Winter storms drive offshore transport and modulate phytoplankton blooms in Northern Taiwan, China

The East China Shelf Sea (ECSS) is subject to high-frequency storms during winter and spring, with these storm processes serving as a significant driving factor for initiating the outward diffusion of materials from the inner shelf. Inner shelf waters tend to be rich in nutrients, thus their horizon...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydrology (Amsterdam) Vol. 627; p. 130391
Main Authors Liu, Tao, Shi, Yong, Xu, Xiaomei, Liu, Shengjing, Lyu, Jixuan, Zhang, Shuo, Yang, Guang, Ren, Chunyu, Sheng, Hui, Gao, Jianhua
Format Journal Article
LanguageEnglish
Published 01.12.2023
Subjects
Online AccessGet full text
ISSN0022-1694
DOI10.1016/j.jhydrol.2023.130391

Cover

Loading…
Abstract The East China Shelf Sea (ECSS) is subject to high-frequency storms during winter and spring, with these storm processes serving as a significant driving factor for initiating the outward diffusion of materials from the inner shelf. Inner shelf waters tend to be rich in nutrients, thus their horizontal diffusion is crucial to the marine primary productivity of the outer shelf. However, our understanding of the processes that govern the offshore water mass transport under winter storm oscillations and the mechanisms driving their impact on phytoplankton is currently limited. In this study, we used satellite and reanalysis data from 2003 to 2020 to investigate the modulation mechanism of winter offshore currents (WOC) on phytoplankton bloom (PB) stimulated by storms in Northern Taiwan (NTW). The results revealed that at synoptic scales, winter storms result in higher sea surface height (SSH) and potential energy on the inner side of the front. However, during periods of weakened storms (for example, during north wind relaxation or a shift to southerly winds), a strong WOC is produced in the top 30–50 m of the ocean due to continuous SSH adjustments caused by changed pressure gradients and induced by topography. PB occurs in the offshore waters of the front, driven by a continuous nutrient supply and an increase in photosynthetically available radiation (PAR). On an interannual scale, offshore transport is controlled by the storm's duration and the extent of its weakening. As the climate warms and winter winds in NTW have consistently weakened over the past 20 years, lower turbulent kinetic energy (TKE) and a shallower mixed layer depth (MLD) will promote phytoplankton growth. The results suggest that water level fluctuations caused by high-frequency changes in winter storms are strongly linked to the offshore sediment transport from near-shore waters, impacting the material transport and the health of the ecosystem on the continental shelf.
AbstractList The East China Shelf Sea (ECSS) is subject to high-frequency storms during winter and spring, with these storm processes serving as a significant driving factor for initiating the outward diffusion of materials from the inner shelf. Inner shelf waters tend to be rich in nutrients, thus their horizontal diffusion is crucial to the marine primary productivity of the outer shelf. However, our understanding of the processes that govern the offshore water mass transport under winter storm oscillations and the mechanisms driving their impact on phytoplankton is currently limited. In this study, we used satellite and reanalysis data from 2003 to 2020 to investigate the modulation mechanism of winter offshore currents (WOC) on phytoplankton bloom (PB) stimulated by storms in Northern Taiwan (NTW). The results revealed that at synoptic scales, winter storms result in higher sea surface height (SSH) and potential energy on the inner side of the front. However, during periods of weakened storms (for example, during north wind relaxation or a shift to southerly winds), a strong WOC is produced in the top 30–50 m of the ocean due to continuous SSH adjustments caused by changed pressure gradients and induced by topography. PB occurs in the offshore waters of the front, driven by a continuous nutrient supply and an increase in photosynthetically available radiation (PAR). On an interannual scale, offshore transport is controlled by the storm's duration and the extent of its weakening. As the climate warms and winter winds in NTW have consistently weakened over the past 20 years, lower turbulent kinetic energy (TKE) and a shallower mixed layer depth (MLD) will promote phytoplankton growth. The results suggest that water level fluctuations caused by high-frequency changes in winter storms are strongly linked to the offshore sediment transport from near-shore waters, impacting the material transport and the health of the ecosystem on the continental shelf.
ArticleNumber 130391
Author Sheng, Hui
Liu, Shengjing
Xu, Xiaomei
Zhang, Shuo
Yang, Guang
Lyu, Jixuan
Ren, Chunyu
Liu, Tao
Shi, Yong
Gao, Jianhua
Author_xml – sequence: 1
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
– sequence: 2
  givenname: Yong
  surname: Shi
  fullname: Shi, Yong
– sequence: 3
  givenname: Xiaomei
  surname: Xu
  fullname: Xu, Xiaomei
– sequence: 4
  givenname: Shengjing
  surname: Liu
  fullname: Liu, Shengjing
– sequence: 5
  givenname: Jixuan
  surname: Lyu
  fullname: Lyu, Jixuan
– sequence: 6
  givenname: Shuo
  surname: Zhang
  fullname: Zhang, Shuo
– sequence: 7
  givenname: Guang
  surname: Yang
  fullname: Yang, Guang
– sequence: 8
  givenname: Chunyu
  surname: Ren
  fullname: Ren, Chunyu
– sequence: 9
  givenname: Hui
  surname: Sheng
  fullname: Sheng, Hui
– sequence: 10
  givenname: Jianhua
  surname: Gao
  fullname: Gao, Jianhua
BookMark eNqFkLtOwzAUQD0UiRb4BCSPDCT4nURMqOIlVbBUYrScxFYcEjvYLqh_T6p2YuEudznn6uqswMJ5pwG4xijHCIu7Pu-7fRv8kBNEaI4pohVegCVChGRYVOwcrGLs0TyUsiWoP6xLOsCYfBgjbIP91tAbEzsfNExBuTj5kKByLRx9uxtU0nDq9slPg3KfyTtYD97PqnXwbSY7HRzcKvuj3C1cd9apS3Bm1BD11WlfgO3T43b9km3en1_XD5usIaVImTGUViUpkCiUYKZilRJtzTlriSiVMqJAqCG8YbrlDSnqWvMaGV5Sjgmmhl6Am-PZKfivnY5JjjY2epjf1H4XJUUMMUowKmeUH9Em-BiDNnIKdlRhLzGSh4yyl6eM8pBRHjPO3v0fr7FJJevdHMoO_9i_w62CCQ
CitedBy_id crossref_primary_10_3390_jmse12122148
crossref_primary_10_1016_j_csr_2025_105401
crossref_primary_10_1016_j_watres_2025_123349
crossref_primary_10_1016_j_ocemod_2025_102504
crossref_primary_10_3389_fmars_2025_1530555
Cites_doi 10.1890/03-0763
10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
10.1029/2005GL023815
10.1029/2004JC002457
10.1038/s41586-023-05760-y
10.1038/srep28842
10.1175/JPO-D-13-07.1
10.1142/S1793536909000047
10.1016/j.jmarsys.2015.02.009
10.3390/rs14153557
10.1139/f35-012
10.1016/j.dsr2.2013.05.002
10.1002/2014JC010470
10.1038/s41467-018-07059-3
10.1029/2004JC002786
10.1016/j.sedgeo.2019.03.006
10.1029/2021GL095139
10.1890/09-1207.1
10.1111/geb.12779
10.1016/j.csr.2006.07.013
10.1175/JPO3083.1
10.1029/2019JC015293
10.1016/S0065-2881(08)60129-7
10.1016/j.csr.2016.06.008
10.1016/j.rse.2018.12.003
10.1016/j.jmarsys.2020.103314
10.1016/j.ecss.2019.04.042
10.1002/2014JC010655
10.1038/s41467-020-19157-2
10.1016/j.margeo.2021.106703
10.1093/icesjms/18.3.287
10.1016/j.rse.2018.12.035
10.1029/2018JC014241
10.1016/j.dsr2.2015.01.001
10.5194/essd-7-47-2015
10.1016/j.margeo.2007.02.008
10.5194/os-14-1093-2018
10.1029/2018GL080751
10.1016/j.watres.2022.118669
10.1007/s10872-006-0028-8
10.5194/os-13-105-2017
10.1016/j.jmarsys.2015.04.005
10.1016/j.csr.2015.07.013
10.1029/2021JC017699
10.1029/2021JC017526
10.1002/2017GL074359
10.1029/2022JC018752
ContentType Journal Article
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jhydrol.2023.130391
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_jhydrol_2023_130391
GeographicLocations China
Taiwan
GeographicLocations_xml – name: China
– name: Taiwan
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACRPL
ACSBN
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CITATION
CS3
D-I
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSH
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
7S9
EFKBS
EFLBG
L.6
ID FETCH-LOGICAL-c286t-ff339827067a64f949a6db554d268aaf6700c25c4ed5c27bbe5b0f58351213f3
ISSN 0022-1694
IngestDate Fri Sep 05 15:03:41 EDT 2025
Tue Jul 01 01:53:54 EDT 2025
Thu Apr 24 23:01:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-ff339827067a64f949a6db554d268aaf6700c25c4ed5c27bbe5b0f58351213f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3040432108
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3040432108
crossref_primary_10_1016_j_jhydrol_2023_130391
crossref_citationtrail_10_1016_j_jhydrol_2023_130391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-00
PublicationDecade 2020
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2023
References Sverdrup (10.1016/j.jhydrol.2023.130391_b0230) 1953; 18
Huang (10.1016/j.jhydrol.2023.130391_b0060) 2016; 124
Lv (10.1016/j.jhydrol.2023.130391_b0160) 2022; 220
Liu (10.1016/j.jhydrol.2023.130391_b0150) 2007; 37
Ren (10.1016/j.jhydrol.2023.130391_b0195) 2015; 120
Xu (10.1016/j.jhydrol.2023.130391_b0245) 2022; 9
Su (10.1016/j.jhydrol.2023.130391_b0225) 2005
Poitevin (10.1016/j.jhydrol.2023.130391_b0180) 2019; 222
Akpınar (10.1016/j.jhydrol.2023.130391_b0005) 2020; 205
Liu (10.1016/j.jhydrol.2023.130391_b0120) 2006; 26
Liu (10.1016/j.jhydrol.2023.130391_b0125) 2018; 27
Ekman (10.1016/j.jhydrol.2023.130391_b0030) 1905; 2
Behrenfeld (10.1016/j.jhydrol.2023.130391_b0015) 2010; 91
Pi (10.1016/j.jhydrol.2023.130391_b0175) 2010; 40
Huisman (10.1016/j.jhydrol.2023.130391_b0065) 2004; 85
Kiørboe (10.1016/j.jhydrol.2023.130391_b0075) 1993; 29
Niiler (10.1016/j.jhydrol.2023.130391_b0170) 1977
Xuan (10.1016/j.jhydrol.2023.130391_b0260) 2017; 13
Stramska (10.1016/j.jhydrol.2023.130391_b0220) 2005; 110
Yang (10.1016/j.jhydrol.2023.130391_bib297) 2007; 240
Lin (10.1016/j.jhydrol.2023.130391_b0110) 2019; 224
10.1016/j.jhydrol.2023.130391_b0295
Hogg (10.1016/j.jhydrol.2023.130391_b0050) 2015; 120
Shi (10.1016/j.jhydrol.2023.130391_b0215) 2022; 443
10.1016/j.jhydrol.2023.130391_b0250
10.1016/j.jhydrol.2023.130391_b0290
Maúre (10.1016/j.jhydrol.2023.130391_b0165) 2017; 44
Arteaga (10.1016/j.jhydrol.2023.130391_b0010) 2020; 11
Shi (10.1016/j.jhydrol.2023.130391_b0205) 2019; 46
Dai (10.1016/j.jhydrol.2023.130391_b0025) 2023; 615
Guan (10.1016/j.jhydrol.2023.130391_b0040) 2006; 62
(10.1016/j.jhydrol.2023.130391_bib296) 2019
Kraus (10.1016/j.jhydrol.2023.130391_b0080) 1988
Qiao (10.1016/j.jhydrol.2023.130391_b0190) 2017; 24
Wu (10.1016/j.jhydrol.2023.130391_b0235) 2009; 1
Yin (10.1016/j.jhydrol.2023.130391_b0275) 2014; 44
Jin (10.1016/j.jhydrol.2023.130391_b0070) 2013; 97
Le Quéré (10.1016/j.jhydrol.2023.130391_b0095) 2015; 7
He (10.1016/j.jhydrol.2023.130391_b0045) 2016; 154
Gran (10.1016/j.jhydrol.2023.130391_b0035) 1935; 1
Shi (10.1016/j.jhydrol.2023.130391_b0210) 2017; 143
Xuan (10.1016/j.jhydrol.2023.130391_b0255) 2016; 154
Liu (10.1016/j.jhydrol.2023.130391_b0140) 2018; 123
Liu (10.1016/j.jhydrol.2023.130391_b0130) 2022; 40
Large (10.1016/j.jhydrol.2023.130391_b0090) 1981; 11
Hu (10.1016/j.jhydrol.2023.130391_b0055) 2019; 221
Lu (10.1016/j.jhydrol.2023.130391_b0155) 2022; 14
Kraus (10.1016/j.jhydrol.2023.130391_b0085) 1967; 19
Liu (10.1016/j.jhydrol.2023.130391_b0135) 2015; 107
Wu (10.1016/j.jhydrol.2023.130391_b0240) 2019; 124
Yuan (10.1016/j.jhydrol.2023.130391_b0280) 2005; 32
Liu (10.1016/j.jhydrol.2023.130391_b0145) 2005; 110
10.1016/j.jhydrol.2023.130391_b0270
Cronin (10.1016/j.jhydrol.2023.130391_b0020) 2016; 6
Lévy (10.1016/j.jhydrol.2023.130391_b0105) 2018; 9
Lellouche (10.1016/j.jhydrol.2023.130391_b0100) 2018; 14
Lin (10.1016/j.jhydrol.2023.130391_b0115) 2011; 116
Zhang (10.1016/j.jhydrol.2023.130391_b0285) 2019; 384
References_xml – volume: 85
  start-page: 2960
  issue: 11
  year: 2004
  ident: 10.1016/j.jhydrol.2023.130391_b0065
  article-title: Changes in turbulent mixing shift competition for light between phytoplankton species
  publication-title: Ecology
  doi: 10.1890/03-0763
– volume: 11
  start-page: 324
  issue: 3
  year: 1981
  ident: 10.1016/j.jhydrol.2023.130391_b0090
  article-title: Open ocean momentum flux measurements in moderate to strong winds
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2
– volume: 32
  start-page: L19603
  year: 2005
  ident: 10.1016/j.jhydrol.2023.130391_b0280
  article-title: Cross-shelf penetrating fronts off the southeast coast of China observed by MODIS
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL023815
– volume: 110
  start-page: C05016
  issue: C5
  year: 2005
  ident: 10.1016/j.jhydrol.2023.130391_b0220
  article-title: Interannual variability of seasonal phytoplankton blooms in the north polar Atlantic in response to atmospheric forcing
  publication-title: J. Geophys. Res.
  doi: 10.1029/2004JC002457
– volume: 615
  start-page: 280
  year: 2023
  ident: 10.1016/j.jhydrol.2023.130391_b0025
  article-title: Coastal phytoplankton blooms expand and intensify in the 21st century
  publication-title: Nature
  doi: 10.1038/s41586-023-05760-y
– volume: 6
  start-page: 28842
  issue: 1
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130391_b0020
  article-title: Erratum: Steady state ocean response to wind forcing in extratropical frontal regions
  publication-title: Sci. Rep.
  doi: 10.1038/srep28842
– start-page: 143
  year: 1977
  ident: 10.1016/j.jhydrol.2023.130391_b0170
  article-title: One–dimensional models of the upper ocean
– volume: 44
  start-page: 576
  issue: 2
  year: 2014
  ident: 10.1016/j.jhydrol.2023.130391_b0275
  article-title: Coastal-trapped waves in the East China Sea observed by a mooring array in winter 2006
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/JPO-D-13-07.1
– volume: 116
  start-page: C04026
  year: 2011
  ident: 10.1016/j.jhydrol.2023.130391_b0115
  article-title: An asymmetric upwind flow, Yellow Sea warm current: 1. New observations in the western Yellow Sea
  publication-title: J. Geophys. Res.
– volume: 1
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2023.130391_b0235
  article-title: Ensemble empirical mode decomposition: a noise–assisted data analysis method
  publication-title: Adv. Adapt. Data Anal.
  doi: 10.1142/S1793536909000047
– volume: 154
  start-page: 93
  issue: Part A
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130391_b0045
  article-title: Double SST fronts observed from MODIS data in the East China Sea off the Zhejiang-Fujian coast, China
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2015.02.009
– volume: 24
  start-page: 134
  issue: 4
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130391_b0190
  article-title: From continental Shelf Seas to the Western Pacific: the path and mechanism of cross–shelf suspended sediment transport in the Yellow Sea and East China Seas
  publication-title: Earth Sci. Front.
– start-page: 51
  year: 1988
  ident: 10.1016/j.jhydrol.2023.130391_b0080
– volume: 14
  start-page: 3557
  issue: 15
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130391_b0155
  article-title: Framework to extract extreme phytoplankton bloom events with remote sensing datasets: a case study
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14153557
– volume: 1
  start-page: 219
  issue: 5
  year: 1935
  ident: 10.1016/j.jhydrol.2023.130391_b0035
  article-title: A quantitative study of the phytoplankton in the Bay of Fundy and the Gulf of Maine (including observations on hydrography, chemistry and turbidity)
  publication-title: Journal of the Biological Board of Canada
  doi: 10.1139/f35-012
– volume: 97
  start-page: 16
  year: 2013
  ident: 10.1016/j.jhydrol.2023.130391_b0070
  article-title: Nutrient dynamics and coupling with phytoplankton species composition during the spring blooms in the Yellow Sea
  publication-title: Deep-Sea Research Part II: Topical Studies in Oceanography
  doi: 10.1016/j.dsr2.2013.05.002
– year: 2005
  ident: 10.1016/j.jhydrol.2023.130391_b0225
– volume: 120
  start-page: 257
  issue: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130391_b0050
  article-title: Recent trends in the Southern Ocean eddy field
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2014JC010470
– volume: 9
  start-page: 4758
  issue: 1
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130391_b0105
  article-title: The role of submesoscale currents in structuring marine ecosystems
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07059-3
– volume: 110
  start-page: C06003
  year: 2005
  ident: 10.1016/j.jhydrol.2023.130391_b0145
  article-title: Ocean current spatial patterns from west florida shelf velocity time series using the self–organizing map
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2004JC002786
– year: 2019
  ident: 10.1016/j.jhydrol.2023.130391_bib296
– volume: 384
  start-page: 50
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130391_b0285
  article-title: Sedimentary responses to the cross–shelf transport of terrigenous material on the East China Sea continental shelf
  publication-title: Sed. Geol.
  doi: 10.1016/j.sedgeo.2019.03.006
– ident: 10.1016/j.jhydrol.2023.130391_b0250
  doi: 10.1029/2021GL095139
– volume: 91
  start-page: 977
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2023.130391_b0015
  article-title: Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms
  publication-title: Ecology
  doi: 10.1890/09-1207.1
– volume: 27
  start-page: 1225
  issue: 10
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130391_b0125
  article-title: Ocean fronts construct spatial zonation in microfossil assemblages
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12779
– volume: 26
  start-page: 2141
  issue: 17–18
  year: 2006
  ident: 10.1016/j.jhydrol.2023.130391_b0120
  article-title: Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2006.07.013
– volume: 37
  start-page: 1697
  issue: 6
  year: 2007
  ident: 10.1016/j.jhydrol.2023.130391_b0150
  article-title: Ocean currents and sea surface heights estimated across the West Florida shelf
  publication-title: J. Phys. Oceanogr.
  doi: 10.1175/JPO3083.1
– volume: 124
  start-page: 6927
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130391_b0240
  article-title: Novel, repeated surveys reveal new insights on sediment flux through a narrow strait, Bohai, China
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2019JC015293
– volume: 29
  start-page: 1
  year: 1993
  ident: 10.1016/j.jhydrol.2023.130391_b0075
  article-title: Turbulence, phytoplankton cell size, and the structure of pelagic food webs
  publication-title: Adv. Marine Biol. Acad. Press
  doi: 10.1016/S0065-2881(08)60129-7
– volume: 143
  start-page: 257
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130391_b0210
  article-title: Interannual variation of spring phytoplankton bloom and response to turbulent energy generated by atmospheric forcing in the central Southern Yellow Sea of China: satellite observations and numerical model study
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2016.06.008
– volume: 221
  start-page: 687
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130391_b0055
  article-title: Characterizing surface circulation in the Taiwan Strait during NE monsoon from Geostationary Ocean Color Imager
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.003
– volume: 205
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130391_b0005
  article-title: Cross–shelf exchanges in the Northern Bay of Biscay
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2020.103314
– volume: 224
  start-page: 11
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130391_b0110
  article-title: Vertical average irradiance shapes the spatial pattern of winter chlorophyll-a in the Yellow Sea
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2019.04.042
– volume: 120
  start-page: 5054
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130391_b0195
  article-title: Cross-shelf transport of terrestrial Al enhanced by the transition of northeasterly to southwesterly monsoon wind over the East China Sea
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1002/2014JC010655
– volume: 11
  start-page: 5364
  year: 2020
  ident: 10.1016/j.jhydrol.2023.130391_b0010
  article-title: Seasonal modulation of phytoplankton biomass in the Southern Ocean
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19157-2
– volume: 19
  start-page: 98
  issue: 1
  year: 1967
  ident: 10.1016/j.jhydrol.2023.130391_b0085
  article-title: A one–dimensional model of the seasonal thermocline II. The general theory and its consequences
  publication-title: Tellus
– volume: 443
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130391_b0215
  article-title: Neglected role of continental circulation in cross–shelf sediment transport: implications for paleoclimate reconstructions
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2021.106703
– volume: 40
  start-page: 725
  issue: 4
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130391_b0130
  article-title: Review of fronts and its ecological effects in the shelf sea of China
  publication-title: Adv. Marine Sci.
– volume: 18
  start-page: 287
  issue: 3
  year: 1953
  ident: 10.1016/j.jhydrol.2023.130391_b0230
  article-title: On conditions for the vernal blooming of phytoplankton
  publication-title: ICES J. Mar. Sci.
  doi: 10.1093/icesjms/18.3.287
– volume: 40
  start-page: 810
  issue: 06
  year: 2010
  ident: 10.1016/j.jhydrol.2023.130391_b0175
  article-title: Analysis of sea surface temperature fronts in the Taiwan Strait and its adjacent area using an advanced edge detection method
  publication-title: Sci. China Earth Sci.
– volume: 222
  start-page: 275
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130391_b0180
  article-title: Vertical land motion and relative sea level changes along the coastline of Brest (France) from combined space-borne geodetic methods
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.035
– volume: 123
  start-page: 8264
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130391_b0140
  article-title: Variation in the current shear front and its potential effect on sediment transport over the inner shelf of the East China Sea in winter
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2018JC014241
– volume: 124
  start-page: 6
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130391_b0060
  article-title: Alongshore and cross–shore circulations and their response to winter monsoon in the western East China Sea
  publication-title: Deep-Sea Res. II
  doi: 10.1016/j.dsr2.2015.01.001
– volume: 7
  start-page: 47
  issue: 01
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130391_b0095
  article-title: Global carbon budget 2014
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-7-47-2015
– volume: 240
  start-page: 169
  issue: 1–4
  year: 2007
  ident: 10.1016/j.jhydrol.2023.130391_bib297
  article-title: A unique Yellow River-derived distal subaqueous delta in the Yellow Sea
  publication-title: Mar. Geol.
  doi: 10.1016/j.margeo.2007.02.008
– volume: 14
  start-page: 1093
  issue: 5
  year: 2018
  ident: 10.1016/j.jhydrol.2023.130391_b0100
  article-title: Recent updates to the copernicus marine service global ocean monitoring and forecasting real–time 1∕12° high–resolution system
  publication-title: Ocean Sci.
  doi: 10.5194/os-14-1093-2018
– volume: 46
  start-page: 226
  issue: 1
  year: 2019
  ident: 10.1016/j.jhydrol.2023.130391_b0205
  article-title: Cross-front sediment transport induced by quick oscillation of the yellow sea warm current: evidence from the sedimentary record
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2018GL080751
– volume: 2
  start-page: 1
  year: 1905
  ident: 10.1016/j.jhydrol.2023.130391_b0030
  article-title: On the influence of the earth's rotation on ocean currents
  publication-title: Arkiv for Matematik, Astronomioch Fysik
– volume: 220
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130391_b0160
  article-title: The coastal front modulates the timing and magnitude of spring phytoplankton bloom in the Yellow Sea
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118669
– volume: 9
  year: 2022
  ident: 10.1016/j.jhydrol.2023.130391_b0245
  article-title: Cross-front transport triggered by winter storms around the Shandong Peninsula China
  publication-title: Front. Marine Sci.
– volume: 62
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.jhydrol.2023.130391_b0040
  article-title: Winter counter–wind currents off the southeastern China coast: a review
  publication-title: J. Oceanogr.
  doi: 10.1007/s10872-006-0028-8
– volume: 13
  start-page: 105
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130391_b0260
  article-title: Synoptic fluctuation of the Taiwan Warm Current in winter on the East China Sea shelf
  publication-title: Ocean Sci.
  doi: 10.5194/os-13-105-2017
– volume: 154
  start-page: 66
  year: 2016
  ident: 10.1016/j.jhydrol.2023.130391_b0255
  article-title: Tidal residual current and its role in the mean flow on the Changjiang bank
  publication-title: J. Mar. Syst.
  doi: 10.1016/j.jmarsys.2015.04.005
– volume: 107
  start-page: 92
  year: 2015
  ident: 10.1016/j.jhydrol.2023.130391_b0135
  article-title: Distribution and cross-front transport of suspended particulate matter over the inner shelf of the East China Sea
  publication-title: Cont. Shelf Res.
  doi: 10.1016/j.csr.2015.07.013
– ident: 10.1016/j.jhydrol.2023.130391_b0290
  doi: 10.1029/2021JC017699
– ident: 10.1016/j.jhydrol.2023.130391_b0270
  doi: 10.1029/2021JC017526
– volume: 44
  start-page: 11115
  issue: 21
  year: 2017
  ident: 10.1016/j.jhydrol.2023.130391_b0165
  article-title: Mesoscale eddies control the timing of spring phytoplanktonblooms: a case study in the japan sea
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074359
– ident: 10.1016/j.jhydrol.2023.130391_b0295
  doi: 10.1029/2022JC018752
SSID ssj0000334
Score 2.4619715
Snippet The East China Shelf Sea (ECSS) is subject to high-frequency storms during winter and spring, with these storm processes serving as a significant driving...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 130391
SubjectTerms algal blooms
China
climate
continental shelf
ecosystems
kinetic energy
mass transfer
photosynthetically active radiation
phytoplankton
potential energy
primary productivity
satellites
sediment transport
spring
storms
Taiwan
topography
wind
winter
Title Winter storms drive offshore transport and modulate phytoplankton blooms in Northern Taiwan, China
URI https://www.proquest.com/docview/3040432108
Volume 627
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nj5QwFG90PejF-BnXr9TE2wgCLQwcN0azMerFMY4n0k-H2QU2DBOzHvzb7WsLOOtEXS-ENLQw8360j9f3fj-EnrOciqiQUaALTgLK8sy8UhEPeMzN3BiLRFki7fcfsuNP9O0yXU5RJVtd0vNQfN9bV_I_VjVtxq5QJXsJy46DmgZzbuxrjsbC5vhPNv4MZA_dDBIc681MdpAF1Gq9WbWdAvEHR1tu9wfqVoJQl4JQRt-enbLmBAg1IG-9timxdgMHZNEWrPrG_Fa819be472uzmXn6JuMi3pUA92CBGyNcYV31dZigbVjEMfqB8--tH6xNE1Le82yYm2tqgs9P65U83U9rKw-MJGQX5I8pkKBOHMaxsNkmzkmAD9dwgLqxLp-m8ldUGEdrt3vCeEO4XT9LnP2hRVtzDMcUtjWpR-mhGFKN8xVdC0x3xag9xH-mPKCIkLoQDEPTz-Vfb3c-zS7Ds3uem6dlMUtdNPbBx85qNxGV1RzB133Qver87uIO8hgBxlsIYMHyOARMthABg-QwTuQwQ4yuGrwABnsIPMCW8DcQ4s3rxevjgMvsxGIJM_6QGtCijyZm3eTZVQXtGCZ5MbNlEmWM6ahkEskqaBKpiKZc65SHunUuO5AB6jJfXTQtI16gPC8SHXE50lWcEq5IkxGqTDfx5LEqVA6PkR0-KtK4SnoQQnltPyjoQ5ROHY7cxwsf-vwbLBDaWZL2AJjjWq3m5JEwCaVxFH-8LKDPkI3JpQ_Rgd9t1VPjEPa86cWQD8BY6KORA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Winter+storms+drive+offshore+transport+and+modulate+phytoplankton+blooms+in+Northern+Taiwan%2C+China&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Liu%2C+Tao&rft.au=Shi%2C+Yong&rft.au=Xu%2C+Xiaomei&rft.au=Liu%2C+Shengjing&rft.date=2023-12-01&rft.issn=0022-1694&rft.volume=627&rft.spage=130391&rft_id=info:doi/10.1016%2Fj.jhydrol.2023.130391&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2023_130391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon