Review on nanomaterials for next‐generation batteries with lithium metal anodes
Stable lithium (Li) metal anode is highly pursued to accelerate the development of high‐energy‐density battery systems. In this article, the stable Li metal batteries boosted by nano‐technology and nano‐materials are comprehensively reviewed. Two emerging strategies, including nanostructured lithium...
Saved in:
Published in | Nano select Vol. 1; no. 1; pp. 94 - 110 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2688-4011 2688-4011 |
DOI | 10.1002/nano.202000003 |
Cover
Loading…
Abstract | Stable lithium (Li) metal anode is highly pursued to accelerate the development of high‐energy‐density battery systems. In this article, the stable Li metal batteries boosted by nano‐technology and nano‐materials are comprehensively reviewed. Two emerging strategies, including nanostructured lithium metal frameworks and nano‐artificial solid‐electrolyte interphase (SEI) are particularly focused. First, typical conductive/non‐conductive nanostructured frameworks and the corresponding merits are introduced. The physical and chemical modifications of the traditional nano‐frameworks are further summarized. In addition, the nano‐artificial SEIs built by in situ regulation and ex situ fabrication strategies are involved, with the scientific and technologic issues concerned on the interface well discussed. This review mainly focuses on the fresh benefits brought by nano‐technology and nano‐materials on building better lithium metal batteries. The recent advances of nanostructured lithium metal frameworks and nanoscale artificial SEIs are concluded, and the challenges as well as promising directions for future research are prospected.
This review mainly focuses on the benefits brought by nano‐technology and nano‐materials on building better lithium metal anodes for next‐generation batteries, in which the recent advances on nanostructured lithium metal frameworks and nanoscale artificial SEIs are summarized. |
---|---|
AbstractList | Stable lithium (Li) metal anode is highly pursued to accelerate the development of high‐energy‐density battery systems. In this article, the stable Li metal batteries boosted by nano‐technology and nano‐materials are comprehensively reviewed. Two emerging strategies, including nanostructured lithium metal frameworks and nano‐artificial solid‐electrolyte interphase (SEI) are particularly focused. First, typical conductive/non‐conductive nanostructured frameworks and the corresponding merits are introduced. The physical and chemical modifications of the traditional nano‐frameworks are further summarized. In addition, the nano‐artificial SEIs built by in situ regulation and ex situ fabrication strategies are involved, with the scientific and technologic issues concerned on the interface well discussed. This review mainly focuses on the fresh benefits brought by nano‐technology and nano‐materials on building better lithium metal batteries. The recent advances of nanostructured lithium metal frameworks and nanoscale artificial SEIs are concluded, and the challenges as well as promising directions for future research are prospected.
This review mainly focuses on the benefits brought by nano‐technology and nano‐materials on building better lithium metal anodes for next‐generation batteries, in which the recent advances on nanostructured lithium metal frameworks and nanoscale artificial SEIs are summarized. Stable lithium (Li) metal anode is highly pursued to accelerate the development of high-energy-density battery systems. In this article, the stable Li metal batteries boosted by nano-technology and nano-materials are comprehensively reviewed. Two emerging strategies, including nanostructured lithium metal frameworks and nano-artificial solid-electrolyte interphase (SEI) are particularly focused. First, typical conductive/non-conductive nanostructured frameworks and the corresponding merits are introduced. The physical and chemical modifications of the traditional nano-frameworks are further summarized. In addition, the nano-artificial SEIs built by in situ regulation and ex situ fabrication strategies are involved, with the scientific and technologic issues concerned on the interface well discussed. This review mainly focuses on the fresh benefits brought by nano-technology and nano-materials on building better lithium metal batteries. The recent advances of nanostructured lithium metal frameworks and nanoscale artificial SEIs are concluded, and the challenges as well as promising directions for future research are prospected. |
Author | Park, Ho Seok Huang, Jia‐Qi Xu, Rui Xiao, Ye Xu, Lei Peng, Hong‐Jie Liang, Ji Ding, Jun‐Fan Yan, Chong |
Author_xml | – sequence: 1 givenname: Jun‐Fan surname: Ding fullname: Ding, Jun‐Fan organization: Beijing Institute of Technology – sequence: 2 givenname: Rui surname: Xu fullname: Xu, Rui organization: Beijing Institute of Technology – sequence: 3 givenname: Chong surname: Yan fullname: Yan, Chong organization: Beijing Institute of Technology – sequence: 4 givenname: Ye surname: Xiao fullname: Xiao, Ye organization: Beijing Institute of Technology – sequence: 5 givenname: Lei surname: Xu fullname: Xu, Lei organization: Beijing Institute of Technology – sequence: 6 givenname: Hong‐Jie surname: Peng fullname: Peng, Hong‐Jie organization: Stanford University – sequence: 7 givenname: Ho Seok surname: Park fullname: Park, Ho Seok organization: Sungkyunkwan University (SKKU) – sequence: 8 givenname: Ji surname: Liang fullname: Liang, Ji organization: University of Wollongong – sequence: 9 givenname: Jia‐Qi orcidid: 0000-0001-7394-9186 surname: Huang fullname: Huang, Jia‐Qi email: jqhuang@bit.edu.cn organization: Beijing Institute of Technology |
BookMark | eNqFkM9KAzEQxoNUsNZePQc8b02y7W72WIr_oLQoeg7J7qym7GZrklp78xF8Rp_ErCsqgpjDZGC-3zd8c4h6pjGA0DElI0oIOzXSNCNGGGlfvIf6LOE8GhNKez_6AzR0bhUUbEJpmtE-ur6BJw1b3BjcWtTSg9WycrhsLDbw7N9eXu_BgJVeB42SvhWAw1vtH3AVit7UuAYvKxz4AtwR2i-DAQw__wG6Oz-7nV1G8-XF1Ww6j3LG0zhSIHOSJJMsVhlkqgCmGE3SMJqQJC1SrmgiY0kYVwnJYlkWUsU8VYQqWoSg8QCddL5r2zxuwHmxajbWhJWC8YykjI9Zqxp1qtw2zlkoxdrqWtqdoES0lxNtbPF1uQCMfwG59h_hvZW6-hvLOmyrK9j9s0QspovlN_sO76qGMw |
CitedBy_id | crossref_primary_10_1002_ange_202101627 crossref_primary_10_1021_acsaenm_3c00774 crossref_primary_10_1016_j_jechem_2022_01_011 crossref_primary_10_1002_ange_202115602 crossref_primary_10_1002_adfm_202009694 crossref_primary_10_1002_anie_202115602 crossref_primary_10_1002_chem_202302867 crossref_primary_10_1016_j_nxnano_2023_100011 crossref_primary_10_1039_D0TA11030B crossref_primary_10_1021_acs_jpcc_4c06675 crossref_primary_10_1039_D4SE01640H crossref_primary_10_1016_j_compositesb_2021_109384 crossref_primary_10_1016_j_jechem_2020_08_029 crossref_primary_10_1039_D4SE00497C crossref_primary_10_1039_D0TA12153C crossref_primary_10_1002_anie_202101627 |
Cites_doi | 10.1016/j.trechm.2019.02.015 10.1002/smtd.201700417 10.1039/c0cs00176g 10.1073/pnas.1518188113 10.1016/j.enchem.2019.100003 10.1039/C7CS00180K 10.1021/acsami.9b12634 10.1021/acs.jpcc.9b00436 10.1002/anie.201801737 10.1007/s11434-012-5017-2 10.1016/j.chempr.2016.12.002 10.1016/j.electacta.2015.06.140 10.1016/j.ensm.2018.03.004 10.1002/inf2.12097 10.1002/adma.201700389 10.1002/adfm.201606422 10.1557/mrs2002.195 10.1039/C3TA14818A 10.1021/nn7001954 10.1016/j.ensm.2017.08.001 10.1021/nn9009592 10.1002/aenm.201702744 10.1016/j.cej.2015.02.097 10.1002/adfm.201808756 10.1002/aenm.201600811 10.1002/adma.201808392 10.1002/aenm.201701744 10.1021/jacs.7b01763 10.1016/j.nanoen.2015.07.014 10.1038/nnano.2014.152 10.1021/acsami.8b12579 10.1039/C8EE03586E 10.1002/inf2.12046 10.5796/electrochemistry.84.854 10.1016/j.ensm.2019.03.029 10.1007/s11581-013-0979-x 10.1002/adma.201807585 10.1016/j.nanoen.2019.103910 10.1002/admt.201900806 10.1149/2.0111801jes 10.1021/acs.chemmater.7b01496 10.1016/j.nantod.2015.02.009 10.1002/er.1598 10.1021/jacs.7b05251 10.1021/acsami.8b04573 10.1007/s12274-016-1219-2 10.1016/j.compscitech.2019.04.028 10.1002/inf2.12080 10.1038/s41560-018-0276-z 10.1126/sciadv.aat5168 10.1039/c3cs00009e 10.1002/anie.201907759 10.1021/acsami.7b15879 10.1016/j.trechm.2019.06.007 10.1002/adma.201800716 10.1021/acs.chemrev.7b00115 10.1016/j.nantod.2010.11.002 10.1002/adma.201707629 10.1002/aenm.201702322 10.1002/adma.201807131 10.1002/adma.201504526 10.1016/j.joule.2018.02.001 10.1002/adma.201705830 10.1039/C8TA11941D 10.1038/nnano.2016.32 10.1002/anie.201702099 10.1002/smll.201503193 10.1016/j.jechem.2018.11.016 10.1016/j.jechem.2018.08.003 10.1021/acsami.8b21420 10.1002/aenm.201702179 10.1007/s11467-013-0408-7 10.1016/j.nanoen.2018.08.030 10.1002/adma.201600164 10.1021/jacs.9b10195 10.1021/cr500003w 10.1002/smtd.201800546 10.1016/j.nanoen.2019.04.030 10.1002/adma.201806620 10.1002/adma.201104971 10.1021/acs.chemmater.7b00091 10.1016/j.ensm.2017.03.008 10.1016/j.joule.2019.09.022 10.1021/jp409223c 10.1016/j.trechm.2019.10.002 10.1002/smtd.201700094 10.1038/nenergy.2016.114 10.3390/nano5020755 10.1016/j.jechem.2019.03.014 10.1002/anie.201711598 10.1039/C7CS00790F 10.1016/j.joule.2017.06.004 10.1021/ja3089923 10.1021/acs.chemrev.8b00642 10.1002/adma.201703614 10.1002/aenm.201600278 10.1016/j.etran.2019.100033 10.1039/C8TA01683F 10.1002/adma.201603755 10.1016/j.ensm.2020.01.019 10.1002/aenm.201501933 10.1002/anie.201707093 10.1039/c4ta00534a 10.1021/ar2001793 10.1073/pnas.1618871114 10.1002/advs.201600445 10.1002/adma.201504117 10.1002/anie.201813805 10.1007/s41918-019-00033-7 10.1016/j.jpowsour.2016.11.097 10.1016/j.ensm.2017.12.002 10.1039/C8QM00645H 10.1002/aenm.201700260 10.1039/C7TA01735A 10.1016/j.ensm.2018.04.032 10.1038/s41467-018-06126-z 10.1039/C3EE40795K 10.1016/j.ensm.2017.10.012 10.1021/acsenergylett.7b00300 10.1149/2.0191915jes 10.1016/j.jallcom.2015.03.222 10.1007/s11581-018-2717-x 10.1021/jacs.9b05029 10.1021/acs.nanolett.8b04906 10.1016/j.matt.2019.05.016 10.1002/admi.201701097 10.1002/adma.201506124 10.1021/acs.nanolett.9b03562 10.1021/nl503125u 10.1016/j.ensm.2019.12.020 10.1007/s12598-018-1054-6 10.1039/C6MH00521G 10.1039/C5TA00689A 10.1038/nnano.2017.16 10.1021/acsami.7b18997 10.1038/natrevmats.2016.13 10.1016/j.electacta.2006.02.004 10.1039/c2jm31776a 10.1039/c0nr00594k 10.1002/anie.201203201 10.1002/aenm.201801897 10.1021/nl202630n 10.1021/jacs.6b08730 10.1002/smll.201805389 10.1002/adma.201804461 10.1016/j.jpowsour.2015.06.039 10.1021/acs.nanolett.6b01581 10.1021/acsmaterialslett.9b00118 10.1039/C8CC02280A 10.1155/2019/4608940 10.1002/aenm.201100519 10.1038/s41565-018-0061-y 10.1016/j.electacta.2019.05.138 10.1016/j.ensm.2018.04.024 10.1016/j.nanoen.2017.10.053 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1002/nano.202000003 |
DatabaseName | Wiley - open access journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2688-4011 |
EndPage | 110 |
ExternalDocumentID | 10_1002_nano_202000003 NANO202000003 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21776019 – fundername: Beijing Natural Science Foundation funderid: L182021 – fundername: National Key Research and Development Program funderid: 2016YFA0202500 |
GroupedDBID | 0R~ 1OC 24P AAFWJ AAHHS ABJCF ACCFJ ACCMX AEEZP AEQDE AFKRA AFPKN AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARCSS BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO IGS IHR INH ITC KB. M~E OK1 PDBOC PIMPY WIN AAYXX CITATION PHGZM PHGZT 8FE 8FG AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2873-beac066593b9e9bde2b21678735067d78b16a3a028b6093afdab387b01b1d2023 |
IEDL.DBID | BENPR |
ISSN | 2688-4011 |
IngestDate | Wed Aug 13 10:41:33 EDT 2025 Thu Apr 24 23:04:09 EDT 2025 Tue Jul 01 01:01:20 EDT 2025 Wed Jan 22 16:34:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2873-beac066593b9e9bde2b21678735067d78b16a3a028b6093afdab387b01b1d2023 |
Notes | Jun‐Fan Ding and Rui Xu contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7394-9186 |
OpenAccessLink | https://www.proquest.com/docview/2890728422?pq-origsite=%requestingapplication% |
PQID | 2890728422 |
PQPubID | 5068504 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2890728422 crossref_primary_10_1002_nano_202000003 crossref_citationtrail_10_1002_nano_202000003 wiley_primary_10_1002_nano_202000003_NANO202000003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Nano select |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2019; 2019 2019; 11 2019; 12 2019; 15 2019; 16 2019; 19 2019; 166 2018; 47 2018; 6 2018; 9 2018; 8 2018; 3 2018; 2 2018; 5 2018; 4 2019; 23 2013; 52 2014; 14 2019; 29 2018; 30 2019; 317 2017; 165 2007; 1 2012; 24 2012; 22 2018; 37 2019; 7 2019; 3 2019; 6 2019; 5 2006; 51 2019; 31 2019; 2 2019; 33 2019; 1 2015; 640 2019; 37 2011; 3 2011; 6 2016; 16 2016; 12 2017; 139 2018; 25 2016; 11 2016; 6 2016; 7 2016; 1 2017; 56 2020; 28 2019; 179 2018; 12 2016; 28 2018; 11 2018; 10 2016; 9 2018; 14 2018; 13 2017; 5 2017; 7 2017; 42 2017; 1 2017; 2 2017; 4 2019; 58 2011; 11 2012; 57 2017; 114 2019; 123 2017; 117 2013; 19 2015; 294 2014; 5 2019; 60 2020; 2 2014; 2 2019; 64 2015; 176 2016; 113 2016; 84 2019; 119 2011; 26 2014; 9 2014; 7 2014; 118 2015; 6 2015; 16 2015; 5 2015; 3 2013; 46 2017; 27 2011; 40 2013; 42 2015; 10 2017; 29 2019; 141 2014; 114 2002; 27 2009; 33 2015; 271 2012; 2 2017; 12 2013; 135 2016; 138 2009; 3 2017; 342 2018; 54 2018; 53 2018; 57 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 Wu S. (e_1_2_6_97_1) 2018; 30 e_1_2_6_152_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_156_1 Zhi L.‐J. (e_1_2_6_85_1) 2011; 26 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_106_1 e_1_2_6_148_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Mukherjee R. (e_1_2_6_87_1) 2014; 5 e_1_2_6_140_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_117_1 e_1_2_6_159_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 Xue P. (e_1_2_6_94_1) 2019; 6 e_1_2_6_151_1 e_1_2_6_132_1 e_1_2_6_113_1 Li W. (e_1_2_6_134_1) 2015; 6 e_1_2_6_155_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_158_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_150_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_154_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_142_1 e_1_2_6_161_1 e_1_2_6_100_1 e_1_2_6_146_1 Luebke M. (e_1_2_6_96_1) 2015; 294 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_153_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_157_1 Liu Y. (e_1_2_6_114_1) 2016; 7 e_1_2_6_160_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 764 year: 2018 publication-title: Joule – volume: 7 year: 2016 publication-title: Nat. Chem. – volume: 33 start-page: 1161 year: 2009 publication-title: Int. J. Energy Res. – volume: 13 start-page: 337 year: 2018 publication-title: Nat. Nanotechnol. – volume: 119 start-page: 5416 year: 2019 publication-title: Chem. Rev. – volume: 114 year: 2014 publication-title: Chem. Rev. – volume: 2 start-page: 9433 year: 2014 publication-title: J. Mater. Chem. A. – volume: 2 start-page: 87 year: 2012 publication-title: Adv. Energy Mater. – volume: 10 start-page: 199 year: 2018 publication-title: Energy Storage Mater – volume: 64 year: 2019 publication-title: Nano Energy – volume: 317 start-page: 120 year: 2019 publication-title: Electrochim. Acta. – volume: 9 start-page: 3428 year: 2016 publication-title: Nano Res – volume: 10 start-page: 16 year: 2018 publication-title: Energy Storage Mater – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 513 year: 2014 publication-title: Energy Environ. Sci. – volume: 117 year: 2017 publication-title: Chem. Rev. – volume: 58 year: 2019 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 7436 year: 2015 publication-title: Nat. Chem. – volume: 1 year: 2019 publication-title: EnergyChem – volume: 6 start-page: 9332 year: 2018 publication-title: J. Mater. Chem. A. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 2019 year: 2019 publication-title: Research – volume: 2 start-page: 1321 year: 2017 publication-title: ACS Energy Lett – volume: 27 start-page: 604 year: 2002 publication-title: MRS Bull – volume: 3 start-page: 615 year: 2019 publication-title: Mater. Chem. Front. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 165 year: 2017 publication-title: J. Electrochem. Soc. – volume: 3 start-page: 1076 year: 2018 publication-title: Nat. Energy. – volume: 16 start-page: 85 year: 2019 publication-title: Energy Storage Mater – volume: 135 start-page: 2013 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 205 year: 2017 publication-title: Nano Energy – volume: 4 start-page: 133 year: 2017 publication-title: Mater. Horiz. – volume: 54 start-page: 6648 year: 2018 publication-title: Chem. Commun. – volume: 2 start-page: 483 year: 2020 publication-title: InfoMat – volume: 28 start-page: 401 year: 2020 publication-title: Energy Storage Mater. – volume: 2 start-page: 379 year: 2020 publication-title: InfoMat. – volume: 37 start-page: 510 year: 2018 publication-title: Rare Met – volume: 19 start-page: 8780 year: 2019 publication-title: Nano Lett – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 9 start-page: 323 year: 2014 publication-title: Front. Phys. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 2837 year: 2018 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 4203 year: 2012 publication-title: Adv. Mater. – volume: 10 start-page: 8692 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 56 year: 2017 publication-title: Angew. Chem. Int. Ed. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 1 start-page: 563 year: 2017 publication-title: Joule – volume: 16 start-page: 259 year: 2019 publication-title: Energy Storage Mater – volume: 9 start-page: 3729 year: 2018 publication-title: Nat. Commun. – volume: 1 start-page: 693 year: 2019 publication-title: Trends Chem – volume: 28 start-page: 7580 year: 2016 publication-title: Adv. Mater. – volume: 23 start-page: 556 year: 2019 publication-title: Energy Storage Mater – volume: 28 start-page: 2155 year: 2016 publication-title: Adv. Mater. – volume: 114 start-page: 3584 year: 2017 publication-title: Proc. Natl. Acad. Sci. – volume: 141 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 839 year: 2011 publication-title: Nanoscale – volume: 2 start-page: 613 year: 2020 publication-title: InfoMat – volume: 37 start-page: 29 year: 2019 publication-title: J. Energy Chem. – volume: 1 start-page: 317 year: 2019 publication-title: Matter – volume: 57 start-page: 4104 year: 2012 publication-title: Chin. Sci. Bull. – volume: 3 start-page: 7207 year: 2015 publication-title: J. Mater. Chem. A – volume: 12 start-page: 161 year: 2018 publication-title: Energy Storage Mater – volume: 40 start-page: 4167 year: 2011 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 208 year: 2007 publication-title: Acs Nano – volume: 2 year: 2018 publication-title: Small Methods – volume: 12 start-page: 194 year: 2017 publication-title: Nat. Nanotechnol. – volume: 57 start-page: 5072 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 113 start-page: 2862 year: 2016 publication-title: Proc. Natl. Acad. Sci. – volume: 7 start-page: 3857 year: 2019 publication-title: J. Mater. Chem. A – volume: 28 start-page: 2888 year: 2016 publication-title: Adv. Mater. – volume: 52 start-page: 1882 year: 2013 publication-title: Angew. Chem. Int. Edit. – volume: 271 start-page: 155 year: 2015 publication-title: Chem. Eng. J. – volume: 26 start-page: 5 year: 2011 publication-title: New Carbon Mater – volume: 29 start-page: 6298 year: 2017 publication-title: Chem. Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 37 start-page: 197 year: 2019 publication-title: J. Energy Chem. – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 5 year: 2019 publication-title: Adv. Mater. Technol. – volume: 11 start-page: 127 year: 2018 publication-title: Energy Storage Mater – volume: 11 start-page: 626 year: 2016 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 4018 year: 2011 publication-title: Nano Lett – volume: 1 year: 2016 publication-title: Nat. Rev. Mater. – volume: 16 start-page: 488 year: 2015 publication-title: Nano Energy – volume: 12 start-page: 1688 year: 2016 publication-title: Small – volume: 1 start-page: 152 year: 2019 publication-title: Trends Chem – volume: 25 start-page: 2525 year: 2018 publication-title: Ionics – volume: 6 start-page: 28 year: 2011 publication-title: Nano Today – volume: 57 start-page: 992 year: 2018 publication-title: Angew. Chem. Int. Ed. – volume: 294 start-page: 94 year: 2015 publication-title: J. Power Sources – volume: 5 start-page: 3710 year: 2014 publication-title: Nat. Chem. – volume: 14 start-page: 6016 year: 2014 publication-title: Nano Lett – volume: 3 start-page: 2647 year: 2019 publication-title: Joule – volume: 30 year: 2018 publication-title: Adv. Mater. Processes – volume: 10 start-page: 193 year: 2015 publication-title: Nano Today – volume: 51 start-page: 5334 year: 2006 publication-title: Electrochim. Acta. – volume: 2 start-page: 52 year: 2017 publication-title: Chem – volume: 5 start-page: 755 year: 2015 publication-title: Nanomaterials – volume: 139 start-page: 5916 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 33 start-page: 167 year: 2019 publication-title: J. Energy Chem. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 3297 year: 2014 publication-title: J. Mater. Chem. A – volume: 16 start-page: 4431 year: 2016 publication-title: Nano Lett – volume: 60 start-page: 866 year: 2019 publication-title: Nano Energy – volume: 118 start-page: 811 year: 2014 publication-title: J. Phys. Chem. C – volume: 179 start-page: 10 year: 2019 publication-title: Compos. Sci. Technol. – volume: 3 start-page: 3308 year: 2009 publication-title: Acs Nano – volume: 53 start-page: 168 year: 2018 publication-title: Nano Energy – volume: 2 year: 2019 publication-title: eTransportation – volume: 1 start-page: 217 year: 2019 publication-title: ACS Mater. Lett. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 46 start-page: 1206 year: 2013 publication-title: Acc. Chem. Res. – volume: 47 start-page: 736 year: 2018 publication-title: Chem. Soc. Rev. – volume: 84 start-page: 854 year: 2016 publication-title: Electrochemistry – volume: 176 start-page: 172 year: 2015 publication-title: Electrochim. Acta. – volume: 2 start-page: 332 year: 2019 publication-title: Electrochem. Energy Rev. – volume: 19 start-page: 1326 year: 2019 publication-title: Nano Lett – volume: 15 year: 2019 publication-title: Small – volume: 9 start-page: 618 year: 2014 publication-title: Nat. Nanotechnol. – volume: 1 year: 2017 publication-title: Small Methods – volume: 56 start-page: 7764 year: 2017 publication-title: Angew. Chem. Int. Edit. – volume: 14 start-page: 143 year: 2018 publication-title: Energy Storage Mater – volume: 3 year: 2019 publication-title: Small Methods – volume: 640 start-page: 321 year: 2015 publication-title: J. Alloys Compd. – volume: 5 start-page: 9991 year: 2017 publication-title: J. Mater. Chem. A. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 10 start-page: 7043 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 141 start-page: 9422 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 3127 year: 2013 publication-title: Chem. Soc. Rev. – volume: 29 start-page: 4682 year: 2017 publication-title: Chem. Mater. – volume: 12 start-page: 1286 year: 2019 publication-title: Energy Environ. Sci. – volume: 28 start-page: 1853 year: 2016 publication-title: Adv. Mater. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 342 start-page: 175 year: 2017 publication-title: J. Power Sources – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 19 start-page: 1455 year: 2013 publication-title: Ionics – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – volume: 58 start-page: 3859 year: 2019 publication-title: Angew. Chem. Int. Edit. – volume: 1 start-page: 709 year: 2019 publication-title: Trends Chem – volume: 28 start-page: 17 year: 2020 publication-title: Energy Storage Mater – ident: e_1_2_6_68_1 doi: 10.1016/j.trechm.2019.02.015 – ident: e_1_2_6_160_1 doi: 10.1002/smtd.201700417 – ident: e_1_2_6_44_1 doi: 10.1039/c0cs00176g – ident: e_1_2_6_93_1 doi: 10.1073/pnas.1518188113 – ident: e_1_2_6_11_1 doi: 10.1016/j.enchem.2019.100003 – ident: e_1_2_6_48_1 doi: 10.1039/C7CS00180K – ident: e_1_2_6_58_1 doi: 10.1021/acsami.9b12634 – ident: e_1_2_6_59_1 doi: 10.1021/acs.jpcc.9b00436 – ident: e_1_2_6_36_1 doi: 10.1002/anie.201801737 – ident: e_1_2_6_32_1 doi: 10.1007/s11434-012-5017-2 – ident: e_1_2_6_141_1 doi: 10.1016/j.chempr.2016.12.002 – ident: e_1_2_6_89_1 doi: 10.1016/j.electacta.2015.06.140 – ident: e_1_2_6_150_1 doi: 10.1016/j.ensm.2018.03.004 – ident: e_1_2_6_12_1 doi: 10.1002/inf2.12097 – ident: e_1_2_6_80_1 doi: 10.1002/adma.201700389 – ident: e_1_2_6_82_1 doi: 10.1002/adfm.201606422 – ident: e_1_2_6_39_1 doi: 10.1557/mrs2002.195 – ident: e_1_2_6_57_1 doi: 10.1039/C3TA14818A – ident: e_1_2_6_65_1 doi: 10.1021/nn7001954 – ident: e_1_2_6_147_1 doi: 10.1016/j.ensm.2017.08.001 – ident: e_1_2_6_47_1 doi: 10.1021/nn9009592 – ident: e_1_2_6_133_1 doi: 10.1002/aenm.201702744 – ident: e_1_2_6_55_1 doi: 10.1016/j.cej.2015.02.097 – ident: e_1_2_6_67_1 doi: 10.1002/adfm.201808756 – ident: e_1_2_6_15_1 doi: 10.1002/aenm.201600811 – ident: e_1_2_6_144_1 doi: 10.1002/adma.201808392 – ident: e_1_2_6_152_1 doi: 10.1002/aenm.201701744 – ident: e_1_2_6_105_1 doi: 10.1021/jacs.7b01763 – ident: e_1_2_6_66_1 doi: 10.1016/j.nanoen.2015.07.014 – ident: e_1_2_6_138_1 doi: 10.1038/nnano.2014.152 – ident: e_1_2_6_128_1 doi: 10.1021/acsami.8b12579 – ident: e_1_2_6_35_1 doi: 10.1039/C8EE03586E – ident: e_1_2_6_139_1 doi: 10.1002/inf2.12046 – ident: e_1_2_6_18_1 doi: 10.5796/electrochemistry.84.854 – ident: e_1_2_6_28_1 doi: 10.1016/j.ensm.2019.03.029 – ident: e_1_2_6_30_1 doi: 10.1007/s11581-013-0979-x – ident: e_1_2_6_111_1 doi: 10.1002/adma.201807585 – ident: e_1_2_6_117_1 doi: 10.1016/j.nanoen.2019.103910 – ident: e_1_2_6_4_1 doi: 10.1002/admt.201900806 – ident: e_1_2_6_3_1 doi: 10.1149/2.0111801jes – ident: e_1_2_6_154_1 doi: 10.1021/acs.chemmater.7b01496 – ident: e_1_2_6_69_1 doi: 10.1016/j.nantod.2015.02.009 – ident: e_1_2_6_43_1 doi: 10.1002/er.1598 – ident: e_1_2_6_127_1 doi: 10.1021/jacs.7b05251 – ident: e_1_2_6_155_1 doi: 10.1021/acsami.8b04573 – ident: e_1_2_6_90_1 doi: 10.1007/s12274-016-1219-2 – volume: 6 start-page: 7436 year: 2015 ident: e_1_2_6_134_1 publication-title: Nat. Chem. – ident: e_1_2_6_41_1 doi: 10.1016/j.compscitech.2019.04.028 – ident: e_1_2_6_108_1 doi: 10.1002/inf2.12080 – ident: e_1_2_6_113_1 doi: 10.1038/s41560-018-0276-z – ident: e_1_2_6_24_1 doi: 10.1126/sciadv.aat5168 – ident: e_1_2_6_61_1 doi: 10.1039/c3cs00009e – ident: e_1_2_6_161_1 doi: 10.1002/anie.201907759 – ident: e_1_2_6_159_1 doi: 10.1021/acsami.7b15879 – ident: e_1_2_6_5_1 doi: 10.1016/j.trechm.2019.06.007 – ident: e_1_2_6_83_1 doi: 10.1002/adma.201800716 – ident: e_1_2_6_2_1 doi: 10.1021/acs.chemrev.7b00115 – ident: e_1_2_6_45_1 doi: 10.1016/j.nantod.2010.11.002 – ident: e_1_2_6_135_1 doi: 10.1002/adma.201707629 – ident: e_1_2_6_79_1 doi: 10.1002/aenm.201702322 – ident: e_1_2_6_95_1 doi: 10.1002/adma.201807131 – ident: e_1_2_6_123_1 doi: 10.1002/adma.201504526 – ident: e_1_2_6_91_1 doi: 10.1016/j.joule.2018.02.001 – volume: 30 start-page: 1705830 year: 2018 ident: e_1_2_6_97_1 publication-title: Adv. Mater. Processes doi: 10.1002/adma.201705830 – ident: e_1_2_6_13_1 doi: 10.1039/C8TA11941D – ident: e_1_2_6_102_1 doi: 10.1038/nnano.2016.32 – ident: e_1_2_6_101_1 doi: 10.1002/anie.201702099 – ident: e_1_2_6_77_1 doi: 10.1002/smll.201503193 – ident: e_1_2_6_25_1 doi: 10.1016/j.jechem.2018.11.016 – ident: e_1_2_6_26_1 doi: 10.1016/j.jechem.2018.08.003 – ident: e_1_2_6_131_1 doi: 10.1021/acsami.8b21420 – volume: 26 start-page: 5 year: 2011 ident: e_1_2_6_85_1 publication-title: New Carbon Mater – ident: e_1_2_6_71_1 doi: 10.1002/aenm.201702179 – ident: e_1_2_6_38_1 doi: 10.1007/s11467-013-0408-7 – volume: 7 start-page: 10992 year: 2016 ident: e_1_2_6_114_1 publication-title: Nat. Chem. – ident: e_1_2_6_158_1 doi: 10.1016/j.nanoen.2018.08.030 – ident: e_1_2_6_52_1 doi: 10.1002/adma.201600164 – ident: e_1_2_6_120_1 doi: 10.1021/jacs.9b10195 – ident: e_1_2_6_17_1 doi: 10.1021/cr500003w – ident: e_1_2_6_86_1 doi: 10.1002/smtd.201800546 – ident: e_1_2_6_140_1 doi: 10.1016/j.nanoen.2019.04.030 – ident: e_1_2_6_49_1 doi: 10.1002/adma.201806620 – ident: e_1_2_6_76_1 doi: 10.1002/adma.201104971 – ident: e_1_2_6_136_1 doi: 10.1021/acs.chemmater.7b00091 – ident: e_1_2_6_124_1 doi: 10.1016/j.ensm.2017.03.008 – ident: e_1_2_6_27_1 doi: 10.1016/j.joule.2019.09.022 – ident: e_1_2_6_100_1 doi: 10.1021/jp409223c – ident: e_1_2_6_118_1 doi: 10.1016/j.trechm.2019.10.002 – ident: e_1_2_6_31_1 doi: 10.1002/smtd.201700094 – ident: e_1_2_6_34_1 doi: 10.1038/nenergy.2016.114 – ident: e_1_2_6_70_1 doi: 10.3390/nano5020755 – ident: e_1_2_6_37_1 doi: 10.1016/j.jechem.2019.03.014 – ident: e_1_2_6_60_1 doi: 10.1002/anie.201711598 – ident: e_1_2_6_62_1 doi: 10.1039/C7CS00790F – ident: e_1_2_6_81_1 doi: 10.1016/j.joule.2017.06.004 – ident: e_1_2_6_54_1 doi: 10.1021/ja3089923 – ident: e_1_2_6_72_1 doi: 10.1021/acs.chemrev.8b00642 – ident: e_1_2_6_142_1 doi: 10.1002/adma.201703614 – ident: e_1_2_6_42_1 doi: 10.1002/aenm.201600278 – ident: e_1_2_6_6_1 doi: 10.1016/j.etran.2019.100033 – ident: e_1_2_6_107_1 doi: 10.1039/C8TA01683F – ident: e_1_2_6_64_1 doi: 10.1002/adma.201603755 – ident: e_1_2_6_156_1 doi: 10.1016/j.ensm.2020.01.019 – ident: e_1_2_6_129_1 doi: 10.1002/aenm.201501933 – ident: e_1_2_6_125_1 doi: 10.1002/anie.201707093 – ident: e_1_2_6_40_1 doi: 10.1039/c4ta00534a – ident: e_1_2_6_74_1 doi: 10.1021/ar2001793 – volume: 6 start-page: 201900943 year: 2019 ident: e_1_2_6_94_1 publication-title: Adv. Sci. – ident: e_1_2_6_103_1 doi: 10.1073/pnas.1618871114 – ident: e_1_2_6_29_1 doi: 10.1002/advs.201600445 – ident: e_1_2_6_88_1 doi: 10.1002/adma.201504117 – ident: e_1_2_6_46_1 doi: 10.1002/anie.201813805 – ident: e_1_2_6_78_1 doi: 10.1007/s41918-019-00033-7 – ident: e_1_2_6_146_1 doi: 10.1016/j.jpowsour.2016.11.097 – ident: e_1_2_6_7_1 doi: 10.1016/j.ensm.2017.12.002 – ident: e_1_2_6_33_1 doi: 10.1039/C8QM00645H – ident: e_1_2_6_14_1 doi: 10.1002/aenm.201700260 – ident: e_1_2_6_53_1 doi: 10.1039/C7TA01735A – ident: e_1_2_6_92_1 doi: 10.1016/j.ensm.2018.04.032 – ident: e_1_2_6_143_1 doi: 10.1038/s41467-018-06126-z – ident: e_1_2_6_20_1 doi: 10.1039/C3EE40795K – ident: e_1_2_6_110_1 doi: 10.1016/j.ensm.2017.10.012 – ident: e_1_2_6_19_1 doi: 10.1021/acsenergylett.7b00300 – ident: e_1_2_6_121_1 doi: 10.1149/2.0191915jes – ident: e_1_2_6_98_1 doi: 10.1016/j.jallcom.2015.03.222 – ident: e_1_2_6_149_1 doi: 10.1007/s11581-018-2717-x – ident: e_1_2_6_119_1 doi: 10.1021/jacs.9b05029 – ident: e_1_2_6_104_1 doi: 10.1021/acs.nanolett.8b04906 – ident: e_1_2_6_137_1 doi: 10.1016/j.matt.2019.05.016 – ident: e_1_2_6_23_1 doi: 10.1002/admi.201701097 – ident: e_1_2_6_115_1 doi: 10.1002/adma.201506124 – ident: e_1_2_6_132_1 doi: 10.1021/acs.nanolett.9b03562 – ident: e_1_2_6_151_1 doi: 10.1021/nl503125u – ident: e_1_2_6_122_1 doi: 10.1016/j.ensm.2019.12.020 – ident: e_1_2_6_157_1 doi: 10.1007/s12598-018-1054-6 – ident: e_1_2_6_56_1 doi: 10.1039/C6MH00521G – ident: e_1_2_6_16_1 doi: 10.1039/C5TA00689A – ident: e_1_2_6_22_1 doi: 10.1038/nnano.2017.16 – ident: e_1_2_6_153_1 doi: 10.1021/acsami.7b18997 – ident: e_1_2_6_8_1 doi: 10.1038/natrevmats.2016.13 – volume: 5 start-page: 3710 year: 2014 ident: e_1_2_6_87_1 publication-title: Nat. Chem. – ident: e_1_2_6_73_1 doi: 10.1016/j.electacta.2006.02.004 – ident: e_1_2_6_99_1 doi: 10.1039/c2jm31776a – ident: e_1_2_6_75_1 doi: 10.1039/c0nr00594k – ident: e_1_2_6_51_1 doi: 10.1002/anie.201203201 – ident: e_1_2_6_106_1 doi: 10.1002/aenm.201801897 – ident: e_1_2_6_63_1 doi: 10.1021/nl202630n – ident: e_1_2_6_112_1 doi: 10.1021/jacs.6b08730 – ident: e_1_2_6_10_1 doi: 10.1002/smll.201805389 – ident: e_1_2_6_130_1 doi: 10.1002/adma.201804461 – volume: 294 start-page: 94 year: 2015 ident: e_1_2_6_96_1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.06.039 – ident: e_1_2_6_109_1 doi: 10.1021/acs.nanolett.6b01581 – ident: e_1_2_6_9_1 doi: 10.1021/acsmaterialslett.9b00118 – ident: e_1_2_6_21_1 doi: 10.1039/C8CC02280A – ident: e_1_2_6_116_1 doi: 10.1155/2019/4608940 – ident: e_1_2_6_84_1 doi: 10.1002/aenm.201100519 – ident: e_1_2_6_145_1 doi: 10.1038/s41565-018-0061-y – ident: e_1_2_6_148_1 doi: 10.1016/j.electacta.2019.05.138 – ident: e_1_2_6_126_1 doi: 10.1016/j.ensm.2018.04.024 – ident: e_1_2_6_50_1 doi: 10.1016/j.nanoen.2017.10.053 |
SSID | ssj0002511791 |
Score | 2.1931248 |
Snippet | Stable lithium (Li) metal anode is highly pursued to accelerate the development of high‐energy‐density battery systems. In this article, the stable Li metal... Stable lithium (Li) metal anode is highly pursued to accelerate the development of high-energy-density battery systems. In this article, the stable Li metal... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 94 |
SubjectTerms | Anodes artificial interface Carbon Copyright Efficiency Electrodes Electrolytes Graphene host materials Lithium Lithium batteries lithium metal anode Morphology Nanomaterials Nanostructure Plating three‐dimensional anode |
SummonAdditionalLinks | – databaseName: Wiley - open access journals dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagLDAgfkWhIA9ITFYTO4nrsUJUFUMBiUrdIl_sABJNEW13HoFn5Ek4O2lIB4TElkj-UXxn33d38XeEXGY-NyVzFoNNWJQFwLTmwKwwuVVGSJl5ts9RMhxHt5N40rjFX_JD1AE3tzP8ee02uIZ5t0Eaqgt3eY97mCs2yZa7X-s0nUf3dZTFAWjpy-bxBFUCnYlwxdwY8O76EOuW6QduNkGrtzqDPbJbwUXaL-W7TzZscUB2GiSCh-ShDO_TWUHdTIhAS6WiCEdpgWfv18fnkyeXdjKg4Ak10T-mLgRLEYU_vyyndGoRhVPsb-z8iIwHN4_XQ1YVSmAZOjyCAZ6eLoWiBCirwFgOPEQrJEWMxsjIHoSJFhqhBCSBEjo3GkRPQhBCaFz99GPSKmaFPSEU4Y3u5Sgno3QUGaU0qAR9IsiD2ArL24StFinNKhZxV8ziNS35j3nqPjWtF7VNrur2byV_xq8tO6s1T6t9NE9dGlSiBeU4Mfdy-GOUdNQf3dVvp__pdEa23XP5T26HtBbvS3uOyGMBF165vgHY7dED priority: 102 providerName: Wiley-Blackwell |
Title | Review on nanomaterials for next‐generation batteries with lithium metal anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnano.202000003 https://www.proquest.com/docview/2890728422 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTwIxEG4ELnowPiOKpAcTTw277b56MmhAYiIQIwm3TbvtqoksKHD1tzvtPsCDemmySbeb7czOfDPT_Qahq8TWpsKU-FIHxEscSYSgkmimUs0VC8PEsn0Og8HEe5j60yLhtiyOVZY20RpqNU9MjrxjCmIh2FJKbxYfxHSNMtXVooVGDTXABEeg4Y3b3nD8VGVZDIAObds8GoBKQDDhlsyNDu1kIjP__1GLlNlPz7SBm9ug1Xqd_gHaL-Ai7ubyPUQ7OjtCe1skgsdolKf38TzD5kmAQHOlwgBHcWYC2xdLLW0kgKWl04ToGJsELAYM_vq2nuGZBgyO4W6llydo0u893w1I0SaBJBDuMCLBdpoCCmeSay6VppK64INC5oMrUmEk3UAwAUBCBg5nIlVCsiiUjitdZbqnn6J6Ns_0GcIAbkSUgpQUF56nOBeSBxARydTxNdO0iUi5RXFScIibVhbvcc5-TGPzonG1pU10Xc1f5OwZv85slTseF1_RMt7IvImolcI_q8TD7nBUXZ3_veYF2jVT87O3LVRffa71JSCMlWyjGvXGMEb9-3ahUm0brcP4-NX7Biev0Sk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED2hMgAD4lOUTw8gJquNnSb1gBACSkuhLK3ULdixA0g0LbQV4k_xGzk7TYEBmDpGsh3l_HJ-57PfARzGLjcVJrSiTED9uKyolExRw3VihOZhGDu1z1ZQ7_jX3Up3Dj7yuzD2WGXuE52j1v3Y7pGXbEIsRF_K2OnghdqqUTa7mpfQyGDRNO9vGLINTxoXOL9HjNUu2-d1OqkqQGOMDjhV6GpsvkFwJYxQ2jDFPHTZIa-g59ZhVXmB5BLXXRVguC8TLRWvhqrsKU8zJ3SALn_e51zYI4TV2tV0T8fS9dAV6WMBAhBDFy_XiSyzUipTe9uQOV7Of66DX-T2O0V2a1xtBZYn5JScZWhahTmTrsHSN8nCdbjLkgmknxL7JuS7GYQJkl-S2jD6wQlZ2_kmyol3YixO7HYvQcb_-DTukZ5Bxk-wtzbDDejMxHybUEj7qdkCglRKVhPEhBbS97UQUokA4y-VlCuGG1YEmpsoiieK5bZwxnOUaS2zyH5oNDVpEY6n7QeZVsevLXdzi0eTf3YYfSGsCMzNwj-jRK2z1t30afvvMQ9god6-vYluGq3mDizabtmp310ojF7HZg-5zUjtO0ARuJ81gj8BrHEHmw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQfQgPrFaNQfBU-huso_mWNRSH6wVLPQWkk1WBbsttr37E_yN_hIn2e3aHkTwuEsebGaS-WZm8w1C56nLTcUZCZWJSJB6ikhJFTFMZ4ZrFsepY_tMom4_uB2Eg4Vb_AU_RBVwszvDndd2g4911lwgDZW5vbxHHcxlq2jNZvysjtOgV0VZLICOXdk8GoFKgDPhz5kbPdpcHmLZMv3AzUXQ6qxOZxttlXARtwv57qAVk--izQUSwT30WIT38SjHdiZAoIVSYYCjOIez9-vj89mRS1sZYOUINcE_xjYEiwGFv7zOhnhoAIVj6K_NZB_1O9dPl11SFkogKTg8jCg4PW0KhTPFDVfaUEV9sEIxC8EY6bil_EgyCVBCRR5nMtNSsVasPF_52tZPP0C1fJSbQ4QB3shWBnLSXAaB5lwqHoFPpDIvNMzQOiLzRRJpySJui1m8iYL_mAr7qaJa1Dq6qNqPC_6MX1s25msuyn00ETYNGoMFpTAxdXL4YxSRtJOH6unoP53O0HrvqiPub5K7Y7RhXxe_5zZQbfo-MycAQqbq1OnZNxaR06E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+nanomaterials+for+next%E2%80%90generation+batteries+with+lithium+metal+anodes&rft.jtitle=Nano+select&rft.au=Ding%2C+Jun%E2%80%90Fan&rft.au=Xu%2C+Rui&rft.au=Yan%2C+Chong&rft.au=Xiao%2C+Ye&rft.date=2020-07-01&rft.issn=2688-4011&rft.eissn=2688-4011&rft.volume=1&rft.issue=1&rft.spage=94&rft.epage=110&rft_id=info:doi/10.1002%2Fnano.202000003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nano_202000003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4011&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4011&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4011&client=summon |