Characterization of Long Non-coding RNAs Modified by m6A RNA Methylation in Skeletal Myogenesis
Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N 6 -methyladenosine (m 6 A) plays important r...
Saved in:
Published in | Frontiers in cell and developmental biology Vol. 9; p. 762669 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
13.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N
6
-methyladenosine (m
6
A) plays important roles in various biological processes, making it essential to profile m
6
A modification on a transcriptome-wide scale in developing muscle. Patterns of m
6
A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m
6
A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m
6
A-lncRNAs harbor the consensus m
6
A motif “DRACH” along lncRNA transcripts. Interestingly, we found that m
6
A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m
6
A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m
6
A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m
6
A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle. |
---|---|
AbstractList | Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N
6
-methyladenosine (m
6
A) plays important roles in various biological processes, making it essential to profile m
6
A modification on a transcriptome-wide scale in developing muscle. Patterns of m
6
A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m
6
A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m
6
A-lncRNAs harbor the consensus m
6
A motif “DRACH” along lncRNA transcripts. Interestingly, we found that m
6
A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m
6
A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m
6
A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m
6
A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle. Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various biological processes, making it essential to profile m6A modification on a transcriptome-wide scale in developing muscle. Patterns of m6A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m6A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m6A-lncRNAs harbor the consensus m6A motif "DRACH" along lncRNA transcripts. Interestingly, we found that m6A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m6A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m6A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m6A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle.Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various biological processes, making it essential to profile m6A modification on a transcriptome-wide scale in developing muscle. Patterns of m6A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m6A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m6A-lncRNAs harbor the consensus m6A motif "DRACH" along lncRNA transcripts. Interestingly, we found that m6A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m6A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m6A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m6A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle. Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is regulated by both mRNA and long non-coding RNAs (lncRNAs). Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in various biological processes, making it essential to profile m6A modification on a transcriptome-wide scale in developing muscle. Patterns of m6A methylation in lncRNAs in developing muscle have not been uncovered. Here, we reveal differentially expressed lncRNAs and report temporal m6A methylation patterns in lncRNAs expressed in mouse myoblasts and myotubes by RNA-seq and methylated RNA immunoprecipitation (MeRIP) sequencing. Many lncRNAs exhibit temporal differential expression, and m6A-lncRNAs harbor the consensus m6A motif “DRACH” along lncRNA transcripts. Interestingly, we found that m6A methylation levels of lncRNAs are positively correlated with the transcript abundance of lncRNAs. Overexpression or knockdown of m6A methyltransferase METTL3 alters the expression levels of these lncRNAs. Furthermore, we highlight that the function of m6A genic lncRNAs might correlate to their nearby mRNAs. Our work reveals a fundamental expression reference of m6A-mediated epitranscriptomic modifications in lncRNAs that are temporally expressed in developing muscle. |
Author | Peng, Yan-Wen Zhang, Qi Lei, Hang Tao, Shuang Hu, Yan-Xia Zhou, Zhi-Gang Chen, Wei-Cai Diao, Li-Ting Xie, Shu-Juan Xu, Wan-Yi Chen, Wen-Jie Li, Pan-Long Hou, Ya-Rui Xiao, Zhen-Dong |
AuthorAffiliation | 1 Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China 2 Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China 3 Department of Orthopedics, First Affiliated Hospital, Jinan University , Guangzhou , China |
AuthorAffiliation_xml | – name: 2 Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China – name: 3 Department of Orthopedics, First Affiliated Hospital, Jinan University , Guangzhou , China – name: 1 Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China |
Author_xml | – sequence: 1 givenname: Shu-Juan surname: Xie fullname: Xie, Shu-Juan – sequence: 2 givenname: Shuang surname: Tao fullname: Tao, Shuang – sequence: 3 givenname: Li-Ting surname: Diao fullname: Diao, Li-Ting – sequence: 4 givenname: Pan-Long surname: Li fullname: Li, Pan-Long – sequence: 5 givenname: Wei-Cai surname: Chen fullname: Chen, Wei-Cai – sequence: 6 givenname: Zhi-Gang surname: Zhou fullname: Zhou, Zhi-Gang – sequence: 7 givenname: Yan-Xia surname: Hu fullname: Hu, Yan-Xia – sequence: 8 givenname: Ya-Rui surname: Hou fullname: Hou, Ya-Rui – sequence: 9 givenname: Hang surname: Lei fullname: Lei, Hang – sequence: 10 givenname: Wan-Yi surname: Xu fullname: Xu, Wan-Yi – sequence: 11 givenname: Wen-Jie surname: Chen fullname: Chen, Wen-Jie – sequence: 12 givenname: Yan-Wen surname: Peng fullname: Peng, Yan-Wen – sequence: 13 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 14 givenname: Zhen-Dong surname: Xiao fullname: Xiao, Zhen-Dong |
BookMark | eNp9kUtvGyEUhVGVqnk0P6C7WXYzzvCGTSXL6iOSnUp9SN0hhrnYpGNIYVzJ_fXFdlQ1XXSBOLrc83HhXKKzmCIg9Ap3M0qVvvEOxnFGOoJnUhAh9DN0QYgWraDs29lf-hxdl3LfdR0mXHJFX6BzyiQhnMkLZBYbm62bIIdfdgopNsk3yxTXzV2KrUtDqPLT3bw0q6p9gKHp981WzA_FZgXTZj-efCE2n7_DCJMdm9U-rSFCCeUleu7tWOD6cb9CX9-9_bL40C4_vr9dzJetI0rq1nIFilsGHkvZ-8FKDt1grXOag2DeiZ5q1jFbl3NK9IxxrIlgSnIrCdArdHviDsnem4cctjbvTbLBHAspr43NU3AjmPpVxDHoGQXMmAelLZOSS6WHjjjqK-vNifWw67cwOIhTtuMT6NOTGDZmnX4axes8FFfA60dATj92UCazDeUQl42QdsUQrjFh9aW6tuJTq8uplAz-zzW4M4eczTFnc8jZnHKuHvmPx4XpGEKdJoz_cf4GnTSvAg |
CitedBy_id | crossref_primary_10_3389_fcell_2022_929183 crossref_primary_10_1016_j_biopha_2024_117041 crossref_primary_10_3390_cells11223654 crossref_primary_10_3390_cells11213497 crossref_primary_10_3389_fgene_2022_974357 crossref_primary_10_1016_j_ijbiomac_2024_132057 crossref_primary_10_1038_s41588_023_01598_2 crossref_primary_10_3390_ijms23094600 crossref_primary_10_3390_ijms242015161 crossref_primary_10_1016_j_heliyon_2024_e30640 crossref_primary_10_1016_j_yexcr_2022_113299 crossref_primary_10_1111_cpr_13294 crossref_primary_10_1186_s11658_024_00618_1 |
Cites_doi | 10.3389/fcell.2021.670435 10.1038/s41418-018-0063-1 10.3389/fcell.2020.00870 10.1155/2016/8367534 10.1089/cmb.2017.0096 10.1038/s41587-019-0201-4 10.1080/15476286.2018.1431494 10.1038/nrg.2016.169 10.1146/annurev-cellbio-100616-060758 10.1073/pnas.2005868117 10.1016/j.molcel.2019.04.025 10.1016/j.tibs.2012.12.006 10.1002/ijc.28721 10.1016/j.ceb.2010.03.003 10.3389/fcell.2021.628339 10.1016/j.bbrc.2021.03.035 10.1242/dev.131771 10.1038/s41418-020-0508-1 10.1016/j.gendis.2020.03.005 10.1186/s13059-014-0550-8 10.1038/s41419-019-1399-2 10.1093/bioinformatics/btt171 10.1007/s11427-013-4547-4 10.1186/s13072-019-0253-1 10.1016/j.molcel.2010.05.004 10.1038/ncb2902 10.1111/jcmm.15073 10.1038/s41420-021-00497-x 10.1101/cshperspect.a008342 10.1038/cr.2014.3 10.1016/j.cell.2017.05.045 10.1038/nbt.1754 10.1126/science.1231776 10.1093/nar/gkaa347 10.1016/j.devcel.2015.05.009 10.3389/fcell.2021.744171 10.1038/ncomms10026 10.1038/s41420-020-00328-5 10.1016/j.omtn.2020.08.032 10.1016/j.omtn.2021.04.002 10.1038/s41422-018-0040-8 10.1242/dev.084665 10.7150/ijbs.56251 10.1038/sj.onc.1203965 10.1016/bs.ctdb.2016.08.003 10.1155/2021/9955691 10.1038/s41556-020-00595-5 10.1016/j.stem.2015.01.016 10.1101/gad.1416906 10.1089/omi.2011.0118 10.3389/fcell.2019.00228 10.1155/2020/2830565 10.1371/journal.pone.0193898 10.1002/jcsm.12623 10.3389/fcell.2019.00394 10.1016/j.omtn.2019.10.028 10.1186/s13045-019-0805-7 10.3389/fcell.2019.00116 10.1093/nar/gku365 10.1016/j.cell.2013.06.020 10.1093/nar/gky130 10.1016/j.yexcr.2021.112492 10.1093/bioinformatics/btp352 10.1093/bioinformatics/btq033 10.1038/nrg3724 10.1038/emboj.2013.182 10.1098/rsob.170119 10.1016/j.molcel.2019.09.032 10.1007/s11427-020-1856-5 10.1038/nrg2369 10.1038/nature20149 10.1038/cr.2015.21 10.1371/journal.pgen.1000617 10.1038/nature14281 10.1038/nature14234 10.1083/jcb.201304152 10.1093/bioinformatics/btt656 10.1038/ncomms14016 10.15252/embr.201847468 10.1038/cddis.2017.122 10.1016/j.cell.2011.09.028 10.1016/j.tig.2021.06.014 10.1038/nature19342 10.18632/aging.102330 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao. Copyright © 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao. 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao |
Copyright_xml | – notice: Copyright © 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao. – notice: Copyright © 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao. 2021 Xie, Tao, Diao, Li, Chen, Zhou, Hu, Hou, Lei, Xu, Chen, Peng, Zhang and Xiao |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fcell.2021.762669 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2296-634X |
ExternalDocumentID | oai_doaj_org_article_6692c4eb43e144fe89a4775789d02c3f PMC8548731 10_3389_fcell_2021_762669 |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-c2879-a58e85a4ef177bfda75e0daacc95e64fc6b39404a404cc86b44519264875a72e3 |
IEDL.DBID | M48 |
ISSN | 2296-634X |
IngestDate | Wed Aug 27 01:29:07 EDT 2025 Thu Aug 21 18:34:02 EDT 2025 Fri Jul 11 03:20:14 EDT 2025 Thu Apr 24 23:08:19 EDT 2025 Tue Jul 01 03:20:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2879-a58e85a4ef177bfda75e0daacc95e64fc6b39404a404cc86b44519264875a72e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors have contributed equally to this work This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Cell and Developmental Biology Reviewed by: Zhanpeng Huang, The First Affiliated Hospital of Sun Yat-sen University, China; Chao Shen, City of Hope National Medical Center, United States Edited by: Huilin Huang, Sun Yat-sen University Cancer Center (SYSUCC), China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fcell.2021.762669 |
PMID | 34722547 |
PQID | 2591241779 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6692c4eb43e144fe89a4775789d02c3f pubmedcentral_primary_oai_pubmedcentral_nih_gov_8548731 proquest_miscellaneous_2591241779 crossref_primary_10_3389_fcell_2021_762669 crossref_citationtrail_10_3389_fcell_2021_762669 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211013 |
PublicationDateYYYYMMDD | 2021-10-13 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211013 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | Frontiers in cell and developmental biology |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Wang (B67) 2014; 16 Helm (B21) 2017; 18 Love (B39) 2014; 15 Wang (B66) 2017; 8 Mancini-DiNardo (B44) 2006; 20 Yu (B76) 2017; 10 Kudou (B26) 2017; 7 Liu (B36) 2015; 518 Ponjavic (B54) 2009; 5 Shi (B60) 2019; 74 Xie (B71) 2018; 25 Gheller (B17) 2020; 6 Diao (B12); 400 Diao (B11); 552 Patil (B51) 2016; 537 Xie (B68) 2013; 56 Kechin (B24) 2017; 24 Xie (B69); 7 Luo (B41) 2021; 9 Xie (B70); 38 Lan (B27) 2021; 24 Liang (B31) 2021; 2021 Meng (B47) 2013; 29 Lu (B40) 2013; 32 Ramírez (B56) 2014; 42 Ulitsky (B64) 2013; 154 Andresini (B2) 2019; 12 Li (B30) 2021; 17 Fazi (B15) 2019; 7 Zhang (B79) 2019; 11 Bentzinger (B3) 2012; 4 Zhang (B77) 2020; 48 Kim (B25) 2019; 37 Borensztein (B4) 2013; 140 Gong (B18) 2015; 34 Ro (B57) 2018; 13 Quinlan (B55) 2010; 26 Meyer (B48) 2017; 33 Zhao (B82) 2018; 15 Milligan (B49) 2000; 19 Fu (B16) 2014; 15 Liao (B32) 2014; 30 Cesana (B6) 2011; 147 Lin (B34) 2020; 2020 Kan (B23) 2021; 19 Pflugfelder (B52) 2017; 122 Ping (B53) 2014; 24 Heinz (B20) 2010; 38 Long (B38) 2020; 24 Lee (B28) 2012; 338 Bryson-Richardson (B5) 2008; 9 Alarcón (B1) 2015; 519 Tan (B63) 2021; 9 Cui (B10) 2016; 2016 He (B19) 2020; 7 Wang (B65) 2015; 25 Lv (B42) 2020; 11 Yang (B73) 2018; 28 Zhou (B83) 2015; 6 Ma (B43) 2019; 12 Zhu (B84) 2014; 135 Liu (B35) 2020; 77 Chen (B7) 2010; 22 Cong (B9) 2020; 27 Zhang (B80) 2020; 8 Liu (B37) 2021; 64 Dong (B13) 2020; 117 Martone (B46) 2020; 7 Sweta (B62) 2019; 7 Yong (B74) 2020; 19 Zhang (B81) 2020; 22 Chen (B8) 2015; 16 Engreitz (B14) 2016; 539 Roundtree (B59) 2017; 169 Lim (B33) 2020; 22 Hitachi (B22) 2019; 20 Li (B29) 2009; 25 Yang (B72) 2018; 46 Yu (B75) 2012; 16 Robinson (B58) 2011; 29 Zhang (B78) 2014; 204 Pan (B50) 2013; 38 Martinet (B45) 2016; 143 Sui (B61) 2019; 10 |
References_xml | – volume: 9 year: 2021 ident: B63 article-title: PERK signaling controls myoblast differentiation by regulating microRNA networks. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.670435 – volume: 25 start-page: 1581 year: 2018 ident: B71 article-title: Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development. publication-title: Cell Death Differ. doi: 10.1038/s41418-018-0063-1 – volume: 8 year: 2020 ident: B80 article-title: Multifaceted functions and novel insight into the regulatory role of RNA N(6)-Methyladenosine modification in musculoskeletal disorders. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.00870 – volume: 2016 year: 2016 ident: B10 article-title: Guitar: an R/Bioconductor package for gene annotation guided transcriptomic analysis of RNA-related genomic features. publication-title: Biomed. Res. Int. doi: 10.1155/2016/8367534 – volume: 24 start-page: 1138 year: 2017 ident: B24 article-title: cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. publication-title: J. Comput. Biol. doi: 10.1089/cmb.2017.0096 – volume: 37 start-page: 907 year: 2019 ident: B25 article-title: Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0201-4 – volume: 15 start-page: 404 year: 2018 ident: B82 article-title: Linc-RAM is required for FGF2 function in regulating myogenic cell differentiation. publication-title: RNA Biol. doi: 10.1080/15476286.2018.1431494 – volume: 18 start-page: 275 year: 2017 ident: B21 article-title: Detecting RNA modifications in the epitranscriptome: predict and validate. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.169 – volume: 33 start-page: 319 year: 2017 ident: B48 article-title: Rethinking m(6)A readers, writers, and erasers. publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100616-060758 – volume: 117 start-page: 32464 year: 2020 ident: B13 article-title: A long noncoding RNA, LncMyoD, modulates chromatin accessibility to regulate muscle stem cell myogenic lineage progression. publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2005868117 – volume: 74 start-page: 640 year: 2019 ident: B60 article-title: Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.04.025 – volume: 38 start-page: 204 year: 2013 ident: B50 article-title: N6-methyl-adenosine modification in messenger and long non-coding RNA. publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2012.12.006 – volume: 135 start-page: 785 year: 2014 ident: B84 article-title: TBX2 blocks myogenesis and promotes proliferation in rhabdomyosarcoma cells. publication-title: Int. J. Cancer doi: 10.1002/ijc.28721 – volume: 22 start-page: 357 year: 2010 ident: B7 article-title: Decoding the function of nuclear long non-coding RNAs. publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2010.03.003 – volume: 9 year: 2021 ident: B41 article-title: Functional non-coding RNA during embryonic myogenesis and postnatal muscle development and disease. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.628339 – volume: 552 start-page: 52 ident: B11 article-title: METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels. publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2021.03.035 – volume: 143 start-page: 962 year: 2016 ident: B45 article-title: H19 controls reactivation of the imprinted gene network during muscle regeneration. publication-title: Development doi: 10.1242/dev.131771 – volume: 27 start-page: 2344 year: 2020 ident: B9 article-title: Rab5a activates IRS1 to coordinate IGF-AKT-mTOR signaling and myoblast differentiation during muscle regeneration. publication-title: Cell Death Differ. doi: 10.1038/s41418-020-0508-1 – volume: 7 start-page: 598 year: 2020 ident: B19 article-title: The functions of N6-methyladenosine modification in lncRNAs. publication-title: Genes Dis. doi: 10.1016/j.gendis.2020.03.005 – volume: 15 year: 2014 ident: B39 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 10 year: 2019 ident: B61 article-title: Long non-coding RNA Irm enhances myogenic differentiation by interacting with MEF2D. publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1399-2 – volume: 29 start-page: 1565 year: 2013 ident: B47 article-title: Exome-based analysis for RNA epigenome sequencing data. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt171 – volume: 56 start-page: 897 year: 2013 ident: B68 article-title: A helm model for microRNA regulation in cell fate decision and conversion. publication-title: Sci. China Life Sci. doi: 10.1007/s11427-013-4547-4 – volume: 12 year: 2019 ident: B2 article-title: The long non-coding RNA Kcnq1ot1 controls maternal p57 expression in muscle cells by promoting H3K27me3 accumulation to an intragenic MyoD-binding region. publication-title: Epigenetics Chromatin doi: 10.1186/s13072-019-0253-1 – volume: 38 start-page: 576 year: 2010 ident: B20 article-title: Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.004 – volume: 16 start-page: 191 year: 2014 ident: B67 article-title: N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. publication-title: Nat. Cell Biol. doi: 10.1038/ncb2902 – volume: 24 start-page: 7115 year: 2020 ident: B38 article-title: SP1-induced SNHG14 aggravates hypertrophic response in in vitro model of cardiac hypertrophy via up-regulation of PCDH17. publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.15073 – volume: 7 ident: B69 article-title: mascRNA and its parent lncRNA MALAT1 promote proliferation and metastasis of hepatocellular carcinoma cells by activating ERK/MAPK signaling pathway. publication-title: Cell Death Discov. doi: 10.1038/s41420-021-00497-x – volume: 4 year: 2012 ident: B3 article-title: Building muscle: molecular regulation of myogenesis. publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a008342 – volume: 24 start-page: 177 year: 2014 ident: B53 article-title: Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. publication-title: Cell Res. doi: 10.1038/cr.2014.3 – volume: 169 start-page: 1187 year: 2017 ident: B59 article-title: Dynamic RNA modifications in gene expression regulation. publication-title: Cell doi: 10.1016/j.cell.2017.05.045 – volume: 29 start-page: 24 year: 2011 ident: B58 article-title: Integrative genomics viewer. publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1754 – volume: 338 start-page: 1435 year: 2012 ident: B28 article-title: Epigenetic regulation by long noncoding RNAs. publication-title: Science doi: 10.1126/science.1231776 – volume: 48 start-page: 6251 year: 2020 ident: B77 article-title: Dynamic landscape and evolution of m6A methylation in human. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa347 – volume: 34 start-page: 181 year: 2015 ident: B18 article-title: A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. publication-title: Dev. Cell doi: 10.1016/j.devcel.2015.05.009 – volume: 38 start-page: 4755 ident: B70 article-title: Dynamic m6A mRNA methylation reveals the role of METTL3/14-m6A-MNK2-ERK signaling axis in skeletal muscle differentiation and regeneration. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.744171 – volume: 6 year: 2015 ident: B83 article-title: Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. publication-title: Nat. Commun. doi: 10.1038/ncomms10026 – volume: 6 year: 2020 ident: B17 article-title: A defined N6-methyladenosine (m6A) profile conferred by METTL3 regulates muscle stem cell/myoblast state transitions. publication-title: Cell Death Discov. doi: 10.1038/s41420-020-00328-5 – volume: 22 start-page: 209 year: 2020 ident: B33 article-title: Identification of long noncoding RNAs involved in differentiation and survival of vascular smooth muscle cells. publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2020.08.032 – volume: 24 start-page: 768 year: 2021 ident: B27 article-title: The role of m6A modification in the regulation of tumor-related lncRNAs. publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2021.04.002 – volume: 28 start-page: 616 year: 2018 ident: B73 article-title: Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. publication-title: Cell Res. doi: 10.1038/s41422-018-0040-8 – volume: 140 start-page: 1231 year: 2013 ident: B4 article-title: Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse. publication-title: Development doi: 10.1242/dev.084665 – volume: 17 start-page: 1682 year: 2021 ident: B30 article-title: Regulation of RNA N6-methyladenosine modification and its emerging roles in skeletal muscle development. publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.56251 – volume: 19 start-page: 5810 year: 2000 ident: B49 article-title: H19 gene expression is up-regulated exclusively by stabilization of the RNA during muscle cell di€erentiation. publication-title: Oncogene doi: 10.1038/sj.onc.1203965 – volume: 122 start-page: 313 year: 2017 ident: B52 article-title: T-Box genes in Drosophila limb development. publication-title: Curr. Top. Dev. Biol. doi: 10.1016/bs.ctdb.2016.08.003 – volume: 2021 year: 2021 ident: B31 article-title: METTL3-mediated m6A methylation regulates muscle stem cells and muscle regeneration by notch signaling pathway. publication-title: Stem Cells Int. doi: 10.1155/2021/9955691 – volume: 22 start-page: 1332 year: 2020 ident: B81 article-title: The lncRNA H19 alleviates muscular dystrophy by stabilizing dystrophin. publication-title: Nat. Cell Biol. doi: 10.1038/s41556-020-00595-5 – volume: 16 start-page: 289 year: 2015 ident: B8 article-title: m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.01.016 – volume: 20 start-page: 1268 year: 2006 ident: B44 article-title: Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes. publication-title: Gene Dev. doi: 10.1101/gad.1416906 – volume: 16 start-page: 284 year: 2012 ident: B75 article-title: clusterProfiler: an R package for comparing biological themes among gene clusters. publication-title: Omics doi: 10.1089/omi.2011.0118 – volume: 7 year: 2019 ident: B62 article-title: Importance of long non-coding RNAs in the development and disease of skeletal muscle and cardiovascular lineages. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00228 – volume: 2020 year: 2020 ident: B34 article-title: Hypoxia promotes vascular smooth muscle cell (VSMC) differentiation of adipose-derived stem cell (ADSC) by regulating Mettl3 and paracrine factors. publication-title: Stem Cells Int. doi: 10.1155/2020/2830565 – volume: 13 year: 2018 ident: B57 article-title: Identification of long noncoding RNAs involved in muscle differentiation. publication-title: PLos One doi: 10.1371/journal.pone.0193898 – volume: 11 start-page: 1723 year: 2020 ident: B42 article-title: lncMGPF is a novel positive regulator of muscle growth and regeneration. publication-title: J. Cachexia Sarcopenia Muscle doi: 10.1002/jcsm.12623 – volume: 7 year: 2020 ident: B46 article-title: Non-coding RNAs shaping muscle. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00394 – volume: 19 start-page: 97 year: 2020 ident: B74 article-title: lncRNA MALAT1 accelerates skeletal muscle cell apoptosis and inflammatory response in sepsis by decreasing BRCA1 expression by recruiting EZH2. publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2019.10.028 – volume: 12 year: 2019 ident: B43 article-title: The interplay between m6A RNA methylation and noncoding RNA in cancer. publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0805-7 – volume: 7 year: 2019 ident: B15 article-title: Interplay between N (6)-methyladenosine (m(6)A) and non-coding RNAs in cell development and cancer. publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00116 – volume: 42 start-page: W187 year: 2014 ident: B56 article-title: deepTools: a flexible platform for exploring deep-sequencing data. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku365 – volume: 154 start-page: 26 year: 2013 ident: B64 article-title: lincRNAs: genomics, evolution, and mechanisms. publication-title: Cell doi: 10.1016/j.cell.2013.06.020 – volume: 46 start-page: 3906 year: 2018 ident: B72 article-title: N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky130 – volume: 400 ident: B12 article-title: N-methyladenine demethylase ALKBH1 inhibits the differentiation of skeletal muscle. publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2021.112492 – volume: 25 start-page: 2078 year: 2009 ident: B29 article-title: The sequence alignment/map format and SAMtools. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 26 start-page: 841 year: 2010 ident: B55 article-title: BEDTools: a flexible suite of utilities for comparing genomic features. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 15 start-page: 293 year: 2014 ident: B16 article-title: Gene expression regulation mediated through reversible m(6)A RNA methylation. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3724 – volume: 32 start-page: 2575 year: 2013 ident: B40 article-title: Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis. publication-title: EMBO J. doi: 10.1038/emboj.2013.182 – volume: 7 year: 2017 ident: B26 article-title: The requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation. publication-title: Open Biol. doi: 10.1098/rsob.170119 – volume: 77 start-page: 426 year: 2020 ident: B35 article-title: Landscape and regulation of m(6)A and m(6)Am methylome across human and mouse tissues. publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.032 – volume: 64 start-page: 1 year: 2021 ident: B37 article-title: The functional analysis of transiently upregulated miR-101 suggests a “braking” regulatory mechanism during myogenesis. publication-title: Sci. China Life Sci. doi: 10.1007/s11427-020-1856-5 – volume: 9 start-page: 632 year: 2008 ident: B5 article-title: The genetics of vertebrate myogenesis. publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2369 – volume: 539 start-page: 452 year: 2016 ident: B14 article-title: Local regulation of gene expression by lncRNA promoters, transcription and splicing. publication-title: Nature doi: 10.1038/nature20149 – volume: 25 start-page: 335 year: 2015 ident: B65 article-title: LncRNA dum interacts with dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. publication-title: Cell Res. doi: 10.1038/cr.2015.21 – volume: 5 year: 2009 ident: B54 article-title: Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000617 – volume: 519 start-page: 482 year: 2015 ident: B1 article-title: N6-methyladenosine marks primary microRNAs for processing. publication-title: Nature doi: 10.1038/nature14281 – volume: 518 start-page: 560 year: 2015 ident: B36 article-title: N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. publication-title: Nature doi: 10.1038/nature14234 – volume: 204 start-page: 61 year: 2014 ident: B78 article-title: Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. publication-title: J. Cell Biol. doi: 10.1083/jcb.201304152 – volume: 30 start-page: 923 year: 2014 ident: B32 article-title: featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt656 – volume: 10 year: 2017 ident: B76 article-title: Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD. publication-title: Nat. Commun. doi: 10.1038/ncomms14016 – volume: 20 year: 2019 ident: B22 article-title: Myogenin promoter-associated lncRNA Myoparr is essential for myogenic differentiation. publication-title: EMBO Rep. doi: 10.15252/embr.201847468 – volume: 8 year: 2017 ident: B66 article-title: FTO is required for myogenesis by positively regulating mTOR-PGC-1alpha pathway-mediated mitochondria biogenesis. publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.122 – volume: 147 start-page: 358 year: 2011 ident: B6 article-title: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. publication-title: Cell doi: 10.1016/j.cell.2011.09.028 – volume: 19 year: 2021 ident: B23 article-title: Crosstalk between epitranscriptomic and epigenetic mechanisms in gene regulation. publication-title: Trends Genet. doi: 10.1016/j.tig.2021.06.014 – volume: 537 start-page: 369 year: 2016 ident: B51 article-title: m(6)A RNA methylation promotes XIST-mediated transcriptional repression. publication-title: Nature doi: 10.1038/nature19342 – volume: 11 start-page: 9264 year: 2019 ident: B79 article-title: Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/α-synuclein pathway. publication-title: Aging doi: 10.18632/aging.102330 |
SSID | ssj0001257583 |
Score | 2.1604748 |
Snippet | Proper development of mammalian skeletal muscle relies on precise gene expression regulation. Our previous studies revealed that muscle development is... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 762669 |
SubjectTerms | Brip1os Cell and Developmental Biology lncRNAs m6A METTL3 skeletal muscle development |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ba9swFBalUOilbGtHs3VDhZ0KXmLLlqVjVlpCaXJYW8hNSPJTFrbao2kP-fd7z3KDfdkuOxiMLCP5PUnve_LT9xj7UtF5RU-n21XlkhwVmyjwIhGAbpwLWRVCGyC7kLOH_GZZLHupvigmLNIDR8GNpdSZz8HlAhD7B1Da5iWRsOtqknkRaPVFm9dzpuLuCsIQJeJvTPTC9DjQRjj6g1n6Fee_pADnniFq-foHIHMYItmzOddv2FEHFvk0dvIt24P6HTuI6SO3x8xc7tiW42FK3gR-29QrvmjqxDdklvj3xXTD53gfEGxyt-WPckqFfA6ooxgJx9c1v_uJBgiROJ9vmxUtgOvNCXu4vrq_nCVdwoTEo-OjE1soUIXNIaRl6UJlywImlbXe6wJkHrx0lAg9t3h5r6QjdjJNMW5lYcsMxHu2Xzc1nDIuZCqVBu0y2iP0mc4ATb-cKOvBB2lHbPIqPeM7NnFKavHLoFdBAjetwA0J3ESBj9jF7pXfkUrjb5W_kUp2FYkFuy3AsWG6sWH-NTZG7PxVoQZnDbVha2heNgadPgQ2KCVsqBxoetDi8Em9_tHybyvy8kT64X908SM7pK8ma5iKM7b__PQCnxDmPLvP7Yj-A82q-1w priority: 102 providerName: Directory of Open Access Journals |
Title | Characterization of Long Non-coding RNAs Modified by m6A RNA Methylation in Skeletal Myogenesis |
URI | https://www.proquest.com/docview/2591241779 https://pubmed.ncbi.nlm.nih.gov/PMC8548731 https://doaj.org/article/6692c4eb43e144fe89a4775789d02c3f |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBddy0ZfxroPlq4rGuxp4C62bH08jJKVllKaPGwL9E1I8ikL6-wtaaH573dnO6GGsoc-GIwsIXyn893vLP2OsY8lnVcMdLpdlz7JUbGJhiASAQjjfMzKGJsNshN5Ps0vroqrLbYub9UJcPkgtKN6UtPF9dHd39UxGvwXQpzobz9HynEj1MvSIzRtKc0TtoOOSZGdjrtov025YGyiRftv8-GRu-yZIPrEgsqt3HNUDZ9_Lwjtb6G855POXrDnXTDJR63299gWVC_Z07a85OoVsycbNub2sCWvI7-sqxmf1FUSanJb_NtktORjvI8YjHK_4r_liBr5GFCH7U45Pq_491_ooFBIfLyqZ_SBnC9fs-nZ6Y-T86QrqJAEBEYmcYUGXbgcYqqUj6VTBQxL50IwBcg8BumpUHru8ApBS0_sZYb2wKnCqQzEG7Zd1RW8ZVzIVGoDxmeUQwyZyQBDAznULkCI0g3YcC09Gzq2cSp6cW0RdZDsbSN7S7K3rewH7NNmyJ-WauN_nb-SSjYdiSW7aagXM9sZncV-WcjB5wIQN0bQxuWKCPxNOcyCiAP2Ya1Qi1ZFc7gK6tulRVCY0hJSOJHqabo3Y_9JNf_Z8HNrQoEi3X_0yHdsl16VXGQqDtj2zeIW3mPsc-MPm5zBYbOu_wEUvgWI |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Long+Non-coding+RNAs+Modified+by+m6A+RNA+Methylation+in+Skeletal+Myogenesis&rft.jtitle=Frontiers+in+cell+and+developmental+biology&rft.au=Xie%2C+Shu-Juan&rft.au=Tao%2C+Shuang&rft.au=Diao%2C+Li-Ting&rft.au=Li%2C+Pan-Long&rft.date=2021-10-13&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-634X&rft.volume=9&rft_id=info:doi/10.3389%2Ffcell.2021.762669&rft_id=info%3Apmid%2F34722547&rft.externalDocID=PMC8548731 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-634X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-634X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-634X&client=summon |