Review on nanomaterials for next‐generation batteries with lithium metal anodes

Stable lithium (Li) metal anode is highly pursued to accelerate the development of high‐energy‐density battery systems. In this article, the stable Li metal batteries boosted by nano‐technology and nano‐materials are comprehensively reviewed. Two emerging strategies, including nanostructured lithium...

Full description

Saved in:
Bibliographic Details
Published inNano select Vol. 1; no. 1; pp. 94 - 110
Main Authors Ding, Jun‐Fan, Xu, Rui, Yan, Chong, Xiao, Ye, Xu, Lei, Peng, Hong‐Jie, Park, Ho Seok, Liang, Ji, Huang, Jia‐Qi
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.07.2020
Subjects
Online AccessGet full text
ISSN2688-4011
2688-4011
DOI10.1002/nano.202000003

Cover

Loading…
Abstract Stable lithium (Li) metal anode is highly pursued to accelerate the development of high‐energy‐density battery systems. In this article, the stable Li metal batteries boosted by nano‐technology and nano‐materials are comprehensively reviewed. Two emerging strategies, including nanostructured lithium metal frameworks and nano‐artificial solid‐electrolyte interphase (SEI) are particularly focused. First, typical conductive/non‐conductive nanostructured frameworks and the corresponding merits are introduced. The physical and chemical modifications of the traditional nano‐frameworks are further summarized. In addition, the nano‐artificial SEIs built by in situ regulation and ex situ fabrication strategies are involved, with the scientific and technologic issues concerned on the interface well discussed. This review mainly focuses on the fresh benefits brought by nano‐technology and nano‐materials on building better lithium metal batteries. The recent advances of nanostructured lithium metal frameworks and nanoscale artificial SEIs are concluded, and the challenges as well as promising directions for future research are prospected. This review mainly focuses on the benefits brought by nano‐technology and nano‐materials on building better lithium metal anodes for next‐generation batteries, in which the recent advances on nanostructured lithium metal frameworks and nanoscale artificial SEIs are summarized.
AbstractList Stable lithium (Li) metal anode is highly pursued to accelerate the development of high‐energy‐density battery systems. In this article, the stable Li metal batteries boosted by nano‐technology and nano‐materials are comprehensively reviewed. Two emerging strategies, including nanostructured lithium metal frameworks and nano‐artificial solid‐electrolyte interphase (SEI) are particularly focused. First, typical conductive/non‐conductive nanostructured frameworks and the corresponding merits are introduced. The physical and chemical modifications of the traditional nano‐frameworks are further summarized. In addition, the nano‐artificial SEIs built by in situ regulation and ex situ fabrication strategies are involved, with the scientific and technologic issues concerned on the interface well discussed. This review mainly focuses on the fresh benefits brought by nano‐technology and nano‐materials on building better lithium metal batteries. The recent advances of nanostructured lithium metal frameworks and nanoscale artificial SEIs are concluded, and the challenges as well as promising directions for future research are prospected. This review mainly focuses on the benefits brought by nano‐technology and nano‐materials on building better lithium metal anodes for next‐generation batteries, in which the recent advances on nanostructured lithium metal frameworks and nanoscale artificial SEIs are summarized.
Stable lithium (Li) metal anode is highly pursued to accelerate the development of high-energy-density battery systems. In this article, the stable Li metal batteries boosted by nano-technology and nano-materials are comprehensively reviewed. Two emerging strategies, including nanostructured lithium metal frameworks and nano-artificial solid-electrolyte interphase (SEI) are particularly focused. First, typical conductive/non-conductive nanostructured frameworks and the corresponding merits are introduced. The physical and chemical modifications of the traditional nano-frameworks are further summarized. In addition, the nano-artificial SEIs built by in situ regulation and ex situ fabrication strategies are involved, with the scientific and technologic issues concerned on the interface well discussed. This review mainly focuses on the fresh benefits brought by nano-technology and nano-materials on building better lithium metal batteries. The recent advances of nanostructured lithium metal frameworks and nanoscale artificial SEIs are concluded, and the challenges as well as promising directions for future research are prospected.
Author Park, Ho Seok
Huang, Jia‐Qi
Xu, Rui
Xiao, Ye
Xu, Lei
Peng, Hong‐Jie
Liang, Ji
Ding, Jun‐Fan
Yan, Chong
Author_xml – sequence: 1
  givenname: Jun‐Fan
  surname: Ding
  fullname: Ding, Jun‐Fan
  organization: Beijing Institute of Technology
– sequence: 2
  givenname: Rui
  surname: Xu
  fullname: Xu, Rui
  organization: Beijing Institute of Technology
– sequence: 3
  givenname: Chong
  surname: Yan
  fullname: Yan, Chong
  organization: Beijing Institute of Technology
– sequence: 4
  givenname: Ye
  surname: Xiao
  fullname: Xiao, Ye
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Lei
  surname: Xu
  fullname: Xu, Lei
  organization: Beijing Institute of Technology
– sequence: 6
  givenname: Hong‐Jie
  surname: Peng
  fullname: Peng, Hong‐Jie
  organization: Stanford University
– sequence: 7
  givenname: Ho Seok
  surname: Park
  fullname: Park, Ho Seok
  organization: Sungkyunkwan University (SKKU)
– sequence: 8
  givenname: Ji
  surname: Liang
  fullname: Liang, Ji
  organization: University of Wollongong
– sequence: 9
  givenname: Jia‐Qi
  orcidid: 0000-0001-7394-9186
  surname: Huang
  fullname: Huang, Jia‐Qi
  email: jqhuang@bit.edu.cn
  organization: Beijing Institute of Technology
BookMark eNqFkM9KAzEQxoNUsNZePQc8b02y7W72WIr_oLQoeg7J7qym7GZrklp78xF8Rp_ErCsqgpjDZGC-3zd8c4h6pjGA0DElI0oIOzXSNCNGGGlfvIf6LOE8GhNKez_6AzR0bhUUbEJpmtE-ur6BJw1b3BjcWtTSg9WycrhsLDbw7N9eXu_BgJVeB42SvhWAw1vtH3AVit7UuAYvKxz4AtwR2i-DAQw__wG6Oz-7nV1G8-XF1Ww6j3LG0zhSIHOSJJMsVhlkqgCmGE3SMJqQJC1SrmgiY0kYVwnJYlkWUsU8VYQqWoSg8QCddL5r2zxuwHmxajbWhJWC8YykjI9Zqxp1qtw2zlkoxdrqWtqdoES0lxNtbPF1uQCMfwG59h_hvZW6-hvLOmyrK9j9s0QspovlN_sO76qGMw
CitedBy_id crossref_primary_10_1002_ange_202101627
crossref_primary_10_1021_acsaenm_3c00774
crossref_primary_10_1016_j_jechem_2022_01_011
crossref_primary_10_1002_ange_202115602
crossref_primary_10_1002_adfm_202009694
crossref_primary_10_1002_anie_202115602
crossref_primary_10_1002_chem_202302867
crossref_primary_10_1016_j_nxnano_2023_100011
crossref_primary_10_1039_D0TA11030B
crossref_primary_10_1021_acs_jpcc_4c06675
crossref_primary_10_1039_D4SE01640H
crossref_primary_10_1016_j_compositesb_2021_109384
crossref_primary_10_1016_j_jechem_2020_08_029
crossref_primary_10_1039_D4SE00497C
crossref_primary_10_1039_D0TA12153C
crossref_primary_10_1002_anie_202101627
Cites_doi 10.1016/j.trechm.2019.02.015
10.1002/smtd.201700417
10.1039/c0cs00176g
10.1073/pnas.1518188113
10.1016/j.enchem.2019.100003
10.1039/C7CS00180K
10.1021/acsami.9b12634
10.1021/acs.jpcc.9b00436
10.1002/anie.201801737
10.1007/s11434-012-5017-2
10.1016/j.chempr.2016.12.002
10.1016/j.electacta.2015.06.140
10.1016/j.ensm.2018.03.004
10.1002/inf2.12097
10.1002/adma.201700389
10.1002/adfm.201606422
10.1557/mrs2002.195
10.1039/C3TA14818A
10.1021/nn7001954
10.1016/j.ensm.2017.08.001
10.1021/nn9009592
10.1002/aenm.201702744
10.1016/j.cej.2015.02.097
10.1002/adfm.201808756
10.1002/aenm.201600811
10.1002/adma.201808392
10.1002/aenm.201701744
10.1021/jacs.7b01763
10.1016/j.nanoen.2015.07.014
10.1038/nnano.2014.152
10.1021/acsami.8b12579
10.1039/C8EE03586E
10.1002/inf2.12046
10.5796/electrochemistry.84.854
10.1016/j.ensm.2019.03.029
10.1007/s11581-013-0979-x
10.1002/adma.201807585
10.1016/j.nanoen.2019.103910
10.1002/admt.201900806
10.1149/2.0111801jes
10.1021/acs.chemmater.7b01496
10.1016/j.nantod.2015.02.009
10.1002/er.1598
10.1021/jacs.7b05251
10.1021/acsami.8b04573
10.1007/s12274-016-1219-2
10.1016/j.compscitech.2019.04.028
10.1002/inf2.12080
10.1038/s41560-018-0276-z
10.1126/sciadv.aat5168
10.1039/c3cs00009e
10.1002/anie.201907759
10.1021/acsami.7b15879
10.1016/j.trechm.2019.06.007
10.1002/adma.201800716
10.1021/acs.chemrev.7b00115
10.1016/j.nantod.2010.11.002
10.1002/adma.201707629
10.1002/aenm.201702322
10.1002/adma.201807131
10.1002/adma.201504526
10.1016/j.joule.2018.02.001
10.1002/adma.201705830
10.1039/C8TA11941D
10.1038/nnano.2016.32
10.1002/anie.201702099
10.1002/smll.201503193
10.1016/j.jechem.2018.11.016
10.1016/j.jechem.2018.08.003
10.1021/acsami.8b21420
10.1002/aenm.201702179
10.1007/s11467-013-0408-7
10.1016/j.nanoen.2018.08.030
10.1002/adma.201600164
10.1021/jacs.9b10195
10.1021/cr500003w
10.1002/smtd.201800546
10.1016/j.nanoen.2019.04.030
10.1002/adma.201806620
10.1002/adma.201104971
10.1021/acs.chemmater.7b00091
10.1016/j.ensm.2017.03.008
10.1016/j.joule.2019.09.022
10.1021/jp409223c
10.1016/j.trechm.2019.10.002
10.1002/smtd.201700094
10.1038/nenergy.2016.114
10.3390/nano5020755
10.1016/j.jechem.2019.03.014
10.1002/anie.201711598
10.1039/C7CS00790F
10.1016/j.joule.2017.06.004
10.1021/ja3089923
10.1021/acs.chemrev.8b00642
10.1002/adma.201703614
10.1002/aenm.201600278
10.1016/j.etran.2019.100033
10.1039/C8TA01683F
10.1002/adma.201603755
10.1016/j.ensm.2020.01.019
10.1002/aenm.201501933
10.1002/anie.201707093
10.1039/c4ta00534a
10.1021/ar2001793
10.1073/pnas.1618871114
10.1002/advs.201600445
10.1002/adma.201504117
10.1002/anie.201813805
10.1007/s41918-019-00033-7
10.1016/j.jpowsour.2016.11.097
10.1016/j.ensm.2017.12.002
10.1039/C8QM00645H
10.1002/aenm.201700260
10.1039/C7TA01735A
10.1016/j.ensm.2018.04.032
10.1038/s41467-018-06126-z
10.1039/C3EE40795K
10.1016/j.ensm.2017.10.012
10.1021/acsenergylett.7b00300
10.1149/2.0191915jes
10.1016/j.jallcom.2015.03.222
10.1007/s11581-018-2717-x
10.1021/jacs.9b05029
10.1021/acs.nanolett.8b04906
10.1016/j.matt.2019.05.016
10.1002/admi.201701097
10.1002/adma.201506124
10.1021/acs.nanolett.9b03562
10.1021/nl503125u
10.1016/j.ensm.2019.12.020
10.1007/s12598-018-1054-6
10.1039/C6MH00521G
10.1039/C5TA00689A
10.1038/nnano.2017.16
10.1021/acsami.7b18997
10.1038/natrevmats.2016.13
10.1016/j.electacta.2006.02.004
10.1039/c2jm31776a
10.1039/c0nr00594k
10.1002/anie.201203201
10.1002/aenm.201801897
10.1021/nl202630n
10.1021/jacs.6b08730
10.1002/smll.201805389
10.1002/adma.201804461
10.1016/j.jpowsour.2015.06.039
10.1021/acs.nanolett.6b01581
10.1021/acsmaterialslett.9b00118
10.1039/C8CC02280A
10.1155/2019/4608940
10.1002/aenm.201100519
10.1038/s41565-018-0061-y
10.1016/j.electacta.2019.05.138
10.1016/j.ensm.2018.04.024
10.1016/j.nanoen.2017.10.053
ContentType Journal Article
Copyright 2020 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1002/nano.202000003
DatabaseName Wiley - open access journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2688-4011
EndPage 110
ExternalDocumentID 10_1002_nano_202000003
NANO202000003
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21776019
– fundername: Beijing Natural Science Foundation
  funderid: L182021
– fundername: National Key Research and Development Program
  funderid: 2016YFA0202500
GroupedDBID 0R~
1OC
24P
AAFWJ
AAHHS
ABJCF
ACCFJ
ACCMX
AEEZP
AEQDE
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARCSS
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IGS
IHR
INH
ITC
KB.
M~E
OK1
PDBOC
PIMPY
WIN
AAYXX
CITATION
PHGZM
PHGZT
8FE
8FG
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2873-beac066593b9e9bde2b21678735067d78b16a3a028b6093afdab387b01b1d2023
IEDL.DBID BENPR
ISSN 2688-4011
IngestDate Wed Aug 13 10:41:33 EDT 2025
Thu Apr 24 23:04:09 EDT 2025
Tue Jul 01 01:01:20 EDT 2025
Wed Jan 22 16:34:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2873-beac066593b9e9bde2b21678735067d78b16a3a028b6093afdab387b01b1d2023
Notes Jun‐Fan Ding and Rui Xu contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7394-9186
OpenAccessLink https://www.proquest.com/docview/2890728422?pq-origsite=%requestingapplication%
PQID 2890728422
PQPubID 5068504
PageCount 17
ParticipantIDs proquest_journals_2890728422
crossref_primary_10_1002_nano_202000003
crossref_citationtrail_10_1002_nano_202000003
wiley_primary_10_1002_nano_202000003_NANO202000003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Nano select
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 2019
2019; 11
2019; 12
2019; 15
2019; 16
2019; 19
2019; 166
2018; 47
2018; 6
2018; 9
2018; 8
2018; 3
2018; 2
2018; 5
2018; 4
2019; 23
2013; 52
2014; 14
2019; 29
2018; 30
2019; 317
2017; 165
2007; 1
2012; 24
2012; 22
2018; 37
2019; 7
2019; 3
2019; 6
2019; 5
2006; 51
2019; 31
2019; 2
2019; 33
2019; 1
2015; 640
2019; 37
2011; 3
2011; 6
2016; 16
2016; 12
2017; 139
2018; 25
2016; 11
2016; 6
2016; 7
2016; 1
2017; 56
2020; 28
2019; 179
2018; 12
2016; 28
2018; 11
2018; 10
2016; 9
2018; 14
2018; 13
2017; 5
2017; 7
2017; 42
2017; 1
2017; 2
2017; 4
2019; 58
2011; 11
2012; 57
2017; 114
2019; 123
2017; 117
2013; 19
2015; 294
2014; 5
2019; 60
2020; 2
2014; 2
2019; 64
2015; 176
2016; 113
2016; 84
2019; 119
2011; 26
2014; 9
2014; 7
2014; 118
2015; 6
2015; 16
2015; 5
2015; 3
2013; 46
2017; 27
2011; 40
2013; 42
2015; 10
2017; 29
2019; 141
2014; 114
2002; 27
2009; 33
2015; 271
2012; 2
2017; 12
2013; 135
2016; 138
2009; 3
2017; 342
2018; 54
2018; 53
2018; 57
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
Wu S. (e_1_2_6_97_1) 2018; 30
e_1_2_6_152_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_156_1
Zhi L.‐J. (e_1_2_6_85_1) 2011; 26
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_106_1
e_1_2_6_148_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
Mukherjee R. (e_1_2_6_87_1) 2014; 5
e_1_2_6_140_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_117_1
e_1_2_6_159_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
Xue P. (e_1_2_6_94_1) 2019; 6
e_1_2_6_151_1
e_1_2_6_132_1
e_1_2_6_113_1
Li W. (e_1_2_6_134_1) 2015; 6
e_1_2_6_155_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_158_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_150_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_154_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_142_1
e_1_2_6_161_1
e_1_2_6_100_1
e_1_2_6_146_1
Luebke M. (e_1_2_6_96_1) 2015; 294
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_153_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_157_1
Liu Y. (e_1_2_6_114_1) 2016; 7
e_1_2_6_160_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 764
  year: 2018
  publication-title: Joule
– volume: 7
  year: 2016
  publication-title: Nat. Chem.
– volume: 33
  start-page: 1161
  year: 2009
  publication-title: Int. J. Energy Res.
– volume: 13
  start-page: 337
  year: 2018
  publication-title: Nat. Nanotechnol.
– volume: 119
  start-page: 5416
  year: 2019
  publication-title: Chem. Rev.
– volume: 114
  year: 2014
  publication-title: Chem. Rev.
– volume: 2
  start-page: 9433
  year: 2014
  publication-title: J. Mater. Chem. A.
– volume: 2
  start-page: 87
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 199
  year: 2018
  publication-title: Energy Storage Mater
– volume: 64
  year: 2019
  publication-title: Nano Energy
– volume: 317
  start-page: 120
  year: 2019
  publication-title: Electrochim. Acta.
– volume: 9
  start-page: 3428
  year: 2016
  publication-title: Nano Res
– volume: 10
  start-page: 16
  year: 2018
  publication-title: Energy Storage Mater
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 513
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 117
  year: 2017
  publication-title: Chem. Rev.
– volume: 58
  year: 2019
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 7436
  year: 2015
  publication-title: Nat. Chem.
– volume: 1
  year: 2019
  publication-title: EnergyChem
– volume: 6
  start-page: 9332
  year: 2018
  publication-title: J. Mater. Chem. A.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 2019
  year: 2019
  publication-title: Research
– volume: 2
  start-page: 1321
  year: 2017
  publication-title: ACS Energy Lett
– volume: 27
  start-page: 604
  year: 2002
  publication-title: MRS Bull
– volume: 3
  start-page: 615
  year: 2019
  publication-title: Mater. Chem. Front.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 165
  year: 2017
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 1076
  year: 2018
  publication-title: Nat. Energy.
– volume: 16
  start-page: 85
  year: 2019
  publication-title: Energy Storage Mater
– volume: 135
  start-page: 2013
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 205
  year: 2017
  publication-title: Nano Energy
– volume: 4
  start-page: 133
  year: 2017
  publication-title: Mater. Horiz.
– volume: 54
  start-page: 6648
  year: 2018
  publication-title: Chem. Commun.
– volume: 2
  start-page: 483
  year: 2020
  publication-title: InfoMat
– volume: 28
  start-page: 401
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 379
  year: 2020
  publication-title: InfoMat.
– volume: 37
  start-page: 510
  year: 2018
  publication-title: Rare Met
– volume: 19
  start-page: 8780
  year: 2019
  publication-title: Nano Lett
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 9
  start-page: 323
  year: 2014
  publication-title: Front. Phys.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 2837
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 4203
  year: 2012
  publication-title: Adv. Mater.
– volume: 10
  start-page: 8692
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56
  year: 2017
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 563
  year: 2017
  publication-title: Joule
– volume: 16
  start-page: 259
  year: 2019
  publication-title: Energy Storage Mater
– volume: 9
  start-page: 3729
  year: 2018
  publication-title: Nat. Commun.
– volume: 1
  start-page: 693
  year: 2019
  publication-title: Trends Chem
– volume: 28
  start-page: 7580
  year: 2016
  publication-title: Adv. Mater.
– volume: 23
  start-page: 556
  year: 2019
  publication-title: Energy Storage Mater
– volume: 28
  start-page: 2155
  year: 2016
  publication-title: Adv. Mater.
– volume: 114
  start-page: 3584
  year: 2017
  publication-title: Proc. Natl. Acad. Sci.
– volume: 141
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 839
  year: 2011
  publication-title: Nanoscale
– volume: 2
  start-page: 613
  year: 2020
  publication-title: InfoMat
– volume: 37
  start-page: 29
  year: 2019
  publication-title: J. Energy Chem.
– volume: 1
  start-page: 317
  year: 2019
  publication-title: Matter
– volume: 57
  start-page: 4104
  year: 2012
  publication-title: Chin. Sci. Bull.
– volume: 3
  start-page: 7207
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 161
  year: 2018
  publication-title: Energy Storage Mater
– volume: 40
  start-page: 4167
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 208
  year: 2007
  publication-title: Acs Nano
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 57
  start-page: 5072
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 113
  start-page: 2862
  year: 2016
  publication-title: Proc. Natl. Acad. Sci.
– volume: 7
  start-page: 3857
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 2888
  year: 2016
  publication-title: Adv. Mater.
– volume: 52
  start-page: 1882
  year: 2013
  publication-title: Angew. Chem. Int. Edit.
– volume: 271
  start-page: 155
  year: 2015
  publication-title: Chem. Eng. J.
– volume: 26
  start-page: 5
  year: 2011
  publication-title: New Carbon Mater
– volume: 29
  start-page: 6298
  year: 2017
  publication-title: Chem. Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 37
  start-page: 197
  year: 2019
  publication-title: J. Energy Chem.
– volume: 22
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 5
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 11
  start-page: 127
  year: 2018
  publication-title: Energy Storage Mater
– volume: 11
  start-page: 626
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 4018
  year: 2011
  publication-title: Nano Lett
– volume: 1
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 16
  start-page: 488
  year: 2015
  publication-title: Nano Energy
– volume: 12
  start-page: 1688
  year: 2016
  publication-title: Small
– volume: 1
  start-page: 152
  year: 2019
  publication-title: Trends Chem
– volume: 25
  start-page: 2525
  year: 2018
  publication-title: Ionics
– volume: 6
  start-page: 28
  year: 2011
  publication-title: Nano Today
– volume: 57
  start-page: 992
  year: 2018
  publication-title: Angew. Chem. Int. Ed.
– volume: 294
  start-page: 94
  year: 2015
  publication-title: J. Power Sources
– volume: 5
  start-page: 3710
  year: 2014
  publication-title: Nat. Chem.
– volume: 14
  start-page: 6016
  year: 2014
  publication-title: Nano Lett
– volume: 3
  start-page: 2647
  year: 2019
  publication-title: Joule
– volume: 30
  year: 2018
  publication-title: Adv. Mater. Processes
– volume: 10
  start-page: 193
  year: 2015
  publication-title: Nano Today
– volume: 51
  start-page: 5334
  year: 2006
  publication-title: Electrochim. Acta.
– volume: 2
  start-page: 52
  year: 2017
  publication-title: Chem
– volume: 5
  start-page: 755
  year: 2015
  publication-title: Nanomaterials
– volume: 139
  start-page: 5916
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 33
  start-page: 167
  year: 2019
  publication-title: J. Energy Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 3297
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 16
  start-page: 4431
  year: 2016
  publication-title: Nano Lett
– volume: 60
  start-page: 866
  year: 2019
  publication-title: Nano Energy
– volume: 118
  start-page: 811
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 179
  start-page: 10
  year: 2019
  publication-title: Compos. Sci. Technol.
– volume: 3
  start-page: 3308
  year: 2009
  publication-title: Acs Nano
– volume: 53
  start-page: 168
  year: 2018
  publication-title: Nano Energy
– volume: 2
  year: 2019
  publication-title: eTransportation
– volume: 1
  start-page: 217
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 46
  start-page: 1206
  year: 2013
  publication-title: Acc. Chem. Res.
– volume: 47
  start-page: 736
  year: 2018
  publication-title: Chem. Soc. Rev.
– volume: 84
  start-page: 854
  year: 2016
  publication-title: Electrochemistry
– volume: 176
  start-page: 172
  year: 2015
  publication-title: Electrochim. Acta.
– volume: 2
  start-page: 332
  year: 2019
  publication-title: Electrochem. Energy Rev.
– volume: 19
  start-page: 1326
  year: 2019
  publication-title: Nano Lett
– volume: 15
  year: 2019
  publication-title: Small
– volume: 9
  start-page: 618
  year: 2014
  publication-title: Nat. Nanotechnol.
– volume: 1
  year: 2017
  publication-title: Small Methods
– volume: 56
  start-page: 7764
  year: 2017
  publication-title: Angew. Chem. Int. Edit.
– volume: 14
  start-page: 143
  year: 2018
  publication-title: Energy Storage Mater
– volume: 3
  year: 2019
  publication-title: Small Methods
– volume: 640
  start-page: 321
  year: 2015
  publication-title: J. Alloys Compd.
– volume: 5
  start-page: 9991
  year: 2017
  publication-title: J. Mater. Chem. A.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 10
  start-page: 7043
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 141
  start-page: 9422
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 3127
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 29
  start-page: 4682
  year: 2017
  publication-title: Chem. Mater.
– volume: 12
  start-page: 1286
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 28
  start-page: 1853
  year: 2016
  publication-title: Adv. Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 342
  start-page: 175
  year: 2017
  publication-title: J. Power Sources
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 19
  start-page: 1455
  year: 2013
  publication-title: Ionics
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 58
  start-page: 3859
  year: 2019
  publication-title: Angew. Chem. Int. Edit.
– volume: 1
  start-page: 709
  year: 2019
  publication-title: Trends Chem
– volume: 28
  start-page: 17
  year: 2020
  publication-title: Energy Storage Mater
– ident: e_1_2_6_68_1
  doi: 10.1016/j.trechm.2019.02.015
– ident: e_1_2_6_160_1
  doi: 10.1002/smtd.201700417
– ident: e_1_2_6_44_1
  doi: 10.1039/c0cs00176g
– ident: e_1_2_6_93_1
  doi: 10.1073/pnas.1518188113
– ident: e_1_2_6_11_1
  doi: 10.1016/j.enchem.2019.100003
– ident: e_1_2_6_48_1
  doi: 10.1039/C7CS00180K
– ident: e_1_2_6_58_1
  doi: 10.1021/acsami.9b12634
– ident: e_1_2_6_59_1
  doi: 10.1021/acs.jpcc.9b00436
– ident: e_1_2_6_36_1
  doi: 10.1002/anie.201801737
– ident: e_1_2_6_32_1
  doi: 10.1007/s11434-012-5017-2
– ident: e_1_2_6_141_1
  doi: 10.1016/j.chempr.2016.12.002
– ident: e_1_2_6_89_1
  doi: 10.1016/j.electacta.2015.06.140
– ident: e_1_2_6_150_1
  doi: 10.1016/j.ensm.2018.03.004
– ident: e_1_2_6_12_1
  doi: 10.1002/inf2.12097
– ident: e_1_2_6_80_1
  doi: 10.1002/adma.201700389
– ident: e_1_2_6_82_1
  doi: 10.1002/adfm.201606422
– ident: e_1_2_6_39_1
  doi: 10.1557/mrs2002.195
– ident: e_1_2_6_57_1
  doi: 10.1039/C3TA14818A
– ident: e_1_2_6_65_1
  doi: 10.1021/nn7001954
– ident: e_1_2_6_147_1
  doi: 10.1016/j.ensm.2017.08.001
– ident: e_1_2_6_47_1
  doi: 10.1021/nn9009592
– ident: e_1_2_6_133_1
  doi: 10.1002/aenm.201702744
– ident: e_1_2_6_55_1
  doi: 10.1016/j.cej.2015.02.097
– ident: e_1_2_6_67_1
  doi: 10.1002/adfm.201808756
– ident: e_1_2_6_15_1
  doi: 10.1002/aenm.201600811
– ident: e_1_2_6_144_1
  doi: 10.1002/adma.201808392
– ident: e_1_2_6_152_1
  doi: 10.1002/aenm.201701744
– ident: e_1_2_6_105_1
  doi: 10.1021/jacs.7b01763
– ident: e_1_2_6_66_1
  doi: 10.1016/j.nanoen.2015.07.014
– ident: e_1_2_6_138_1
  doi: 10.1038/nnano.2014.152
– ident: e_1_2_6_128_1
  doi: 10.1021/acsami.8b12579
– ident: e_1_2_6_35_1
  doi: 10.1039/C8EE03586E
– ident: e_1_2_6_139_1
  doi: 10.1002/inf2.12046
– ident: e_1_2_6_18_1
  doi: 10.5796/electrochemistry.84.854
– ident: e_1_2_6_28_1
  doi: 10.1016/j.ensm.2019.03.029
– ident: e_1_2_6_30_1
  doi: 10.1007/s11581-013-0979-x
– ident: e_1_2_6_111_1
  doi: 10.1002/adma.201807585
– ident: e_1_2_6_117_1
  doi: 10.1016/j.nanoen.2019.103910
– ident: e_1_2_6_4_1
  doi: 10.1002/admt.201900806
– ident: e_1_2_6_3_1
  doi: 10.1149/2.0111801jes
– ident: e_1_2_6_154_1
  doi: 10.1021/acs.chemmater.7b01496
– ident: e_1_2_6_69_1
  doi: 10.1016/j.nantod.2015.02.009
– ident: e_1_2_6_43_1
  doi: 10.1002/er.1598
– ident: e_1_2_6_127_1
  doi: 10.1021/jacs.7b05251
– ident: e_1_2_6_155_1
  doi: 10.1021/acsami.8b04573
– ident: e_1_2_6_90_1
  doi: 10.1007/s12274-016-1219-2
– volume: 6
  start-page: 7436
  year: 2015
  ident: e_1_2_6_134_1
  publication-title: Nat. Chem.
– ident: e_1_2_6_41_1
  doi: 10.1016/j.compscitech.2019.04.028
– ident: e_1_2_6_108_1
  doi: 10.1002/inf2.12080
– ident: e_1_2_6_113_1
  doi: 10.1038/s41560-018-0276-z
– ident: e_1_2_6_24_1
  doi: 10.1126/sciadv.aat5168
– ident: e_1_2_6_61_1
  doi: 10.1039/c3cs00009e
– ident: e_1_2_6_161_1
  doi: 10.1002/anie.201907759
– ident: e_1_2_6_159_1
  doi: 10.1021/acsami.7b15879
– ident: e_1_2_6_5_1
  doi: 10.1016/j.trechm.2019.06.007
– ident: e_1_2_6_83_1
  doi: 10.1002/adma.201800716
– ident: e_1_2_6_2_1
  doi: 10.1021/acs.chemrev.7b00115
– ident: e_1_2_6_45_1
  doi: 10.1016/j.nantod.2010.11.002
– ident: e_1_2_6_135_1
  doi: 10.1002/adma.201707629
– ident: e_1_2_6_79_1
  doi: 10.1002/aenm.201702322
– ident: e_1_2_6_95_1
  doi: 10.1002/adma.201807131
– ident: e_1_2_6_123_1
  doi: 10.1002/adma.201504526
– ident: e_1_2_6_91_1
  doi: 10.1016/j.joule.2018.02.001
– volume: 30
  start-page: 1705830
  year: 2018
  ident: e_1_2_6_97_1
  publication-title: Adv. Mater. Processes
  doi: 10.1002/adma.201705830
– ident: e_1_2_6_13_1
  doi: 10.1039/C8TA11941D
– ident: e_1_2_6_102_1
  doi: 10.1038/nnano.2016.32
– ident: e_1_2_6_101_1
  doi: 10.1002/anie.201702099
– ident: e_1_2_6_77_1
  doi: 10.1002/smll.201503193
– ident: e_1_2_6_25_1
  doi: 10.1016/j.jechem.2018.11.016
– ident: e_1_2_6_26_1
  doi: 10.1016/j.jechem.2018.08.003
– ident: e_1_2_6_131_1
  doi: 10.1021/acsami.8b21420
– volume: 26
  start-page: 5
  year: 2011
  ident: e_1_2_6_85_1
  publication-title: New Carbon Mater
– ident: e_1_2_6_71_1
  doi: 10.1002/aenm.201702179
– ident: e_1_2_6_38_1
  doi: 10.1007/s11467-013-0408-7
– volume: 7
  start-page: 10992
  year: 2016
  ident: e_1_2_6_114_1
  publication-title: Nat. Chem.
– ident: e_1_2_6_158_1
  doi: 10.1016/j.nanoen.2018.08.030
– ident: e_1_2_6_52_1
  doi: 10.1002/adma.201600164
– ident: e_1_2_6_120_1
  doi: 10.1021/jacs.9b10195
– ident: e_1_2_6_17_1
  doi: 10.1021/cr500003w
– ident: e_1_2_6_86_1
  doi: 10.1002/smtd.201800546
– ident: e_1_2_6_140_1
  doi: 10.1016/j.nanoen.2019.04.030
– ident: e_1_2_6_49_1
  doi: 10.1002/adma.201806620
– ident: e_1_2_6_76_1
  doi: 10.1002/adma.201104971
– ident: e_1_2_6_136_1
  doi: 10.1021/acs.chemmater.7b00091
– ident: e_1_2_6_124_1
  doi: 10.1016/j.ensm.2017.03.008
– ident: e_1_2_6_27_1
  doi: 10.1016/j.joule.2019.09.022
– ident: e_1_2_6_100_1
  doi: 10.1021/jp409223c
– ident: e_1_2_6_118_1
  doi: 10.1016/j.trechm.2019.10.002
– ident: e_1_2_6_31_1
  doi: 10.1002/smtd.201700094
– ident: e_1_2_6_34_1
  doi: 10.1038/nenergy.2016.114
– ident: e_1_2_6_70_1
  doi: 10.3390/nano5020755
– ident: e_1_2_6_37_1
  doi: 10.1016/j.jechem.2019.03.014
– ident: e_1_2_6_60_1
  doi: 10.1002/anie.201711598
– ident: e_1_2_6_62_1
  doi: 10.1039/C7CS00790F
– ident: e_1_2_6_81_1
  doi: 10.1016/j.joule.2017.06.004
– ident: e_1_2_6_54_1
  doi: 10.1021/ja3089923
– ident: e_1_2_6_72_1
  doi: 10.1021/acs.chemrev.8b00642
– ident: e_1_2_6_142_1
  doi: 10.1002/adma.201703614
– ident: e_1_2_6_42_1
  doi: 10.1002/aenm.201600278
– ident: e_1_2_6_6_1
  doi: 10.1016/j.etran.2019.100033
– ident: e_1_2_6_107_1
  doi: 10.1039/C8TA01683F
– ident: e_1_2_6_64_1
  doi: 10.1002/adma.201603755
– ident: e_1_2_6_156_1
  doi: 10.1016/j.ensm.2020.01.019
– ident: e_1_2_6_129_1
  doi: 10.1002/aenm.201501933
– ident: e_1_2_6_125_1
  doi: 10.1002/anie.201707093
– ident: e_1_2_6_40_1
  doi: 10.1039/c4ta00534a
– ident: e_1_2_6_74_1
  doi: 10.1021/ar2001793
– volume: 6
  start-page: 201900943
  year: 2019
  ident: e_1_2_6_94_1
  publication-title: Adv. Sci.
– ident: e_1_2_6_103_1
  doi: 10.1073/pnas.1618871114
– ident: e_1_2_6_29_1
  doi: 10.1002/advs.201600445
– ident: e_1_2_6_88_1
  doi: 10.1002/adma.201504117
– ident: e_1_2_6_46_1
  doi: 10.1002/anie.201813805
– ident: e_1_2_6_78_1
  doi: 10.1007/s41918-019-00033-7
– ident: e_1_2_6_146_1
  doi: 10.1016/j.jpowsour.2016.11.097
– ident: e_1_2_6_7_1
  doi: 10.1016/j.ensm.2017.12.002
– ident: e_1_2_6_33_1
  doi: 10.1039/C8QM00645H
– ident: e_1_2_6_14_1
  doi: 10.1002/aenm.201700260
– ident: e_1_2_6_53_1
  doi: 10.1039/C7TA01735A
– ident: e_1_2_6_92_1
  doi: 10.1016/j.ensm.2018.04.032
– ident: e_1_2_6_143_1
  doi: 10.1038/s41467-018-06126-z
– ident: e_1_2_6_20_1
  doi: 10.1039/C3EE40795K
– ident: e_1_2_6_110_1
  doi: 10.1016/j.ensm.2017.10.012
– ident: e_1_2_6_19_1
  doi: 10.1021/acsenergylett.7b00300
– ident: e_1_2_6_121_1
  doi: 10.1149/2.0191915jes
– ident: e_1_2_6_98_1
  doi: 10.1016/j.jallcom.2015.03.222
– ident: e_1_2_6_149_1
  doi: 10.1007/s11581-018-2717-x
– ident: e_1_2_6_119_1
  doi: 10.1021/jacs.9b05029
– ident: e_1_2_6_104_1
  doi: 10.1021/acs.nanolett.8b04906
– ident: e_1_2_6_137_1
  doi: 10.1016/j.matt.2019.05.016
– ident: e_1_2_6_23_1
  doi: 10.1002/admi.201701097
– ident: e_1_2_6_115_1
  doi: 10.1002/adma.201506124
– ident: e_1_2_6_132_1
  doi: 10.1021/acs.nanolett.9b03562
– ident: e_1_2_6_151_1
  doi: 10.1021/nl503125u
– ident: e_1_2_6_122_1
  doi: 10.1016/j.ensm.2019.12.020
– ident: e_1_2_6_157_1
  doi: 10.1007/s12598-018-1054-6
– ident: e_1_2_6_56_1
  doi: 10.1039/C6MH00521G
– ident: e_1_2_6_16_1
  doi: 10.1039/C5TA00689A
– ident: e_1_2_6_22_1
  doi: 10.1038/nnano.2017.16
– ident: e_1_2_6_153_1
  doi: 10.1021/acsami.7b18997
– ident: e_1_2_6_8_1
  doi: 10.1038/natrevmats.2016.13
– volume: 5
  start-page: 3710
  year: 2014
  ident: e_1_2_6_87_1
  publication-title: Nat. Chem.
– ident: e_1_2_6_73_1
  doi: 10.1016/j.electacta.2006.02.004
– ident: e_1_2_6_99_1
  doi: 10.1039/c2jm31776a
– ident: e_1_2_6_75_1
  doi: 10.1039/c0nr00594k
– ident: e_1_2_6_51_1
  doi: 10.1002/anie.201203201
– ident: e_1_2_6_106_1
  doi: 10.1002/aenm.201801897
– ident: e_1_2_6_63_1
  doi: 10.1021/nl202630n
– ident: e_1_2_6_112_1
  doi: 10.1021/jacs.6b08730
– ident: e_1_2_6_10_1
  doi: 10.1002/smll.201805389
– ident: e_1_2_6_130_1
  doi: 10.1002/adma.201804461
– volume: 294
  start-page: 94
  year: 2015
  ident: e_1_2_6_96_1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.06.039
– ident: e_1_2_6_109_1
  doi: 10.1021/acs.nanolett.6b01581
– ident: e_1_2_6_9_1
  doi: 10.1021/acsmaterialslett.9b00118
– ident: e_1_2_6_21_1
  doi: 10.1039/C8CC02280A
– ident: e_1_2_6_116_1
  doi: 10.1155/2019/4608940
– ident: e_1_2_6_84_1
  doi: 10.1002/aenm.201100519
– ident: e_1_2_6_145_1
  doi: 10.1038/s41565-018-0061-y
– ident: e_1_2_6_148_1
  doi: 10.1016/j.electacta.2019.05.138
– ident: e_1_2_6_126_1
  doi: 10.1016/j.ensm.2018.04.024
– ident: e_1_2_6_50_1
  doi: 10.1016/j.nanoen.2017.10.053
SSID ssj0002511791
Score 2.1931248
Snippet Stable lithium (Li) metal anode is highly pursued to accelerate the development of high‐energy‐density battery systems. In this article, the stable Li metal...
Stable lithium (Li) metal anode is highly pursued to accelerate the development of high-energy-density battery systems. In this article, the stable Li metal...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms Anodes
artificial interface
Carbon
Copyright
Efficiency
Electrodes
Electrolytes
Graphene
host materials
Lithium
Lithium batteries
lithium metal anode
Morphology
Nanomaterials
Nanostructure
Plating
three‐dimensional anode
SummonAdditionalLinks – databaseName: Wiley - open access journals
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagLDAgfkWhIA9ITFYTO4nrsUJUFUMBiUrdIl_sABJNEW13HoFn5Ek4O2lIB4TElkj-UXxn33d38XeEXGY-NyVzFoNNWJQFwLTmwKwwuVVGSJl5ts9RMhxHt5N40rjFX_JD1AE3tzP8ee02uIZ5t0Eaqgt3eY97mCs2yZa7X-s0nUf3dZTFAWjpy-bxBFUCnYlwxdwY8O76EOuW6QduNkGrtzqDPbJbwUXaL-W7TzZscUB2GiSCh-ShDO_TWUHdTIhAS6WiCEdpgWfv18fnkyeXdjKg4Ak10T-mLgRLEYU_vyyndGoRhVPsb-z8iIwHN4_XQ1YVSmAZOjyCAZ6eLoWiBCirwFgOPEQrJEWMxsjIHoSJFhqhBCSBEjo3GkRPQhBCaFz99GPSKmaFPSEU4Y3u5Sgno3QUGaU0qAR9IsiD2ArL24StFinNKhZxV8ziNS35j3nqPjWtF7VNrur2byV_xq8tO6s1T6t9NE9dGlSiBeU4Mfdy-GOUdNQf3dVvp__pdEa23XP5T26HtBbvS3uOyGMBF165vgHY7dED
  priority: 102
  providerName: Wiley-Blackwell
Title Review on nanomaterials for next‐generation batteries with lithium metal anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnano.202000003
https://www.proquest.com/docview/2890728422
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTwIxEG4ELnowPiOKpAcTTw277b56MmhAYiIQIwm3TbvtqoksKHD1tzvtPsCDemmySbeb7czOfDPT_Qahq8TWpsKU-FIHxEscSYSgkmimUs0VC8PEsn0Og8HEe5j60yLhtiyOVZY20RpqNU9MjrxjCmIh2FJKbxYfxHSNMtXVooVGDTXABEeg4Y3b3nD8VGVZDIAObds8GoBKQDDhlsyNDu1kIjP__1GLlNlPz7SBm9ug1Xqd_gHaL-Ai7ubyPUQ7OjtCe1skgsdolKf38TzD5kmAQHOlwgBHcWYC2xdLLW0kgKWl04ToGJsELAYM_vq2nuGZBgyO4W6llydo0u893w1I0SaBJBDuMCLBdpoCCmeSay6VppK64INC5oMrUmEk3UAwAUBCBg5nIlVCsiiUjitdZbqnn6J6Ns_0GcIAbkSUgpQUF56nOBeSBxARydTxNdO0iUi5RXFScIibVhbvcc5-TGPzonG1pU10Xc1f5OwZv85slTseF1_RMt7IvImolcI_q8TD7nBUXZ3_veYF2jVT87O3LVRffa71JSCMlWyjGvXGMEb9-3ahUm0brcP4-NX7Biev0Sk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV09T8MwED2hMgAD4lOUTw8gJquNnSb1gBACSkuhLK3ULdixA0g0LbQV4k_xGzk7TYEBmDpGsh3l_HJ-57PfARzGLjcVJrSiTED9uKyolExRw3VihOZhGDu1z1ZQ7_jX3Up3Dj7yuzD2WGXuE52j1v3Y7pGXbEIsRF_K2OnghdqqUTa7mpfQyGDRNO9vGLINTxoXOL9HjNUu2-d1OqkqQGOMDjhV6GpsvkFwJYxQ2jDFPHTZIa-g59ZhVXmB5BLXXRVguC8TLRWvhqrsKU8zJ3SALn_e51zYI4TV2tV0T8fS9dAV6WMBAhBDFy_XiSyzUipTe9uQOV7Of66DX-T2O0V2a1xtBZYn5JScZWhahTmTrsHSN8nCdbjLkgmknxL7JuS7GYQJkl-S2jD6wQlZ2_kmyol3YixO7HYvQcb_-DTukZ5Bxk-wtzbDDejMxHybUEj7qdkCglRKVhPEhBbS97UQUokA4y-VlCuGG1YEmpsoiieK5bZwxnOUaS2zyH5oNDVpEY6n7QeZVsevLXdzi0eTf3YYfSGsCMzNwj-jRK2z1t30afvvMQ9god6-vYluGq3mDizabtmp310ojF7HZg-5zUjtO0ARuJ81gj8BrHEHmw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQfQgPrFaNQfBU-huso_mWNRSH6wVLPQWkk1WBbsttr37E_yN_hIn2e3aHkTwuEsebGaS-WZm8w1C56nLTcUZCZWJSJB6ikhJFTFMZ4ZrFsepY_tMom4_uB2Eg4Vb_AU_RBVwszvDndd2g4911lwgDZW5vbxHHcxlq2jNZvysjtOgV0VZLICOXdk8GoFKgDPhz5kbPdpcHmLZMv3AzUXQ6qxOZxttlXARtwv57qAVk--izQUSwT30WIT38SjHdiZAoIVSYYCjOIez9-vj89mRS1sZYOUINcE_xjYEiwGFv7zOhnhoAIVj6K_NZB_1O9dPl11SFkogKTg8jCg4PW0KhTPFDVfaUEV9sEIxC8EY6bil_EgyCVBCRR5nMtNSsVasPF_52tZPP0C1fJSbQ4QB3shWBnLSXAaB5lwqHoFPpDIvNMzQOiLzRRJpySJui1m8iYL_mAr7qaJa1Dq6qNqPC_6MX1s25msuyn00ETYNGoMFpTAxdXL4YxSRtJOH6unoP53O0HrvqiPub5K7Y7RhXxe_5zZQbfo-MycAQqbq1OnZNxaR06E
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+nanomaterials+for+next%E2%80%90generation+batteries+with+lithium+metal+anodes&rft.jtitle=Nano+select&rft.au=Ding%2C+Jun%E2%80%90Fan&rft.au=Xu%2C+Rui&rft.au=Yan%2C+Chong&rft.au=Xiao%2C+Ye&rft.date=2020-07-01&rft.issn=2688-4011&rft.eissn=2688-4011&rft.volume=1&rft.issue=1&rft.spage=94&rft.epage=110&rft_id=info:doi/10.1002%2Fnano.202000003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nano_202000003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4011&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4011&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4011&client=summon