copyright Copyright © 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao.
Copyright © 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao. 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao
Copyright_xml – notice: Copyright © 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao.
– notice: Copyright © 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao. 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fcell.2021.762669
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2296-634X
ExternalDocumentID oai_doaj_org_article_6692c4eb43e144fe89a4775789d02c3f
PMC8548731
10_3389_fcell_2021_762669
GrantInformation_xml – fundername: ;
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
7X8
5PM
ID FETCH-LOGICAL-c2879-a58e85a4ef177bfda75e0daacc95e64fc6b39404a404cc86b44519264875a72e3
IEDL.DBID M48
ISSN 2296-634X
IngestDate Wed Aug 27 01:29:07 EDT 2025
Thu Aug 21 18:34:02 EDT 2025
Fri Jul 11 03:20:14 EDT 2025
Thu Apr 24 23:08:19 EDT 2025
Tue Jul 01 03:20:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2879-a58e85a4ef177bfda75e0daacc95e64fc6b39404a404cc86b44519264875a72e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors have contributed equally to this work
This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology
Reviewed by: Zhanpeng Huang, The First Affiliated Hospital of Sun Yat-sen University, China; Chao Shen, City of Hope National Medical Center, United States
Edited by: Huilin Huang, Sun Yat-sen University Cancer Center (SYSUCC), China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2021.762669
PMID 34722547
PQID 2591241779
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6692c4eb43e144fe89a4775789d02c3f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8548731
proquest_miscellaneous_2591241779
crossref_primary_10_3389_fcell_2021_762669
crossref_citationtrail_10_3389_fcell_2021_762669
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211013
PublicationDateYYYYMMDD 2021-10-13
PublicationDate_xml – month: 10
  year: 2021
  text: 20211013
  day: 13
PublicationDecade 2020
PublicationTitle Frontiers in cell and developmental biology
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Wang (B67) 2014; 16
Helm (B21) 2017; 18
Love (B39) 2014; 15
Wang (B66) 2017; 8
Mancini-DiNardo (B44) 2006; 20
Yu (B76) 2017; 10
Kudou (B26) 2017; 7
Liu (B36) 2015; 518
Ponjavic (B54) 2009; 5
Shi (B60) 2019; 74
Xie (B71) 2018; 25
Gheller (B17) 2020; 6
Diao (B12); 400
Diao (B11); 552
Patil (B51) 2016; 537
Xie (B68) 2013; 56
Kechin (B24) 2017; 24
Xie (B69); 7
Luo (B41) 2021; 9
Xie (B70); 38
Lan (B27) 2021; 24
Liang (B31) 2021; 2021
Meng (B47) 2013; 29
Lu (B40) 2013; 32
Ramírez (B56) 2014; 42
Ulitsky (B64) 2013; 154
Andresini (B2) 2019; 12
Li (B30) 2021; 17
Fazi (B15) 2019; 7
Zhang (B79) 2019; 11
Bentzinger (B3) 2012; 4
Zhang (B77) 2020; 48
Kim (B25) 2019; 37
Borensztein (B4) 2013; 140
Gong (B18) 2015; 34
Ro (B57) 2018; 13
Quinlan (B55) 2010; 26
Meyer (B48) 2017; 33
Zhao (B82) 2018; 15
Milligan (B49) 2000; 19
Fu (B16) 2014; 15
Liao (B32) 2014; 30
Cesana (B6) 2011; 147
Lin (B34) 2020; 2020
Kan (B23) 2021; 19
Pflugfelder (B52) 2017; 122
Ping (B53) 2014; 24
Heinz (B20) 2010; 38
Long (B38) 2020; 24
Lee (B28) 2012; 338
Bryson-Richardson (B5) 2008; 9
Alarcón (B1) 2015; 519
Tan (B63) 2021; 9
Cui (B10) 2016; 2016
He (B19) 2020; 7
Wang (B65) 2015; 25
Lv (B42) 2020; 11
Yang (B73) 2018; 28
Zhou (B83) 2015; 6
Ma (B43) 2019; 12
Zhu (B84) 2014; 135
Liu (B35) 2020; 77
Chen (B7) 2010; 22
Cong (B9) 2020; 27
Zhang (B80) 2020; 8
Liu (B37) 2021; 64
Dong (B13) 2020; 117
Martone (B46) 2020; 7
Sweta (B62) 2019; 7
Yong (B74) 2020; 19
Zhang (B81) 2020; 22
Chen (B8) 2015; 16
Engreitz (B14) 2016; 539
Roundtree (B59) 2017; 169
Lim (B33) 2020; 22
Hitachi (B22) 2019; 20
Li (B29) 2009; 25
Yang (B72) 2018; 46
Yu (B75) 2012; 16
Robinson (B58) 2011; 29
Zhang (B78) 2014; 204
Pan (B50) 2013; 38
Martinet (B45) 2016; 143
Sui (B61) 2019; 10
References_xml – volume: 9
  year: 2021
  ident: B63
  article-title: PERK signaling controls myoblast differentiation by regulating microRNA networks.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.670435
– volume: 25
  start-page: 1581
  year: 2018
  ident: B71
  article-title: Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development.
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-018-0063-1
– volume: 8
  year: 2020
  ident: B80
  article-title: Multifaceted functions and novel insight into the regulatory role of RNA N(6)-Methyladenosine modification in musculoskeletal disorders.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.00870
– volume: 2016
  year: 2016
  ident: B10
  article-title: Guitar: an R/Bioconductor package for gene annotation guided transcriptomic analysis of RNA-related genomic features.
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2016/8367534
– volume: 24
  start-page: 1138
  year: 2017
  ident: B24
  article-title: cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing.
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2017.0096
– volume: 37
  start-page: 907
  year: 2019
  ident: B25
  article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0201-4
– volume: 15
  start-page: 404
  year: 2018
  ident: B82
  article-title: Linc-RAM is required for FGF2 function in regulating myogenic cell differentiation.
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2018.1431494
– volume: 18
  start-page: 275
  year: 2017
  ident: B21
  article-title: Detecting RNA modifications in the epitranscriptome: predict and validate.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg.2016.169
– volume: 33
  start-page: 319
  year: 2017
  ident: B48
  article-title: Rethinking m(6)A readers, writers, and erasers.
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100616-060758
– volume: 117
  start-page: 32464
  year: 2020
  ident: B13
  article-title: A long noncoding RNA, LncMyoD, modulates chromatin accessibility to regulate muscle stem cell myogenic lineage progression.
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2005868117
– volume: 74
  start-page: 640
  year: 2019
  ident: B60
  article-title: Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.04.025
– volume: 38
  start-page: 204
  year: 2013
  ident: B50
  article-title: N6-methyl-adenosine modification in messenger and long non-coding RNA.
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2012.12.006
– volume: 135
  start-page: 785
  year: 2014
  ident: B84
  article-title: TBX2 blocks myogenesis and promotes proliferation in rhabdomyosarcoma cells.
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28721
– volume: 22
  start-page: 357
  year: 2010
  ident: B7
  article-title: Decoding the function of nuclear long non-coding RNAs.
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2010.03.003
– volume: 9
  year: 2021
  ident: B41
  article-title: Functional non-coding RNA during embryonic myogenesis and postnatal muscle development and disease.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.628339
– volume: 552
  start-page: 52
  ident: B11
  article-title: METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels.
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2021.03.035
– volume: 143
  start-page: 962
  year: 2016
  ident: B45
  article-title: H19 controls reactivation of the imprinted gene network during muscle regeneration.
  publication-title: Development
  doi: 10.1242/dev.131771
– volume: 27
  start-page: 2344
  year: 2020
  ident: B9
  article-title: Rab5a activates IRS1 to coordinate IGF-AKT-mTOR signaling and myoblast differentiation during muscle regeneration.
  publication-title: Cell Death Differ.
  doi: 10.1038/s41418-020-0508-1
– volume: 7
  start-page: 598
  year: 2020
  ident: B19
  article-title: The functions of N6-methyladenosine modification in lncRNAs.
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2020.03.005
– volume: 15
  year: 2014
  ident: B39
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 10
  year: 2019
  ident: B61
  article-title: Long non-coding RNA Irm enhances myogenic differentiation by interacting with MEF2D.
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1399-2
– volume: 29
  start-page: 1565
  year: 2013
  ident: B47
  article-title: Exome-based analysis for RNA epigenome sequencing data.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt171
– volume: 56
  start-page: 897
  year: 2013
  ident: B68
  article-title: A helm model for microRNA regulation in cell fate decision and conversion.
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-013-4547-4
– volume: 12
  year: 2019
  ident: B2
  article-title: The long non-coding RNA Kcnq1ot1 controls maternal p57 expression in muscle cells by promoting H3K27me3 accumulation to an intragenic MyoD-binding region.
  publication-title: Epigenetics Chromatin
  doi: 10.1186/s13072-019-0253-1
– volume: 38
  start-page: 576
  year: 2010
  ident: B20
  article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.004
– volume: 16
  start-page: 191
  year: 2014
  ident: B67
  article-title: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2902
– volume: 24
  start-page: 7115
  year: 2020
  ident: B38
  article-title: SP1-induced SNHG14 aggravates hypertrophic response in in vitro model of cardiac hypertrophy via up-regulation of PCDH17.
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.15073
– volume: 7
  ident: B69
  article-title: mascRNA and its parent lncRNA MALAT1 promote proliferation and metastasis of hepatocellular carcinoma cells by activating ERK/MAPK signaling pathway.
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-021-00497-x
– volume: 4
  year: 2012
  ident: B3
  article-title: Building muscle: molecular regulation of myogenesis.
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a008342
– volume: 24
  start-page: 177
  year: 2014
  ident: B53
  article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase.
  publication-title: Cell Res.
  doi: 10.1038/cr.2014.3
– volume: 169
  start-page: 1187
  year: 2017
  ident: B59
  article-title: Dynamic RNA modifications in gene expression regulation.
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.045
– volume: 29
  start-page: 24
  year: 2011
  ident: B58
  article-title: Integrative genomics viewer.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1754
– volume: 338
  start-page: 1435
  year: 2012
  ident: B28
  article-title: Epigenetic regulation by long noncoding RNAs.
  publication-title: Science
  doi: 10.1126/science.1231776
– volume: 48
  start-page: 6251
  year: 2020
  ident: B77
  article-title: Dynamic landscape and evolution of m6A methylation in human.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa347
– volume: 34
  start-page: 181
  year: 2015
  ident: B18
  article-title: A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation.
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2015.05.009
– volume: 38
  start-page: 4755
  ident: B70
  article-title: Dynamic m6A mRNA methylation reveals the role of METTL3/14-m6A-MNK2-ERK signaling axis in skeletal muscle differentiation and regeneration.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2021.744171
– volume: 6
  year: 2015
  ident: B83
  article-title: Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10026
– volume: 6
  year: 2020
  ident: B17
  article-title: A defined N6-methyladenosine (m6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions.
  publication-title: Cell Death Discov.
  doi: 10.1038/s41420-020-00328-5
– volume: 22
  start-page: 209
  year: 2020
  ident: B33
  article-title: Identification of long noncoding RNAs involved in differentiation and survival of vascular smooth muscle cells.
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2020.08.032
– volume: 24
  start-page: 768
  year: 2021
  ident: B27
  article-title: The role of m6A modification in the regulation of tumor-related lncRNAs.
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2021.04.002
– volume: 28
  start-page: 616
  year: 2018
  ident: B73
  article-title: Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism.
  publication-title: Cell Res.
  doi: 10.1038/s41422-018-0040-8
– volume: 140
  start-page: 1231
  year: 2013
  ident: B4
  article-title: Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse.
  publication-title: Development
  doi: 10.1242/dev.084665
– volume: 17
  start-page: 1682
  year: 2021
  ident: B30
  article-title: Regulation of RNA N6-methyladenosine modification and its emerging roles in skeletal muscle development.
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.56251
– volume: 19
  start-page: 5810
  year: 2000
  ident: B49
  article-title: H19 gene expression is up-regulated exclusively by stabilization of the RNA during muscle cell di€erentiation.
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1203965
– volume: 122
  start-page: 313
  year: 2017
  ident: B52
  article-title: T-Box genes in Drosophila limb development.
  publication-title: Curr. Top. Dev. Biol.
  doi: 10.1016/bs.ctdb.2016.08.003
– volume: 2021
  year: 2021
  ident: B31
  article-title: METTL3-mediated m6A methylation regulates muscle stem cells and muscle regeneration by notch signaling pathway.
  publication-title: Stem Cells Int.
  doi: 10.1155/2021/9955691
– volume: 22
  start-page: 1332
  year: 2020
  ident: B81
  article-title: The lncRNA H19 alleviates muscular dystrophy by stabilizing dystrophin.
  publication-title: Nat. Cell Biol.
  doi: 10.1038/s41556-020-00595-5
– volume: 16
  start-page: 289
  year: 2015
  ident: B8
  article-title: m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency.
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.01.016
– volume: 20
  start-page: 1268
  year: 2006
  ident: B44
  article-title: Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes.
  publication-title: Gene Dev.
  doi: 10.1101/gad.1416906
– volume: 16
  start-page: 284
  year: 2012
  ident: B75
  article-title: clusterProfiler: an R package for comparing biological themes among gene clusters.
  publication-title: Omics
  doi: 10.1089/omi.2011.0118
– volume: 7
  year: 2019
  ident: B62
  article-title: Importance of long non-coding RNAs in the development and disease of skeletal muscle and cardiovascular lineages.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00228
– volume: 2020
  year: 2020
  ident: B34
  article-title: Hypoxia promotes vascular smooth muscle cell (VSMC) differentiation of adipose-derived stem cell (ADSC) by regulating Mettl3 and paracrine factors.
  publication-title: Stem Cells Int.
  doi: 10.1155/2020/2830565
– volume: 13
  year: 2018
  ident: B57
  article-title: Identification of long noncoding RNAs involved in muscle differentiation.
  publication-title: PLos One
  doi: 10.1371/journal.pone.0193898
– volume: 11
  start-page: 1723
  year: 2020
  ident: B42
  article-title: lncMGPF is a novel positive regulator of muscle growth and regeneration.
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12623
– volume: 7
  year: 2020
  ident: B46
  article-title: Non-coding RNAs shaping muscle.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00394
– volume: 19
  start-page: 97
  year: 2020
  ident: B74
  article-title: lncRNA MALAT1 accelerates skeletal muscle cell apoptosis and inflammatory response in sepsis by decreasing BRCA1 expression by recruiting EZH2.
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.10.028
– volume: 12
  year: 2019
  ident: B43
  article-title: The interplay between m6A RNA methylation and noncoding RNA in cancer.
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-019-0805-7
– volume: 7
  year: 2019
  ident: B15
  article-title: Interplay between N (6)-methyladenosine (m(6)A) and non-coding RNAs in cell development and cancer.
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00116
– volume: 42
  start-page: W187
  year: 2014
  ident: B56
  article-title: deepTools: a flexible platform for exploring deep-sequencing data.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku365
– volume: 154
  start-page: 26
  year: 2013
  ident: B64
  article-title: lincRNAs: genomics, evolution, and mechanisms.
  publication-title: Cell
  doi: 10.1016/j.cell.2013.06.020
– volume: 46
  start-page: 3906
  year: 2018
  ident: B72
  article-title: N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky130
– volume: 400
  ident: B12
  article-title: N-methyladenine demethylase ALKBH1 inhibits the differentiation of skeletal muscle.
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2021.112492
– volume: 25
  start-page: 2078
  year: 2009
  ident: B29
  article-title: The sequence alignment/map format and SAMtools.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 26
  start-page: 841
  year: 2010
  ident: B55
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 15
  start-page: 293
  year: 2014
  ident: B16
  article-title: Gene expression regulation mediated through reversible m(6)A RNA methylation.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3724
– volume: 32
  start-page: 2575
  year: 2013
  ident: B40
  article-title: Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis.
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.182
– volume: 7
  year: 2017
  ident: B26
  article-title: The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation.
  publication-title: Open Biol.
  doi: 10.1098/rsob.170119
– volume: 77
  start-page: 426
  year: 2020
  ident: B35
  article-title: Landscape and regulation of m(6)A and m(6)Am methylome across human and mouse tissues.
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.032
– volume: 64
  start-page: 1
  year: 2021
  ident: B37
  article-title: The functional analysis of transiently upregulated miR-101 suggests a “braking” regulatory mechanism during myogenesis.
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-020-1856-5
– volume: 9
  start-page: 632
  year: 2008
  ident: B5
  article-title: The genetics of vertebrate myogenesis.
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2369
– volume: 539
  start-page: 452
  year: 2016
  ident: B14
  article-title: Local regulation of gene expression by lncRNA promoters, transcription and splicing.
  publication-title: Nature
  doi: 10.1038/nature20149
– volume: 25
  start-page: 335
  year: 2015
  ident: B65
  article-title: LncRNA dum interacts with dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration.
  publication-title: Cell Res.
  doi: 10.1038/cr.2015.21
– volume: 5
  year: 2009
  ident: B54
  article-title: Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain.
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000617
– volume: 519
  start-page: 482
  year: 2015
  ident: B1
  article-title: N6-methyladenosine marks primary microRNAs for processing.
  publication-title: Nature
  doi: 10.1038/nature14281
– volume: 518
  start-page: 560
  year: 2015
  ident: B36
  article-title: N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions.
  publication-title: Nature
  doi: 10.1038/nature14234
– volume: 204
  start-page: 61
  year: 2014
  ident: B78
  article-title: Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus.
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201304152
– volume: 30
  start-page: 923
  year: 2014
  ident: B32
  article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt656
– volume: 10
  year: 2017
  ident: B76
  article-title: Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD.
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14016
– volume: 20
  year: 2019
  ident: B22
  article-title: Myogenin promoter-associated lncRNA Myoparr is essential for myogenic differentiation.
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201847468
– volume: 8
  year: 2017
  ident: B66
  article-title: FTO is required for myogenesis by positively regulating mTOR-PGC-1alpha pathway-mediated mitochondria biogenesis.
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.122
– volume: 147
  start-page: 358
  year: 2011
  ident: B6
  article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA.
  publication-title: Cell
  doi: 10.1016/j.cell.2011.09.028
– volume: 19
  year: 2021
  ident: B23
  article-title: Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation.
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2021.06.014
– volume: 537
  start-page: 369
  year: 2016
  ident: B51
  article-title: m(6)A RNA methylation promotes XIST-mediated transcriptional repression.
  publication-title: Nature
  doi: 10.1038/nature19342
– volume: 11
  start-page: 9264
  year: 2019
  ident: B79
  article-title: Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/α-synuclein pathway.
  publication-title: Aging
  doi: 10.18632/aging.102330
SSID ssj0001257583
Score 2.1604748
Snippet Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 762669
SubjectTerms Brip1os
Cell and Developmental Biology
lncRNAs
m6A
METTL3
skeletal muscle development
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba9swFBalUOilbGtHs3VDhZ0KXmLLlqVjVlpCaXJYW8hNSPJTFrbao2kP-fd7z3KDfdkuOxiMLCP5PUnve_LT9xj7UtF5RU-n21XlkhwVmyjwIhGAbpwLWRVCGyC7kLOH_GZZLHupvigmLNIDR8GNpdSZz8HlAhD7B1Da5iWRsOtqknkRaPVFm9dzpuLuCsIQJeJvTPTC9DjQRjj6g1n6Fee_pADnniFq-foHIHMYItmzOddv2FEHFvk0dvIt24P6HTuI6SO3x8xc7tiW42FK3gR-29QrvmjqxDdklvj3xXTD53gfEGxyt-WPckqFfA6ooxgJx9c1v_uJBgiROJ9vmxUtgOvNCXu4vrq_nCVdwoTEo-OjE1soUIXNIaRl6UJlywImlbXe6wJkHrx0lAg9t3h5r6QjdjJNMW5lYcsMxHu2Xzc1nDIuZCqVBu0y2iP0mc4ATb-cKOvBB2lHbPIqPeM7NnFKavHLoFdBAjetwA0J3ESBj9jF7pXfkUrjb5W_kUp2FYkFuy3AsWG6sWH-NTZG7PxVoQZnDbVha2heNgadPgQ2KCVsqBxoetDi8Em9_tHybyvy8kT64X908SM7pK8ma5iKM7b__PQCnxDmPLvP7Yj-A82q-1w
  priority: 102
  providerName: Directory of Open Access Journals
Title Characterization of Long Non-coding RNAs Modified by m6A RNA Methylation in Skeletal Myogenesis
URI https://www.proquest.com/docview/2591241779
https://pubmed.ncbi.nlm.nih.gov/PMC8548731
https://doaj.org/article/6692c4eb43e144fe89a4775789d02c3f
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddy0ZfxroPlq4rGuxp4C62bH08jJKVllKaPGwL9E1I8ikL6-wtaaH573dnO6GGsoc-GIwsIXyn893vLP2OsY8lnVcMdLpdlz7JUbGJhiASAQjjfMzKGJsNshN5Ps0vroqrLbYub9UJcPkgtKN6UtPF9dHd39UxGvwXQpzobz9HynEj1MvSIzRtKc0TtoOOSZGdjrtov025YGyiRftv8-GRu-yZIPrEgsqt3HNUDZ9_Lwjtb6G855POXrDnXTDJR63299gWVC_Z07a85OoVsycbNub2sCWvI7-sqxmf1FUSanJb_NtktORjvI8YjHK_4r_liBr5GFCH7U45Pq_491_ooFBIfLyqZ_SBnC9fs-nZ6Y-T86QrqJAEBEYmcYUGXbgcYqqUj6VTBQxL50IwBcg8BumpUHru8ApBS0_sZYb2wKnCqQzEG7Zd1RW8ZVzIVGoDxmeUQwyZyQBDAznULkCI0g3YcC09Gzq2cSp6cW0RdZDsbSN7S7K3rewH7NNmyJ-WauN_nb-SSjYdiSW7aagXM9sZncV-WcjB5wIQN0bQxuWKCPxNOcyCiAP2Ya1Qi1ZFc7gK6tulRVCY0hJSOJHqabo3Y_9JNf_Z8HNrQoEi3X_0yHdsl16VXGQqDtj2zeIW3mPsc-MPm5zBYbOu_wEUvgWI
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Long+Non-coding+RNAs+Modified+by+m6A+RNA+Methylation+in+Skeletal+Myogenesis&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Xie%2C+Shu-Juan&rft.au=Tao%2C+Shuang&rft.au=Diao%2C+Li-Ting&rft.au=Li%2C+Pan-Long&rft.date=2021-10-13&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=9&rft_id=info:doi/10.3389%2Ffcell.2021.762669&rft_id=info%3Apmid%2F34722547&rft.externalDocID=PMC8548731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon