Monitoring a sequence of Bernoulli random variables subject to gradual changes in the success rates where the success rates are unknown
We look at a sequence of Bernoulli random variables where the success rates change from θ 1 to θ 2 . We will assume that both the success rates before and after the change are unknown but increasing. We assume that this change does not happen abruptly but gradually over a period of time η where η is...
Saved in:
Published in | Sequential analysis Vol. 43; no. 2; pp. 233 - 247 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.04.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We look at a sequence of Bernoulli random variables where the success rates change from θ
1
to θ
2
. We will assume that both the success rates before and after the change are unknown but increasing. We assume that this change does not happen abruptly but gradually over a period of time η where η is known. We calculate the probability that the change has started and completed. We also look at optimal stopping rules assuming that there is a cost for a false alarm and a cost per time unit to stop late. |
---|---|
AbstractList | We look at a sequence of Bernoulli random variables where the success rates change from θ
1
to θ
2
. We will assume that both the success rates before and after the change are unknown but increasing. We assume that this change does not happen abruptly but gradually over a period of time η where η is known. We calculate the probability that the change has started and completed. We also look at optimal stopping rules assuming that there is a cost for a false alarm and a cost per time unit to stop late. We look at a sequence of Bernoulli random variables where the success rates change from θ1 to θ2. We will assume that both the success rates before and after the change are unknown but increasing. We assume that this change does not happen abruptly but gradually over a period of time η where η is known. We calculate the probability that the change has started and completed. We also look at optimal stopping rules assuming that there is a cost for a false alarm and a cost per time unit to stop late. |
Author | Brown, Marlo |
Author_xml | – sequence: 1 givenname: Marlo surname: Brown fullname: Brown, Marlo organization: Department of Mathematics, Niagara University |
BookMark | eNp9kE1OwzAQhS1UJNrCEZAssU6xncSOd0DFn1TEBtaW49htSmoX26HqCbg2jlp2iNmM9OZ7M5o3ASPrrAbgEqMZRhW6RqxgBS_ojCBSzEieV6RiJ2CMy5xkBWZ0BMYDkw3QGZiEsEYIVxixMfh-cbaNzrd2CSUM-rPXVmnoDLzT3rq-61ropW3cBn5J38q60wGGvl5rFWF0cOll08sOqpW0yzRqLYwrnQildAjJGpO4W2mv_9BlUnv7Yd3OnoNTI7ugL459Ct4f7t_mT9ni9fF5frvIFKlozHRJMapNnT5sUEWY0aRscmMK0nCJqCprhrTiXBpFOW8wxTzHOatTId5Qmk_B1WHv1rv0a4hi7Xpv00mRI8pwgcqiSlR5oJR3IXhtxNa3G-n3AiMxZC5-MxdD5uKYefLdHHytNc5v5M75rhFR7jvnTYpRtenM_yt-AJQcjLs |
Cites_doi | 10.2307/2334766 10.1093/biomet/62.2.407 10.1080/07474946.2022.2092137 10.1093/biomet/41.1-2.100 10.1016/S0167-7152(01)00184-5 10.1016/j.spl.2015.01.001 10.1007/978-3-662-04790-3_16 10.1080/07474946.2021.1940504 10.1002/sta4.327 10.1214/aoms/1177700517 10.1016/j.jspi.2011.02.020 10.1016/0378-3758(81)90021-5 10.1080/07474946.2019.1648923 10.5539/ijsp.v1n2p96 10.1016/j.spl.2008.03.005 10.1111/j.1467-9469.2004.02-102.x 10.1214/14-AOS1297 10.1016/B978-0-12-589320-6.50016-2 |
ContentType | Journal Article |
Copyright | 2024 Taylor & Francis Group, LLC 2024 2024 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2024 Taylor & Francis Group, LLC 2024 – notice: 2024 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/07474946.2024.2338287 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4176 |
EndPage | 247 |
ExternalDocumentID | 10_1080_07474946_2024_2338287 2338287 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 123 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c286t-e5610bfb828d0827fe25d3ff42d9a06c5b70ec99afc699d16193137bbbb09d663 |
ISSN | 0747-4946 |
IngestDate | Mon Aug 25 14:14:44 EDT 2025 Tue Jul 01 03:56:58 EDT 2025 Wed Dec 25 09:05:43 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-e5610bfb828d0827fe25d3ff42d9a06c5b70ec99afc699d16193137bbbb09d663 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3067140548 |
PQPubID | 216170 |
PageCount | 15 |
ParticipantIDs | proquest_journals_3067140548 informaworld_taylorfrancis_310_1080_07474946_2024_2338287 crossref_primary_10_1080_07474946_2024_2338287 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-02 |
PublicationDateYYYYMMDD | 2024-04-02 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Sequential analysis |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_6_1 e_1_3_4_5_1 e_1_3_4_12_1 Shiryaev A. N. (e_1_3_4_15_1) 1978 e_1_3_4_13_1 e_1_3_4_10_1 e_1_3_4_21_1 e_1_3_4_11_1 e_1_3_4_16_1 e_1_3_4_17_1 e_1_3_4_14_1 e_1_3_4_18_1 e_1_3_4_19_1 Brown M. (e_1_3_4_8_1) 2006; 1 |
References_xml | – ident: e_1_3_4_11_1 doi: 10.2307/2334766 – ident: e_1_3_4_16_1 doi: 10.1093/biomet/62.2.407 – ident: e_1_3_4_7_1 doi: 10.1080/07474946.2022.2092137 – ident: e_1_3_4_13_1 doi: 10.1093/biomet/41.1-2.100 – ident: e_1_3_4_2_1 doi: 10.1016/S0167-7152(01)00184-5 – ident: e_1_3_4_18_1 doi: 10.1016/j.spl.2015.01.001 – volume: 1 start-page: 1 year: 2006 ident: e_1_3_4_8_1 article-title: On the Bayesian Detection of a Change in the Arrival Rate of a Poisson Process Monitored at Discrete Epochs publication-title: International Journal for Statistics and Systems – ident: e_1_3_4_14_1 doi: 10.1007/978-3-662-04790-3_16 – ident: e_1_3_4_6_1 doi: 10.1080/07474946.2021.1940504 – ident: e_1_3_4_12_1 doi: 10.1002/sta4.327 – ident: e_1_3_4_9_1 doi: 10.1214/aoms/1177700517 – ident: e_1_3_4_17_1 doi: 10.1016/j.jspi.2011.02.020 – volume-title: Optimal Stopping Rules year: 1978 ident: e_1_3_4_15_1 – ident: e_1_3_4_21_1 doi: 10.1016/0378-3758(81)90021-5 – ident: e_1_3_4_5_1 doi: 10.1080/07474946.2019.1648923 – ident: e_1_3_4_4_1 doi: 10.5539/ijsp.v1n2p96 – ident: e_1_3_4_3_1 doi: 10.1016/j.spl.2008.03.005 – ident: e_1_3_4_10_1 doi: 10.1111/j.1467-9469.2004.02-102.x – ident: e_1_3_4_19_1 doi: 10.1214/14-AOS1297 – ident: e_1_3_4_20_1 doi: 10.1016/B978-0-12-589320-6.50016-2 |
SSID | ssj0018107 |
Score | 2.2846916 |
Snippet | We look at a sequence of Bernoulli random variables where the success rates change from θ
1
to θ
2
. We will assume that both the success rates before and... We look at a sequence of Bernoulli random variables where the success rates change from θ1 to θ2. We will assume that both the success rates before and after... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 233 |
SubjectTerms | Bayesian stopping rules Bernoulli Hypothesis change point detection dynamic programming False alarms gradual changes Random variables |
Title | Monitoring a sequence of Bernoulli random variables subject to gradual changes in the success rates where the success rates are unknown |
URI | https://www.tandfonline.com/doi/abs/10.1080/07474946.2024.2338287 https://www.proquest.com/docview/3067140548 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAyku0FDQHblFWiZM48ZFWRRXS9kIr9RbFsY0qQYI22SLxB_q3Gb-yKbsCyh6ilSVPnMwXe2Y885mQ91TLvGGtiBue6DgXCY952fBYMsMWRjnVtr5iec7OLvNPV8XVJqpkq0tGsWh_7qwr-R-tYhvq1VTJ3kOzk1BswP-oX7yihvH6Tzp2H6SrM4xCUrQx_47VquvNNk-ES5Hsv0U36BKbIqkhGtbChF6Mzfll1dhKLFf8O4SUx2FtD1GMDInEEP1Apaod7SZjbN2ZkFw3N3A_21GM15aCwPGdbHn8y2b1tZ-HG6jLUplHINH_iHPu44YqzJo0zlN3kEuYVh37kocPnc-RjvnCL7fUEW5uzeQ-9RHvZm62MENZYE_Dz79ZusJ2_W8r2pRnmAYCVC-mNmJqL-YheUTRtzCTY5acT1tPVepq7MNzhrIvQ8i-azR3DJo7dLdby7u1WS72yVPvbMAHh5xn5IHqnpMny4mpd3hBbjcYggYChqDXMGEIHIZgwhB4DMHYg8cQeAzBdQcoHTxWwGIFLIZ2tCOGwGPoJbn8eHpxchb7wznillZsjJUxvIUW-AokmpGlVrSQmdY5lbxJWFuIMlEt541uGecSHQuepVkp8JdwiXbuK7LX9Z16TYAx9PAE42lZqZwqFKhUUaW6UEJmhdAHZBHecP3dcbDUf9TsAeFzPdSjDX5pd1JNnf2l71FQWu0_deyCNl2Krk1eHd53LG_I481ndET2xtVavUU7dhTvLO5-AQ4omX4 |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BPZQeoE8BpWUO7THbrJM460MPpS1aCrsnkLildmyjqiWpNlkQ_AH-T_9K_1Bn8kClD3GoODTHJB5ZnhnPwzOfAV4Ib2MtcxNoFfogNqEKVKpVYCWjhQklfNNfMZnK8WH84Sg5WoBvfS8Ml1VyDO1boIhmr2bl5mR0XxL3ikHfYxVzhYGIB4KiLPL7u8LKPXd-RmFb9Xr3HfH4pRA77w_ejoPuZoEgFyNZB469BuMNjbNkA1PvRGIj72NhlQ5lnpg0dLlS2udSKUtekYqGUWroCZUlI010F-FOomTKuhWF06uTi9GwbdGmKQY8x75r6G_TvmYPr6Gl_mYdGpO3swrf-8VqK10-D-a1GeQXv-BI_l-reR9WOg8c37Qq8wAWXPEQ7k2u4GurR3DZ7nSc8kSNfbU5lh633awo-fwMycbb8gRPNWmw-eIqrOaGc1pYl3g809zihm1XdYWfCiTq9EdzOyUyOkeFZ6Qt7g_vNb2dF5zrLB7D4a2sxBNYKsrCrQFKSWGPkRRNj1wsHBF0LhkNfeKMjRLj12HQy032tQUmyYY93mvH0Yw5mnUcXQf1s3RldZMR8u31LVl0w9jNXhSzbo-jIeToUHhOIe_GP5Degrvjg8l-tr873XsKy_ypKYwSm7BUz-buGfl8tXneKBnCx9uWwx_vplt1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RKqFy6A9QAaVlDu0xS9ZJvOtDD23pCkpZ9QASt2DHdoWABG2yoPYF-jx9lT5RZ_KDSgvigDg0xyQeWZ4Zz49nPgO8Ft7GWmYm0Cr0QWxCFaiBVoGVjBYmlPB1f8XuWG7tx58OkoMZ-Nn1wnBZJcfQvgGKqPdqVu4z67uKuA3GfI9VzAUGIu4JCrLI7W_rKnfctwuK2sq325vE4jdCjD7ufdgK2osFgkwMZRU4dhqMNzTOkgkceCcSG3kfC6t0KLPEDEKXKaV9JpWy5BSpqB8NDD2hsmSjie4DeCi5sZO7RsLx5cHFsN90aNMUA55j1zR007SvmMMrYKn_GIfa4o2ewK9urZpCl-PetDK97PtfMJL_1WI-hcet_43vGoV5BjMuX4D53Uvw2nIRfjT7HCc8UWNXa46Fx_dukhd8eoZk4W1xiuea9NecuBLLqeGMFlYFfp1obnDDpqe6xKMciTr9Ud9NiYzNUeIF6Yq75r2mt9OcM535Euzfy0o8h9m8yN0yoJQU9BhJsfTQxcIRQeeSYd8nztgoMX4Fep3YpGcNLEna79BeW46mzNG05egKqD-FK63qfJBvLm9Jo1vGrnWSmLY7HA0hN4eCcwp4V-9Aeh3mvmyO0s_b450X8Ii_1FVRYg1mq8nUvSSHrzKvahVDOLxvMfwNOIVaGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+a+sequence+of+Bernoulli+random+variables+subject+to+gradual+changes+in+the+success+rates+where+the+success+rates+are+unknown&rft.jtitle=Sequential+analysis&rft.au=Brown%2C+Marlo&rft.date=2024-04-02&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=43&rft.issue=2&rft.spage=233&rft.epage=247&rft_id=info:doi/10.1080%2F07474946.2024.2338287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2024_2338287 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon |