General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details

•Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce grow...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetism and magnetic materials Vol. 532; p. 167945
Main Authors Ferreira Velo, Murilo, Puydinger dos Santos, Marcos Vinicius, Malvezzi Cecchi, Breno, Roberto Pirota, Kleber
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.08.2021
Elsevier BV
Subjects
Online AccessGet full text
ISSN0304-8853
1873-4766
DOI10.1016/j.jmmm.2021.167945

Cover

Loading…
Abstract •Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce growth of domain walls (DWs) around them during the magnetization reversal of the nanostructure.•The propagation features of the DWs are the main responsible for the AMR signal behaviour. The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy.
AbstractList •Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined with classical electromagnetism reproduce the main features of the experimental AMR of the magnetic nanowire.•The voltage terminals induce growth of domain walls (DWs) around them during the magnetization reversal of the nanostructure.•The propagation features of the DWs are the main responsible for the AMR signal behaviour. The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy.
The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject driven by both technological applications and fundamental challenges, although being difficult to make numerical predictions from first analytical principles. In this work, we present a MR simulator protocol that combines micromagnetics with classical electrodynamics and works well for room temperature anisotropic magnetoresistance (AMR) for a large magnetic field variation range. As a proof of concept, we applied it to simulate the AMR of a previously reported Co-C composite nanostructure defined by a central nanostripe as the current line with transversal voltage contacts. In addition to the macroscopic measurable quantities like average magnetization and MR signal, the method returns the microscopic spatial magnetization distribution and gives insights about the magnetization reversal mechanism. For example, for this particular case, the magnetic domain walls are predominantly nucleated near the magnetic voltage terminals and their propagation features are the main responsible for the MR observed behavior. Other elements can be easily incorporated to the protocol in order to simulate materials with additional complexities such as crystalline grains or magnetocrystalline anisotropy.
ArticleNumber 167945
Author Malvezzi Cecchi, Breno
Puydinger dos Santos, Marcos Vinicius
Roberto Pirota, Kleber
Ferreira Velo, Murilo
Author_xml – sequence: 1
  givenname: Murilo
  surname: Ferreira Velo
  fullname: Ferreira Velo, Murilo
– sequence: 2
  givenname: Marcos Vinicius
  surname: Puydinger dos Santos
  fullname: Puydinger dos Santos, Marcos Vinicius
– sequence: 3
  givenname: Breno
  surname: Malvezzi Cecchi
  fullname: Malvezzi Cecchi, Breno
  email: bmcecchi@ifi.unicamp.br
– sequence: 4
  givenname: Kleber
  surname: Roberto Pirota
  fullname: Roberto Pirota, Kleber
BookMark eNp9kL1uFDEUhS0UJDaBF6CyRD2Lf8Zjr0SDIghIkWigtjzXdzYezdiL7Q2io-Id8no8Cd4sFUWq25zvXJ3vklzEFJGQ15xtOePD23k7r-u6FUzwLR_0rlfPyIYbLbteD8MF2TDJ-s4YJV-Qy1JmxhjvzbAhv28wYnYLdYdDTg7u6JQydTGUVHM6BKCr20esKWMJpboISMEtcFxcDSkWeizoH5mM9-iWEPe03iHNaUGaJgppdEul0cX0I2T88-uh0D2mFWsOrYd6rC4s5SV5Prml4Kt_94p8-_jh6_Wn7vbLzefr97cdCKNVN0GvvAbFpGZCexwlR4MelGTgDBOeqVHxUfTaiGmHEvTOjxq848Ok_TjIK_Lm3NvGfj9iqXZOxxzbSyuUHJQ0O923lDinIKdSMk72kMPq8k_LmT35trM9-bYn3_bsu0HmPwhCfZRUc5v4NPrujGKbfh8w2wIBm2rflEG1PoWn8L8KOKJn
CitedBy_id crossref_primary_10_1021_acsami_3c00266
crossref_primary_10_1016_j_jallcom_2022_164729
Cites_doi 10.1063/1.4899186
10.1103/PhysRevLett.125.097201
10.1098/rspa.1936.0154
10.1103/PhysRevLett.61.2472
10.1021/acsanm.0c01497
10.1109/TMAG.1975.1058782
10.1016/S0304-8853(02)00347-5
10.1016/S0031-8914(55)92596-9
10.1098/rspl.1856.0144
10.1016/j.physb.2019.03.005
10.1021/acsami.6b12192
10.1021/acs.nanolett.8b03329
10.1103/PhysRevB.39.4828
10.1088/0022-3719/3/1S/310
10.1109/TMAG.2013.2285937
10.1209/0295-5075/32/6/010
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Aug 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 15, 2021
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1016/j.jmmm.2021.167945
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1873-4766
ExternalDocumentID 10_1016_j_jmmm_2021_167945
S0304885321002213
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABFNM
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
M24
M38
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSZ
T5K
XPP
ZMT
~02
~G-
29K
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
D-I
EJD
FGOYB
G-2
HMV
HZ~
NDZJH
R2-
RIG
SEW
SMS
SPG
SSH
WUQ
XXG
7SR
7U5
8BQ
8FD
EFKBS
JG9
L7M
ID FETCH-LOGICAL-c2875-fc45d7c5037027deb31e8edc530ca802d05b51b24782f9e3c79db7cda16f7db63
IEDL.DBID .~1
ISSN 0304-8853
IngestDate Fri Jul 25 07:58:53 EDT 2025
Tue Jul 01 01:13:00 EDT 2025
Thu Apr 24 23:16:03 EDT 2025
Fri Feb 23 02:45:50 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Anisotropic magnetoresistance
Micromagnetic simulation
Magnetic nanowire
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2875-fc45d7c5037027deb31e8edc530ca802d05b51b24782f9e3c79db7cda16f7db63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1016/j.jmmm.2021.167945
PQID 2536538974
PQPubID 2045450
ParticipantIDs proquest_journals_2536538974
crossref_primary_10_1016_j_jmmm_2021_167945
crossref_citationtrail_10_1016_j_jmmm_2021_167945
elsevier_sciencedirect_doi_10_1016_j_jmmm_2021_167945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-15
PublicationDateYYYYMMDD 2021-08-15
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of magnetism and magnetic materials
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Dumpich, Krome, Hausmanns (b0040) 2002; 248
single-crystal films, Phys. Rev. Lett. 125. doi:10.1103/PhysRevLett.125.097201.
Martínez-Pérez, Pablo-Navarro, Müller, Kleiner, Magén, Koelle, de Teresa, Sesé (b0045) 2018; 18
Manzin, Nabaei, Corte-León, Kazakova, Krzysteczko, Schumacher (b0070) 2014; 50
W. Thomson, XIX, On the electro-dynamic qualities of metals:–Effects of magnetization on the electric conductivity of nickel and of iron, Proc. Roy. Soc. Lond. 8 (1857) 546–550. doi:10.1098/rspl.1856.0144.
Ashcroft, Mermin (b0085) 1976
F.L. Zeng, Z.Y. Ren, Y. Li, J.Y. Zeng, M.W. Jia, J. Miao, A. Hoffmann, W. Zhang, Y.Z. Wu, Z. Yuan, Intrinsic mechanism for anisotropic magnetoresistance and experimental confirmation in
McGuire, Potter (b0050) 1975; 11
Vansteenkiste, Leliaert, Dvornik, Helsen, Garcia-Sanchez, Van Waeyenberge (b0080) 2014; 4
Guimarães (b0095) 2009
Binasch, Grünberg, Saurenbach, Zinn (b0015) 1989; 39
Puydinger dos Santos, Brandão, Dugato, Béron, Pirota, Utke (b0035) 2020; 3
N.F. Mott, The resistance and thermoelectric properties of the transition metals, Proc. Roy. Soc. Lond. Ser. A – Math. Phys. Sci. 156 (888) (1936) 368–382. doi:10.1098/rspa.1936.0154.
Zhang, Chen, Zhang (b0075) 2019; 561
Campbell, Fert, Jaoul (b0025) 1970; 3
Banhart, Ebert (b0030) 1995; 32
Smit (b0020) 1955; 21
Jan (b0060) 1957; vol. 5
Puydinger dos Santos, Velo, Domingos, Zhang, Maeder, Guerra-Nuñez, Best, Béron, Pirota, Moshkalev, Diniz, Utke (b0090) 2016; 8
Baibich, Broto, Fert, Van Dau, Petroff, Etienne, Creuzet, Friederich, Chazelas (b0010) 1988; 61
McGuire (10.1016/j.jmmm.2021.167945_b0050) 1975; 11
Guimarães (10.1016/j.jmmm.2021.167945_b0095) 2009
Campbell (10.1016/j.jmmm.2021.167945_b0025) 1970; 3
10.1016/j.jmmm.2021.167945_b0055
Vansteenkiste (10.1016/j.jmmm.2021.167945_b0080) 2014; 4
10.1016/j.jmmm.2021.167945_b0065
Jan (10.1016/j.jmmm.2021.167945_b0060) 1957; vol. 5
Ashcroft (10.1016/j.jmmm.2021.167945_b0085) 1976
Puydinger dos Santos (10.1016/j.jmmm.2021.167945_b0090) 2016; 8
10.1016/j.jmmm.2021.167945_b0005
Manzin (10.1016/j.jmmm.2021.167945_b0070) 2014; 50
Zhang (10.1016/j.jmmm.2021.167945_b0075) 2019; 561
Binasch (10.1016/j.jmmm.2021.167945_b0015) 1989; 39
Banhart (10.1016/j.jmmm.2021.167945_b0030) 1995; 32
Smit (10.1016/j.jmmm.2021.167945_b0020) 1955; 21
Puydinger dos Santos (10.1016/j.jmmm.2021.167945_b0035) 2020; 3
Martínez-Pérez (10.1016/j.jmmm.2021.167945_b0045) 2018; 18
Baibich (10.1016/j.jmmm.2021.167945_b0010) 1988; 61
Dumpich (10.1016/j.jmmm.2021.167945_b0040) 2002; 248
References_xml – volume: vol. 5
  start-page: 1
  year: 1957
  end-page: 96
  ident: b0060
  article-title: Galvamomagnetic and thermomagnetic effects in metals
  publication-title: Solid State Physics
– volume: 50
  start-page: 1
  year: 2014
  end-page: 4
  ident: b0070
  article-title: Modeling of anisotropic magnetoresistance properties of permalloy nanostructures
  publication-title: IEEE Trans. Magn.
– year: 1976
  ident: b0085
  article-title: Solid State Physics
– volume: 61
  start-page: 2472
  year: 1988
  end-page: 2475
  ident: b0010
  article-title: Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 1018
  year: 1975
  end-page: 1038
  ident: b0050
  article-title: Anisotropic magnetoresistance in ferromagnetic 3d alloys
  publication-title: IEEE Trans. Magn.
– reference: single-crystal films, Phys. Rev. Lett. 125. doi:10.1103/PhysRevLett.125.097201.
– volume: 21
  start-page: 877
  year: 1955
  end-page: 887
  ident: b0020
  article-title: The spontaneous hall effect in ferromagnetics I
  publication-title: Physica
– reference: F.L. Zeng, Z.Y. Ren, Y. Li, J.Y. Zeng, M.W. Jia, J. Miao, A. Hoffmann, W. Zhang, Y.Z. Wu, Z. Yuan, Intrinsic mechanism for anisotropic magnetoresistance and experimental confirmation in
– volume: 561
  start-page: 111
  year: 2019
  end-page: 113
  ident: b0075
  article-title: Probing the relationship between anisotropic magnetoresistance and magnetization of ferromagnetic films
  publication-title: Physica B
– volume: 39
  start-page: 4828
  year: 1989
  end-page: 4830
  ident: b0015
  article-title: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange
  publication-title: Phys. Rev. B
– volume: 248
  start-page: 241
  year: 2002
  end-page: 247
  ident: b0040
  article-title: Magnetoresistance of single Co nanowires
  publication-title: J. Magn. Magn. Mater.
– volume: 3
  start-page: S95
  year: 1970
  end-page: S101
  ident: b0025
  article-title: The spontaneous resistivity anisotropy in Ni-based alloys
  publication-title: J. Phys. C Solid State Phys.
– volume: 18
  start-page: 7674
  year: 2018
  end-page: 7682
  ident: b0045
  article-title: NanoSQUID magnetometry on individual as-grown and annealed co nanowires at variable temperature
  publication-title: Nano Lett.
– volume: 3
  start-page: 7143
  year: 2020
  end-page: 7151
  ident: b0035
  article-title: Annealed cobalt-carbon nanocomposites for room-temperature spintronic applications
  publication-title: ACS Appl. Nano Mater.
– volume: 32
  start-page: 517
  year: 1995
  end-page: 522
  ident: b0030
  article-title: First-principles theory of spontaneous-resistance anisotropy and spontaneous hall effect in disordered ferromagnetic alloys
  publication-title: Europhys. Lett. (EPL)
– reference: N.F. Mott, The resistance and thermoelectric properties of the transition metals, Proc. Roy. Soc. Lond. Ser. A – Math. Phys. Sci. 156 (888) (1936) 368–382. doi:10.1098/rspa.1936.0154.
– reference: W. Thomson, XIX, On the electro-dynamic qualities of metals:–Effects of magnetization on the electric conductivity of nickel and of iron, Proc. Roy. Soc. Lond. 8 (1857) 546–550. doi:10.1098/rspl.1856.0144.
– volume: 4
  start-page: 153
  year: 2014
  end-page: 169
  ident: b0080
  article-title: The design and verification of MuMax3
  publication-title: AIP Adv.
– year: 2009
  ident: b0095
  article-title: Principles of Nanomagnetism
– volume: 8
  start-page: 32496
  year: 2016
  end-page: 32503
  ident: b0090
  article-title: Annealing-based electrical tuning of cobalt-carbon deposits grown by focused-electron-beam-induced deposition
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 153
  year: 2014
  ident: 10.1016/j.jmmm.2021.167945_b0080
  article-title: The design and verification of MuMax3
  publication-title: AIP Adv.
  doi: 10.1063/1.4899186
– ident: 10.1016/j.jmmm.2021.167945_b0065
  doi: 10.1103/PhysRevLett.125.097201
– ident: 10.1016/j.jmmm.2021.167945_b0055
  doi: 10.1098/rspa.1936.0154
– volume: 61
  start-page: 2472
  year: 1988
  ident: 10.1016/j.jmmm.2021.167945_b0010
  article-title: Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2472
– volume: 3
  start-page: 7143
  issue: 7
  year: 2020
  ident: 10.1016/j.jmmm.2021.167945_b0035
  article-title: Annealed cobalt-carbon nanocomposites for room-temperature spintronic applications
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01497
– volume: 11
  start-page: 1018
  issue: 4
  year: 1975
  ident: 10.1016/j.jmmm.2021.167945_b0050
  article-title: Anisotropic magnetoresistance in ferromagnetic 3d alloys
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.1975.1058782
– volume: 248
  start-page: 241
  issue: 2
  year: 2002
  ident: 10.1016/j.jmmm.2021.167945_b0040
  article-title: Magnetoresistance of single Co nanowires
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(02)00347-5
– volume: vol. 5
  start-page: 1
  year: 1957
  ident: 10.1016/j.jmmm.2021.167945_b0060
  article-title: Galvamomagnetic and thermomagnetic effects in metals
– volume: 21
  start-page: 877
  issue: 6
  year: 1955
  ident: 10.1016/j.jmmm.2021.167945_b0020
  article-title: The spontaneous hall effect in ferromagnetics I
  publication-title: Physica
  doi: 10.1016/S0031-8914(55)92596-9
– ident: 10.1016/j.jmmm.2021.167945_b0005
  doi: 10.1098/rspl.1856.0144
– volume: 561
  start-page: 111
  year: 2019
  ident: 10.1016/j.jmmm.2021.167945_b0075
  article-title: Probing the relationship between anisotropic magnetoresistance and magnetization of ferromagnetic films
  publication-title: Physica B
  doi: 10.1016/j.physb.2019.03.005
– volume: 8
  start-page: 32496
  issue: 47
  year: 2016
  ident: 10.1016/j.jmmm.2021.167945_b0090
  article-title: Annealing-based electrical tuning of cobalt-carbon deposits grown by focused-electron-beam-induced deposition
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12192
– volume: 18
  start-page: 7674
  issue: 12
  year: 2018
  ident: 10.1016/j.jmmm.2021.167945_b0045
  article-title: NanoSQUID magnetometry on individual as-grown and annealed co nanowires at variable temperature
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03329
– volume: 39
  start-page: 4828
  year: 1989
  ident: 10.1016/j.jmmm.2021.167945_b0015
  article-title: Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.4828
– year: 2009
  ident: 10.1016/j.jmmm.2021.167945_b0095
– volume: 3
  start-page: S95
  year: 1970
  ident: 10.1016/j.jmmm.2021.167945_b0025
  article-title: The spontaneous resistivity anisotropy in Ni-based alloys
  publication-title: J. Phys. C Solid State Phys.
  doi: 10.1088/0022-3719/3/1S/310
– volume: 50
  start-page: 1
  issue: 4
  year: 2014
  ident: 10.1016/j.jmmm.2021.167945_b0070
  article-title: Modeling of anisotropic magnetoresistance properties of permalloy nanostructures
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2013.2285937
– year: 1976
  ident: 10.1016/j.jmmm.2021.167945_b0085
– volume: 32
  start-page: 517
  issue: 6
  year: 1995
  ident: 10.1016/j.jmmm.2021.167945_b0030
  article-title: First-principles theory of spontaneous-resistance anisotropy and spontaneous hall effect in disordered ferromagnetic alloys
  publication-title: Europhys. Lett. (EPL)
  doi: 10.1209/0295-5075/32/6/010
SSID ssj0001486
ssib019626450
Score 2.3689256
Snippet •Anisotropic magnetoresistance (AMR) measurements of magnetic nanowire grown by focused-electron-beam-induced deposition.•Micromagnetic simulations combined...
The electrical resistivity modulation by the application of external magnetic fields, known as magnetoresistance effect (MR), is a widely studied subject...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 167945
SubjectTerms Anisotropic magnetoresistance
Anisotropy
Domain walls
Electric contacts
Electric potential
Electrodynamics
Magnetic domains
Magnetic fields
Magnetic nanowire
Magnetism
Magnetization reversal
Magnetoresistance
Magnetoresistivity
Micromagnetic simulation
Nanowires
Numerical prediction
Room temperature
Simulation
Voltage
Title General approach for anisotropic magnetoresistance calculations used for revealing the role of cobalt nanowire’s geometrical details
URI https://dx.doi.org/10.1016/j.jmmm.2021.167945
https://www.proquest.com/docview/2536538974
Volume 532
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA8yEbyInzg_Rg7epFvTJm13HMMxFb2o4C2kSSoT1451XsWT_4P_nn-J77WposgOHluS0OQl76P5vd8j5MSKWHEQpxcoOE1cpNxTKjEe5unyVGc2rdCEV9fR-I5f3Iv7FTJscmEQVul0f63TK23t3vTcavZmk0nvBi_1ErA2AbKIBlXlWmSvgz3dffmGeYC7X99X-tzD1i5xpsZ4PU6nmI0esC7eRmBK09_G6ZearmzPaJNsOKeRDurv2iIrNt8maxV4U5c75M1xR9OGIJyCJ0pVPimLxbyYTTSdqofcQnRtS3QXYY4URKNd5a6SPpfWVH2Qz0lhgjoFv5Ai8pAWGdXIGbKgucoLZDb-eH0v6YMtpliMC8ahNQy13CV3o7Pb4dhz9RU8DXGS8DLNhYm18MMYglMDYTWziTVahL5WiR8YX6SCpQEHLyLr21DHfZPG2igWZbFJo3CPtPIit_uEIsNtoqLExkxzxbI-jwyzLLRMKGFj0yasWVipHfk41sB4kg3K7FGiMCQKQ9bCaJPTrz6zmnpjaWvRyEv-2EASbMPSfkeNcKU7vqUMRIgTgljr4J_DHpJ1fMK_z0wckdZi_myPwX1ZpJ1qf3bI6uD8cnz9CdjK8qQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqVggWxFO88cCGQuPETtKxQqBCHwsgsVmO7aAimlSk7Ez8B_4ev4S7xEECIQbWJGcl_ux7xHffEXJiRaw4wOkFCnYTFyn3lEqMh3W6PNWZTatswvEkGtzx63tx3yLnTS0MplU63V_r9EpbuytdN5vd-XTavcFDvQSsTYAsogF2ru0gOxVvk07_ajiYfClk8PjrI0ufeyjgamfqNK_H2QwL0gN2hgcSWNX0u336oakr83O5Rlad30j79autk5bNN8hSlb-py03y5uijacMRTsEZpSqflsXiuZhPNZ2ph9xCgG1L9BjhMymgo13zrpK-lNZUMkjppLBGnYJrSDH5kBYZ1UgbsqC5ygskN_54fS_pgy1m2I8LxqF1Jmq5Re4uL27PB55rseBpCJWEl2kuTKyFH8YQnxqIrJlNrNEi9LVK_MD4IhUsDTg4ElnPhjrumTTWRrEoi00ahduknRe53SEUSW4TFSU2ZporlvV4ZJhloWVCCRubXcKaiZXa8Y9jG4wn2SSaPUoEQyIYsgZjl5x-ycxr9o0_nxYNXvLbGpJgHv6UO2jAlW4HlzIQIX4QhFt7_xz2mCwPbscjObqaDPfJCt7Bn9FMHJD24vnFHoI3s0iP3Gr9BCJR9VU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=General+approach+for+anisotropic+magnetoresistance+calculations+used+for+revealing+the+role+of+cobalt+nanowire%27s+geometrical+details&rft.jtitle=Journal+of+magnetism+and+magnetic+materials&rft.au=Velo%2C+Murilo+Ferreira&rft.au=dos+Santos%2C+Marcos+Vinicius+Puydinger&rft.au=Cecchi%2C+Breno+Malvezzi&rft.au=Pirota%2C+Kleber+Roberto&rft.date=2021-08-15&rft.pub=Elsevier+BV&rft.issn=0304-8853&rft.eissn=1873-4766&rft.volume=532&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jmmm.2021.167945&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-8853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-8853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-8853&client=summon