Monitoring a sequence of Bernoulli random variables subject to gradual changes in the success rates where the success rates are unknown

We look at a sequence of Bernoulli random variables where the success rates change from θ 1 to θ 2 . We will assume that both the success rates before and after the change are unknown but increasing. We assume that this change does not happen abruptly but gradually over a period of time η where η is...

Full description

Saved in:
Bibliographic Details
Published inSequential analysis Vol. 43; no. 2; pp. 233 - 247
Main Author Brown, Marlo
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.04.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We look at a sequence of Bernoulli random variables where the success rates change from θ 1 to θ 2 . We will assume that both the success rates before and after the change are unknown but increasing. We assume that this change does not happen abruptly but gradually over a period of time η where η is known. We calculate the probability that the change has started and completed. We also look at optimal stopping rules assuming that there is a cost for a false alarm and a cost per time unit to stop late.
AbstractList We look at a sequence of Bernoulli random variables where the success rates change from θ 1 to θ 2 . We will assume that both the success rates before and after the change are unknown but increasing. We assume that this change does not happen abruptly but gradually over a period of time η where η is known. We calculate the probability that the change has started and completed. We also look at optimal stopping rules assuming that there is a cost for a false alarm and a cost per time unit to stop late.
We look at a sequence of Bernoulli random variables where the success rates change from θ1 to θ2. We will assume that both the success rates before and after the change are unknown but increasing. We assume that this change does not happen abruptly but gradually over a period of time η where η is known. We calculate the probability that the change has started and completed. We also look at optimal stopping rules assuming that there is a cost for a false alarm and a cost per time unit to stop late.
Author Brown, Marlo
Author_xml – sequence: 1
  givenname: Marlo
  surname: Brown
  fullname: Brown, Marlo
  organization: Department of Mathematics, Niagara University
BookMark eNp9kE1OwzAQhS1UJNrCEZAssU6xncSOd0DFn1TEBtaW49htSmoX26HqCbg2jlp2iNmM9OZ7M5o3ASPrrAbgEqMZRhW6RqxgBS_ojCBSzEieV6RiJ2CMy5xkBWZ0BMYDkw3QGZiEsEYIVxixMfh-cbaNzrd2CSUM-rPXVmnoDLzT3rq-61ropW3cBn5J38q60wGGvl5rFWF0cOll08sOqpW0yzRqLYwrnQildAjJGpO4W2mv_9BlUnv7Yd3OnoNTI7ugL459Ct4f7t_mT9ni9fF5frvIFKlozHRJMapNnT5sUEWY0aRscmMK0nCJqCprhrTiXBpFOW8wxTzHOatTId5Qmk_B1WHv1rv0a4hi7Xpv00mRI8pwgcqiSlR5oJR3IXhtxNa3G-n3AiMxZC5-MxdD5uKYefLdHHytNc5v5M75rhFR7jvnTYpRtenM_yt-AJQcjLs
Cites_doi 10.2307/2334766
10.1093/biomet/62.2.407
10.1080/07474946.2022.2092137
10.1093/biomet/41.1-2.100
10.1016/S0167-7152(01)00184-5
10.1016/j.spl.2015.01.001
10.1007/978-3-662-04790-3_16
10.1080/07474946.2021.1940504
10.1002/sta4.327
10.1214/aoms/1177700517
10.1016/j.jspi.2011.02.020
10.1016/0378-3758(81)90021-5
10.1080/07474946.2019.1648923
10.5539/ijsp.v1n2p96
10.1016/j.spl.2008.03.005
10.1111/j.1467-9469.2004.02-102.x
10.1214/14-AOS1297
10.1016/B978-0-12-589320-6.50016-2
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
2024 Taylor & Francis Group, LLC
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
– notice: 2024 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/07474946.2024.2338287
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4176
EndPage 247
ExternalDocumentID 10_1080_07474946_2024_2338287
2338287
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c286t-e5610bfb828d0827fe25d3ff42d9a06c5b70ec99afc699d16193137bbbb09d663
ISSN 0747-4946
IngestDate Mon Aug 25 14:14:44 EDT 2025
Tue Jul 01 03:56:58 EDT 2025
Wed Dec 25 09:05:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-e5610bfb828d0827fe25d3ff42d9a06c5b70ec99afc699d16193137bbbb09d663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3067140548
PQPubID 216170
PageCount 15
ParticipantIDs proquest_journals_3067140548
informaworld_taylorfrancis_310_1080_07474946_2024_2338287
crossref_primary_10_1080_07474946_2024_2338287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Sequential analysis
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_12_1
Shiryaev A. N. (e_1_3_4_15_1) 1978
e_1_3_4_13_1
e_1_3_4_10_1
e_1_3_4_21_1
e_1_3_4_11_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_14_1
e_1_3_4_18_1
e_1_3_4_19_1
Brown M. (e_1_3_4_8_1) 2006; 1
References_xml – ident: e_1_3_4_11_1
  doi: 10.2307/2334766
– ident: e_1_3_4_16_1
  doi: 10.1093/biomet/62.2.407
– ident: e_1_3_4_7_1
  doi: 10.1080/07474946.2022.2092137
– ident: e_1_3_4_13_1
  doi: 10.1093/biomet/41.1-2.100
– ident: e_1_3_4_2_1
  doi: 10.1016/S0167-7152(01)00184-5
– ident: e_1_3_4_18_1
  doi: 10.1016/j.spl.2015.01.001
– volume: 1
  start-page: 1
  year: 2006
  ident: e_1_3_4_8_1
  article-title: On the Bayesian Detection of a Change in the Arrival Rate of a Poisson Process Monitored at Discrete Epochs
  publication-title: International Journal for Statistics and Systems
– ident: e_1_3_4_14_1
  doi: 10.1007/978-3-662-04790-3_16
– ident: e_1_3_4_6_1
  doi: 10.1080/07474946.2021.1940504
– ident: e_1_3_4_12_1
  doi: 10.1002/sta4.327
– ident: e_1_3_4_9_1
  doi: 10.1214/aoms/1177700517
– ident: e_1_3_4_17_1
  doi: 10.1016/j.jspi.2011.02.020
– volume-title: Optimal Stopping Rules
  year: 1978
  ident: e_1_3_4_15_1
– ident: e_1_3_4_21_1
  doi: 10.1016/0378-3758(81)90021-5
– ident: e_1_3_4_5_1
  doi: 10.1080/07474946.2019.1648923
– ident: e_1_3_4_4_1
  doi: 10.5539/ijsp.v1n2p96
– ident: e_1_3_4_3_1
  doi: 10.1016/j.spl.2008.03.005
– ident: e_1_3_4_10_1
  doi: 10.1111/j.1467-9469.2004.02-102.x
– ident: e_1_3_4_19_1
  doi: 10.1214/14-AOS1297
– ident: e_1_3_4_20_1
  doi: 10.1016/B978-0-12-589320-6.50016-2
SSID ssj0018107
Score 2.2846916
Snippet We look at a sequence of Bernoulli random variables where the success rates change from θ 1 to θ 2 . We will assume that both the success rates before and...
We look at a sequence of Bernoulli random variables where the success rates change from θ1 to θ2. We will assume that both the success rates before and after...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 233
SubjectTerms Bayesian stopping rules
Bernoulli Hypothesis
change point detection
dynamic programming
False alarms
gradual changes
Random variables
Title Monitoring a sequence of Bernoulli random variables subject to gradual changes in the success rates where the success rates are unknown
URI https://www.tandfonline.com/doi/abs/10.1080/07474946.2024.2338287
https://www.proquest.com/docview/3067140548
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAyku0FDQHblFWiZM48ZFWRRXS9kIr9RbFsY0qQYI22SLxB_q3Gb-yKbsCyh6ilSVPnMwXe2Y885mQ91TLvGGtiBue6DgXCY952fBYMsMWRjnVtr5iec7OLvNPV8XVJqpkq0tGsWh_7qwr-R-tYhvq1VTJ3kOzk1BswP-oX7yihvH6Tzp2H6SrM4xCUrQx_47VquvNNk-ES5Hsv0U36BKbIqkhGtbChF6Mzfll1dhKLFf8O4SUx2FtD1GMDInEEP1Apaod7SZjbN2ZkFw3N3A_21GM15aCwPGdbHn8y2b1tZ-HG6jLUplHINH_iHPu44YqzJo0zlN3kEuYVh37kocPnc-RjvnCL7fUEW5uzeQ-9RHvZm62MENZYE_Dz79ZusJ2_W8r2pRnmAYCVC-mNmJqL-YheUTRtzCTY5acT1tPVepq7MNzhrIvQ8i-azR3DJo7dLdby7u1WS72yVPvbMAHh5xn5IHqnpMny4mpd3hBbjcYggYChqDXMGEIHIZgwhB4DMHYg8cQeAzBdQcoHTxWwGIFLIZ2tCOGwGPoJbn8eHpxchb7wznillZsjJUxvIUW-AokmpGlVrSQmdY5lbxJWFuIMlEt541uGecSHQuepVkp8JdwiXbuK7LX9Z16TYAx9PAE42lZqZwqFKhUUaW6UEJmhdAHZBHecP3dcbDUf9TsAeFzPdSjDX5pd1JNnf2l71FQWu0_deyCNl2Krk1eHd53LG_I481ndET2xtVavUU7dhTvLO5-AQ4omX4
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BPZQeoE8BpWUO7THbrJM460MPpS1aCrsnkLildmyjqiWpNlkQ_AH-T_9K_1Bn8kClD3GoODTHJB5ZnhnPwzOfAV4Ib2MtcxNoFfogNqEKVKpVYCWjhQklfNNfMZnK8WH84Sg5WoBvfS8Ml1VyDO1boIhmr2bl5mR0XxL3ikHfYxVzhYGIB4KiLPL7u8LKPXd-RmFb9Xr3HfH4pRA77w_ejoPuZoEgFyNZB469BuMNjbNkA1PvRGIj72NhlQ5lnpg0dLlS2udSKUtekYqGUWroCZUlI010F-FOomTKuhWF06uTi9GwbdGmKQY8x75r6G_TvmYPr6Gl_mYdGpO3swrf-8VqK10-D-a1GeQXv-BI_l-reR9WOg8c37Qq8wAWXPEQ7k2u4GurR3DZ7nSc8kSNfbU5lh633awo-fwMycbb8gRPNWmw-eIqrOaGc1pYl3g809zihm1XdYWfCiTq9EdzOyUyOkeFZ6Qt7g_vNb2dF5zrLB7D4a2sxBNYKsrCrQFKSWGPkRRNj1wsHBF0LhkNfeKMjRLj12HQy032tQUmyYY93mvH0Yw5mnUcXQf1s3RldZMR8u31LVl0w9jNXhSzbo-jIeToUHhOIe_GP5Degrvjg8l-tr873XsKy_ypKYwSm7BUz-buGfl8tXneKBnCx9uWwx_vplt1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKqFy6A9QAaVlDu0xS9ZJvOtDD23pCkpZ9QASt2DHdoWABG2yoPYF-jx9lT5RZ_KDSgvigDg0xyQeWZ4Zz49nPgO8Ft7GWmYm0Cr0QWxCFaiBVoGVjBYmlPB1f8XuWG7tx58OkoMZ-Nn1wnBZJcfQvgGKqPdqVu4z67uKuA3GfI9VzAUGIu4JCrLI7W_rKnfctwuK2sq325vE4jdCjD7ufdgK2osFgkwMZRU4dhqMNzTOkgkceCcSG3kfC6t0KLPEDEKXKaV9JpWy5BSpqB8NDD2hsmSjie4DeCi5sZO7RsLx5cHFsN90aNMUA55j1zR007SvmMMrYKn_GIfa4o2ewK9urZpCl-PetDK97PtfMJL_1WI-hcet_43vGoV5BjMuX4D53Uvw2nIRfjT7HCc8UWNXa46Fx_dukhd8eoZk4W1xiuea9NecuBLLqeGMFlYFfp1obnDDpqe6xKMciTr9Ud9NiYzNUeIF6Yq75r2mt9OcM535Euzfy0o8h9m8yN0yoJQU9BhJsfTQxcIRQeeSYd8nztgoMX4Fep3YpGcNLEna79BeW46mzNG05egKqD-FK63qfJBvLm9Jo1vGrnWSmLY7HA0hN4eCcwp4V-9Aeh3mvmyO0s_b450X8Ii_1FVRYg1mq8nUvSSHrzKvahVDOLxvMfwNOIVaGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+a+sequence+of+Bernoulli+random+variables+subject+to+gradual+changes+in+the+success+rates+where+the+success+rates+are+unknown&rft.jtitle=Sequential+analysis&rft.au=Brown%2C+Marlo&rft.date=2024-04-02&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=43&rft.issue=2&rft.spage=233&rft.epage=247&rft_id=info:doi/10.1080%2F07474946.2024.2338287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2024_2338287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon