General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details
•Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce grow...
Saved in:
Published in | Journal of magnetism and magnetic materials Vol. 532; p. 167945 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.08.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0304-8853 1873-4766 |
DOI | 10.1016/j.jmmm.2021.167945 |
Cover
Loading…
Abstract | •Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce growth of domain walls (DWs) around them during the magnetization reversal of the nanostructure.•The propagation features of the DWs are the main responsible for the AMR signal behaviour.
The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy. |
---|---|
AbstractList | •Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce growth of domain walls (DWs) around them during the magnetization reversal of the nanostructure.•The propagation features of the DWs are the main responsible for the AMR signal behaviour.
The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy. The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy. |
ArticleNumber | 167945 |
Author | Malvezzi Cecchi, Breno Puydinger dos Santos, Marcos Vinicius Roberto Pirota, Kleber Ferreira Velo, Murilo |
Author_xml | – sequence: 1 givenname: Murilo surname: Ferreira Velo fullname: Ferreira Velo, Murilo – sequence: 2 givenname: Marcos Vinicius surname: Puydinger dos Santos fullname: Puydinger dos Santos, Marcos Vinicius – sequence: 3 givenname: Breno surname: Malvezzi Cecchi fullname: Malvezzi Cecchi, Breno email: bmcecchi@ifi.unicamp.br – sequence: 4 givenname: Kleber surname: Roberto Pirota fullname: Roberto Pirota, Kleber |
BookMark | eNp9kL1uFDEUhS0UJDaBF6CyRD2Lf8Zjr0SDIghIkWigtjzXdzYezdiL7Q2io-Id8no8Cd4sFUWq25zvXJ3vklzEFJGQ15xtOePD23k7r-u6FUzwLR_0rlfPyIYbLbteD8MF2TDJ-s4YJV-Qy1JmxhjvzbAhv28wYnYLdYdDTg7u6JQydTGUVHM6BKCr20esKWMJpboISMEtcFxcDSkWeizoH5mM9-iWEPe03iHNaUGaJgppdEul0cX0I2T88-uh0D2mFWsOrYd6rC4s5SV5Prml4Kt_94p8-_jh6_Wn7vbLzefr97cdCKNVN0GvvAbFpGZCexwlR4MelGTgDBOeqVHxUfTaiGmHEvTOjxq848Ok_TjIK_Lm3NvGfj9iqXZOxxzbSyuUHJQ0O923lDinIKdSMk72kMPq8k_LmT35trM9-bYn3_bsu0HmPwhCfZRUc5v4NPrujGKbfh8w2wIBm2rflEG1PoWn8L8KOKJn |
CitedBy_id | crossref_primary_10_1021_acsami_3c00266 crossref_primary_10_1016_j_jallcom_2022_164729 |
Cites_doi | 10.1063/1.4899186 10.1103/PhysRevLett.125.097201 10.1098/rspa.1936.0154 10.1103/PhysRevLett.61.2472 10.1021/acsanm.0c01497 10.1109/TMAG.1975.1058782 10.1016/S0304-8853(02)00347-5 10.1016/S0031-8914(55)92596-9 10.1098/rspl.1856.0144 10.1016/j.physb.2019.03.005 10.1021/acsami.6b12192 10.1021/acs.nanolett.8b03329 10.1103/PhysRevB.39.4828 10.1088/0022-3719/3/1S/310 10.1109/TMAG.2013.2285937 10.1209/0295-5075/32/6/010 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Aug 15, 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Aug 15, 2021 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1016/j.jmmm.2021.167945 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1873-4766 |
ExternalDocumentID | 10_1016_j_jmmm_2021_167945 S0304885321002213 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABFNM ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M24 M38 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPC SPCBC SPD SSQ SSZ T5K XPP ZMT ~02 ~G- 29K 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION D-I EJD FGOYB G-2 HMV HZ~ NDZJH R2- RIG SEW SMS SPG SSH WUQ XXG 7SR 7U5 8BQ 8FD EFKBS JG9 L7M |
ID | FETCH-LOGICAL-c2875-fc45d7c5037027deb31e8edc530ca802d05b51b24782f9e3c79db7cda16f7db63 |
IEDL.DBID | .~1 |
ISSN | 0304-8853 |
IngestDate | Fri Jul 25 07:58:53 EDT 2025 Tue Jul 01 01:13:00 EDT 2025 Thu Apr 24 23:16:03 EDT 2025 Fri Feb 23 02:45:50 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Anisotropic magnetoresistance Micromagnetic simulation Magnetic nanowire |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2875-fc45d7c5037027deb31e8edc530ca802d05b51b24782f9e3c79db7cda16f7db63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1016/j.jmmm.2021.167945 |
PQID | 2536538974 |
PQPubID | 2045450 |
ParticipantIDs | proquest_journals_2536538974 crossref_primary_10_1016_j_jmmm_2021_167945 crossref_citationtrail_10_1016_j_jmmm_2021_167945 elsevier_sciencedirect_doi_10_1016_j_jmmm_2021_167945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-15 |
PublicationDateYYYYMMDD | 2021-08-15 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of magnetism and magnetic materials |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Dumpich, Krome, Hausmanns (b0040) 2002; 248 single-crystal films, Phys. Rev. Lett. 125. doi:10.1103/PhysRevLett.125.097201. Martínez-Pérez, Pablo-Navarro, Müller, Kleiner, Magén, Koelle, de Teresa, Sesé (b0045) 2018; 18 Manzin, Nabaei, Corte-León, Kazakova, Krzysteczko, Schumacher (b0070) 2014; 50 W. Thomson, XIX, On the electro-dynamic qualities of metals:–Effects of magnetization on the electric conductivity of nickel and of iron, Proc. Roy. Soc. Lond. 8 (1857) 546–550. doi:10.1098/rspl.1856.0144. Ashcroft, Mermin (b0085) 1976 F.L. Zeng, Z.Y. Ren, Y. Li, J.Y. Zeng, M.W. Jia, J. Miao, A. Hoffmann, W. Zhang, Y.Z. Wu, Z. Yuan, Intrinsic mechanism for anisotropic magnetoresistance and experimental confirmation in McGuire, Potter (b0050) 1975; 11 Vansteenkiste, Leliaert, Dvornik, Helsen, Garcia-Sanchez, Van Waeyenberge (b0080) 2014; 4 Guimarães (b0095) 2009 Binasch, Grünberg, Saurenbach, Zinn (b0015) 1989; 39 Puydinger dos Santos, Brandão, Dugato, Béron, Pirota, Utke (b0035) 2020; 3 N.F. Mott, The resistance and thermoelectric properties of the transition metals, Proc. Roy. Soc. Lond. Ser. A – Math. Phys. Sci. 156 (888) (1936) 368–382. doi:10.1098/rspa.1936.0154. Zhang, Chen, Zhang (b0075) 2019; 561 Campbell, Fert, Jaoul (b0025) 1970; 3 Banhart, Ebert (b0030) 1995; 32 Smit (b0020) 1955; 21 Jan (b0060) 1957; vol. 5 Puydinger dos Santos, Velo, Domingos, Zhang, Maeder, Guerra-Nuñez, Best, Béron, Pirota, Moshkalev, Diniz, Utke (b0090) 2016; 8 Baibich, Broto, Fert, Van Dau, Petroff, Etienne, Creuzet, Friederich, Chazelas (b0010) 1988; 61 McGuire (10.1016/j.jmmm.2021.167945_b0050) 1975; 11 Guimarães (10.1016/j.jmmm.2021.167945_b0095) 2009 Campbell (10.1016/j.jmmm.2021.167945_b0025) 1970; 3 10.1016/j.jmmm.2021.167945_b0055 Vansteenkiste (10.1016/j.jmmm.2021.167945_b0080) 2014; 4 10.1016/j.jmmm.2021.167945_b0065 Jan (10.1016/j.jmmm.2021.167945_b0060) 1957; vol. 5 Ashcroft (10.1016/j.jmmm.2021.167945_b0085) 1976 Puydinger dos Santos (10.1016/j.jmmm.2021.167945_b0090) 2016; 8 10.1016/j.jmmm.2021.167945_b0005 Manzin (10.1016/j.jmmm.2021.167945_b0070) 2014; 50 Zhang (10.1016/j.jmmm.2021.167945_b0075) 2019; 561 Binasch (10.1016/j.jmmm.2021.167945_b0015) 1989; 39 Banhart (10.1016/j.jmmm.2021.167945_b0030) 1995; 32 Smit (10.1016/j.jmmm.2021.167945_b0020) 1955; 21 Puydinger dos Santos (10.1016/j.jmmm.2021.167945_b0035) 2020; 3 Martínez-Pérez (10.1016/j.jmmm.2021.167945_b0045) 2018; 18 Baibich (10.1016/j.jmmm.2021.167945_b0010) 1988; 61 Dumpich (10.1016/j.jmmm.2021.167945_b0040) 2002; 248 |
References_xml | – volume: vol. 5 start-page: 1 year: 1957 end-page: 96 ident: b0060 article-title: Galvamomagnetic and thermomagnetic effects in metals publication-title: Solid State Physics – volume: 50 start-page: 1 year: 2014 end-page: 4 ident: b0070 article-title: Modeling of anisotropic magnetoresistance properties of permalloy nanostructures publication-title: IEEE Trans. Magn. – year: 1976 ident: b0085 article-title: Solid State Physics – volume: 61 start-page: 2472 year: 1988 end-page: 2475 ident: b0010 article-title: Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices publication-title: Phys. Rev. Lett. – volume: 11 start-page: 1018 year: 1975 end-page: 1038 ident: b0050 article-title: Anisotropic magnetoresistance in ferromagnetic 3d alloys publication-title: IEEE Trans. Magn. – reference: single-crystal films, Phys. Rev. Lett. 125. doi:10.1103/PhysRevLett.125.097201. – volume: 21 start-page: 877 year: 1955 end-page: 887 ident: b0020 article-title: The spontaneous hall effect in ferromagnetics I publication-title: Physica – reference: F.L. Zeng, Z.Y. Ren, Y. Li, J.Y. Zeng, M.W. Jia, J. Miao, A. Hoffmann, W. Zhang, Y.Z. Wu, Z. Yuan, Intrinsic mechanism for anisotropic magnetoresistance and experimental confirmation in – volume: 561 start-page: 111 year: 2019 end-page: 113 ident: b0075 article-title: Probing the relationship between anisotropic magnetoresistance and magnetization of ferromagnetic films publication-title: Physica B – volume: 39 start-page: 4828 year: 1989 end-page: 4830 ident: b0015 article-title: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange publication-title: Phys. Rev. B – volume: 248 start-page: 241 year: 2002 end-page: 247 ident: b0040 article-title: Magnetoresistance of single Co nanowires publication-title: J. Magn. Magn. Mater. – volume: 3 start-page: S95 year: 1970 end-page: S101 ident: b0025 article-title: The spontaneous resistivity anisotropy in Ni-based alloys publication-title: J. Phys. C Solid State Phys. – volume: 18 start-page: 7674 year: 2018 end-page: 7682 ident: b0045 article-title: NanoSQUID magnetometry on individual as-grown and annealed co nanowires at variable temperature publication-title: Nano Lett. – volume: 3 start-page: 7143 year: 2020 end-page: 7151 ident: b0035 article-title: Annealed cobalt-carbon nanocomposites for room-temperature spintronic applications publication-title: ACS Appl. Nano Mater. – volume: 32 start-page: 517 year: 1995 end-page: 522 ident: b0030 article-title: First-principles theory of spontaneous-resistance anisotropy and spontaneous hall effect in disordered ferromagnetic alloys publication-title: Europhys. Lett. (EPL) – reference: N.F. Mott, The resistance and thermoelectric properties of the transition metals, Proc. Roy. Soc. Lond. Ser. A – Math. Phys. Sci. 156 (888) (1936) 368–382. doi:10.1098/rspa.1936.0154. – reference: W. Thomson, XIX, On the electro-dynamic qualities of metals:–Effects of magnetization on the electric conductivity of nickel and of iron, Proc. Roy. Soc. Lond. 8 (1857) 546–550. doi:10.1098/rspl.1856.0144. – volume: 4 start-page: 153 year: 2014 end-page: 169 ident: b0080 article-title: The design and verification of MuMax3 publication-title: AIP Adv. – year: 2009 ident: b0095 article-title: Principles of Nanomagnetism – volume: 8 start-page: 32496 year: 2016 end-page: 32503 ident: b0090 article-title: Annealing-based electrical tuning of cobalt-carbon deposits grown by focused-electron-beam-induced deposition publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 153 year: 2014 ident: 10.1016/j.jmmm.2021.167945_b0080 article-title: The design and verification of MuMax3 publication-title: AIP Adv. doi: 10.1063/1.4899186 – ident: 10.1016/j.jmmm.2021.167945_b0065 doi: 10.1103/PhysRevLett.125.097201 – ident: 10.1016/j.jmmm.2021.167945_b0055 doi: 10.1098/rspa.1936.0154 – volume: 61 start-page: 2472 year: 1988 ident: 10.1016/j.jmmm.2021.167945_b0010 article-title: Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2472 – volume: 3 start-page: 7143 issue: 7 year: 2020 ident: 10.1016/j.jmmm.2021.167945_b0035 article-title: Annealed cobalt-carbon nanocomposites for room-temperature spintronic applications publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01497 – volume: 11 start-page: 1018 issue: 4 year: 1975 ident: 10.1016/j.jmmm.2021.167945_b0050 article-title: Anisotropic magnetoresistance in ferromagnetic 3d alloys publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1975.1058782 – volume: 248 start-page: 241 issue: 2 year: 2002 ident: 10.1016/j.jmmm.2021.167945_b0040 article-title: Magnetoresistance of single Co nanowires publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(02)00347-5 – volume: vol. 5 start-page: 1 year: 1957 ident: 10.1016/j.jmmm.2021.167945_b0060 article-title: Galvamomagnetic and thermomagnetic effects in metals – volume: 21 start-page: 877 issue: 6 year: 1955 ident: 10.1016/j.jmmm.2021.167945_b0020 article-title: The spontaneous hall effect in ferromagnetics I publication-title: Physica doi: 10.1016/S0031-8914(55)92596-9 – ident: 10.1016/j.jmmm.2021.167945_b0005 doi: 10.1098/rspl.1856.0144 – volume: 561 start-page: 111 year: 2019 ident: 10.1016/j.jmmm.2021.167945_b0075 article-title: Probing the relationship between anisotropic magnetoresistance and magnetization of ferromagnetic films publication-title: Physica B doi: 10.1016/j.physb.2019.03.005 – volume: 8 start-page: 32496 issue: 47 year: 2016 ident: 10.1016/j.jmmm.2021.167945_b0090 article-title: Annealing-based electrical tuning of cobalt-carbon deposits grown by focused-electron-beam-induced deposition publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12192 – volume: 18 start-page: 7674 issue: 12 year: 2018 ident: 10.1016/j.jmmm.2021.167945_b0045 article-title: NanoSQUID magnetometry on individual as-grown and annealed co nanowires at variable temperature publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03329 – volume: 39 start-page: 4828 year: 1989 ident: 10.1016/j.jmmm.2021.167945_b0015 article-title: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.4828 – year: 2009 ident: 10.1016/j.jmmm.2021.167945_b0095 – volume: 3 start-page: S95 year: 1970 ident: 10.1016/j.jmmm.2021.167945_b0025 article-title: The spontaneous resistivity anisotropy in Ni-based alloys publication-title: J. Phys. C Solid State Phys. doi: 10.1088/0022-3719/3/1S/310 – volume: 50 start-page: 1 issue: 4 year: 2014 ident: 10.1016/j.jmmm.2021.167945_b0070 article-title: Modeling of anisotropic magnetoresistance properties of permalloy nanostructures publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2013.2285937 – year: 1976 ident: 10.1016/j.jmmm.2021.167945_b0085 – volume: 32 start-page: 517 issue: 6 year: 1995 ident: 10.1016/j.jmmm.2021.167945_b0030 article-title: First-principles theory of spontaneous-resistance anisotropy and spontaneous hall effect in disordered ferromagnetic alloys publication-title: Europhys. Lett. (EPL) doi: 10.1209/0295-5075/32/6/010 |
SSID | ssj0001486 ssib019626450 |
Score | 2.3689256 |
Snippet | •Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined... The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 167945 |
SubjectTerms | Anisotropic magnetoresistance Anisotropy Domain walls Electric contacts Electric potential Electrodynamics Magnetic domains Magnetic fields Magnetic nanowire Magnetism Magnetization reversal Magnetoresistance Magnetoresistivity Micromagnetic simulation Nanowires Numerical prediction Room temperature Simulation Voltage |
Title | General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details |
URI | https://dx.doi.org/10.1016/j.jmmm.2021.167945 https://www.proquest.com/docview/2536538974 |
Volume | 532 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yEbyInzg_Rg7epFvTJm13HMMxFb2o4C2kSSoT1451XsWT_4P_nn-J77WposgOHluS0OQl76P5vd8j5MSKWHEQpxcoOE1cpNxTKjEe5unyVGc2rdCEV9fR-I5f3Iv7FTJscmEQVul0f63TK23t3vTcavZmk0nvBi_1ErA2AbKIBlXlWmSvgz3dffmGeYC7X99X-tzD1i5xpsZ4PU6nmI0esC7eRmBK09_G6ZearmzPaJNsOKeRDurv2iIrNt8maxV4U5c75M1xR9OGIJyCJ0pVPimLxbyYTTSdqofcQnRtS3QXYY4URKNd5a6SPpfWVH2Qz0lhgjoFv5Ai8pAWGdXIGbKgucoLZDb-eH0v6YMtpliMC8ahNQy13CV3o7Pb4dhz9RU8DXGS8DLNhYm18MMYglMDYTWziTVahL5WiR8YX6SCpQEHLyLr21DHfZPG2igWZbFJo3CPtPIit_uEIsNtoqLExkxzxbI-jwyzLLRMKGFj0yasWVipHfk41sB4kg3K7FGiMCQKQ9bCaJPTrz6zmnpjaWvRyEv-2EASbMPSfkeNcKU7vqUMRIgTgljr4J_DHpJ1fMK_z0wckdZi_myPwX1ZpJ1qf3bI6uD8cnz9CdjK8qQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqVggWxFO88cCGQuPETtKxQqBCHwsgsVmO7aAimlSk7Ez8B_4ev4S7xEECIQbWJGcl_ux7xHffEXJiRaw4wOkFCnYTFyn3lEqMh3W6PNWZTatswvEkGtzx63tx3yLnTS0MplU63V_r9EpbuytdN5vd-XTavcFDvQSsTYAsogF2ru0gOxVvk07_ajiYfClk8PjrI0ufeyjgamfqNK_H2QwL0gN2hgcSWNX0u336oakr83O5Rlad30j79autk5bNN8hSlb-py03y5uijacMRTsEZpSqflsXiuZhPNZ2ph9xCgG1L9BjhMymgo13zrpK-lNZUMkjppLBGnYJrSDH5kBYZ1UgbsqC5ygskN_54fS_pgy1m2I8LxqF1Jmq5Re4uL27PB55rseBpCJWEl2kuTKyFH8YQnxqIrJlNrNEi9LVK_MD4IhUsDTg4ElnPhjrumTTWRrEoi00ahduknRe53SEUSW4TFSU2ZporlvV4ZJhloWVCCRubXcKaiZXa8Y9jG4wn2SSaPUoEQyIYsgZjl5x-ycxr9o0_nxYNXvLbGpJgHv6UO2jAlW4HlzIQIX4QhFt7_xz2mCwPbscjObqaDPfJCt7Bn9FMHJD24vnFHoI3s0iP3Gr9BCJR9VU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+approach+for+anisotropic+magnetoresistance+calculations+used+for+revealing+the+role+of+cobalt+nanowire%27s+geometrical+details&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Velo%2C+Murilo+Ferreira&rft.au=dos+Santos%2C+Marcos+Vinicius+Puydinger&rft.au=Cecchi%2C+Breno+Malvezzi&rft.au=Pirota%2C+Kleber+Roberto&rft.date=2021-08-15&rft.pub=Elsevier+BV&rft.issn=0304-8853&rft.eissn=1873-4766&rft.volume=532&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jmmm.2021.167945&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon |