Portfolio optimization managing value at risk under heavy tail return, using stochastic maximum principle

We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset's return has a heavy tailed distribution and thus does not have higher order moments. Hence, she aims to maximize the expected utility of the portfolio defined in terms of the median...

Full description

Saved in:
Bibliographic Details
Published inStochastic analysis and applications Vol. 39; no. 6; pp. 1025 - 1049
Main Authors Biswas, Subhojit, Ghosh, Mrinal K., Mukherjee, Diganta
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.11.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset's return has a heavy tailed distribution and thus does not have higher order moments. Hence, she aims to maximize the expected utility of the portfolio defined in terms of the median return. This is done subject to managing the Value at Risk (VaR) defined in terms of a high order quantile. Recalling that the median and other quantiles always exist and appealing to the asymptotic normality of their joint distribution, we use the stochastic maximum principle to formulate the dynamic optimization problem in its full generality. The issue of non-smoothness of the objective function is resolved by appropriate approximation technique. We also provide detailed empirical illustration using real life data. The equations which we obtain does not have any explicit analytical solution, so for numerical work we look for accurate approximations to estimate the value function and optimal strategy. As our calibration strategy is non-parametric in nature, no prior knowledge on the form of the distribution function is needed. Our results show close concordance with financial intuition. We expect that our results will add to the arsenal of the high frequency traders.
AbstractList We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset’s return has a heavy tailed distribution and thus does not have higher order moments. Hence, she aims to maximize the expected utility of the portfolio defined in terms of the median return. This is done subject to managing the Value at Risk (VaR) defined in terms of a high order quantile. Recalling that the median and other quantiles always exist and appealing to the asymptotic normality of their joint distribution, we use the stochastic maximum principle to formulate the dynamic optimization problem in its full generality. The issue of non-smoothness of the objective function is resolved by appropriate approximation technique. We also provide detailed empirical illustration using real life data. The equations which we obtain does not have any explicit analytical solution, so for numerical work we look for accurate approximations to estimate the value function and optimal strategy. As our calibration strategy is non-parametric in nature, no prior knowledge on the form of the distribution function is needed. Our results show close concordance with financial intuition. We expect that our results will add to the arsenal of the high frequency traders.
Author Biswas, Subhojit
Mukherjee, Diganta
Ghosh, Mrinal K.
Author_xml – sequence: 1
  givenname: Subhojit
  surname: Biswas
  fullname: Biswas, Subhojit
  organization: Statistical Quality Control & Operations Research, Indian Statistical Institute
– sequence: 2
  givenname: Mrinal K.
  surname: Ghosh
  fullname: Ghosh, Mrinal K.
  organization: Department of Mathematics, Indian Institute of Science
– sequence: 3
  givenname: Diganta
  surname: Mukherjee
  fullname: Mukherjee, Diganta
  organization: Sampling and Official Statistics Unit, Indian Statistical Institute
BookMark eNp9kM1OwzAQhC0EEqXwCEiWuJLi2LGT3EAVfxISHOBsbR2ndUnsYjuF8vQ4Klw5rbT6dnZmTtChdVYjdJ6TWU4qckVKJmhdFzNKaFpVoigIP0CTnDOa1YyLQzQZmWyEjtFJCGtCSJ2TcoLMi_OxdZ1x2G2i6c03ROMs7sHC0tgl3kI3aAwRexPe8WAb7fFKw3aHI5gOex0Hby_xEEY4RKdWEKJRSeDL9EOPN95YZTadPkVHLXRBn_3OKXq7u32dP2RPz_eP85unTNFKxKxRC005qJqA4IqLnGoQSrBWLSgpGNOKpXi61CInutCQ1g3jdV63FSR4waboYq-78e5j0CHKtUsW00tJeVVywmlZJorvKeVdCF63Mhntwe9kTuTYqvxrVY6tyt9W0931_s7Y1vkePp3vGhlh1znfekhRg2T_S_wAGOCCcg
Cites_doi 10.1137/16M1100861
10.1108/15265940610648571
10.1137/1.9781611971309
10.1007/978-1-4757-2435-6_3
10.1017/apr.2016.6
10.1002/9780470723609
10.1108/15265940510633488
10.1007/s10479-012-1229-8
10.1111/j.1467-9965.1993.tb00044.x
10.4236/ojs.2019.92014
10.1111/0022-1082.215228
10.2307/2297772
10.1016/j.procs.2018.10.259
10.1177/1748301818779059
10.1016/B978-0-12-780850-5.50044-7
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/07362994.2020.1864405
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-9356
EndPage 1049
ExternalDocumentID 10_1080_07362994_2020_1864405
1864405
Genre Review
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29Q
30N
4.4
8V8
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c286t-dcbe25ac90a65c5612ea6c63fcb20433ec3440e7e610e4eacb2d35919f8a612b3
ISSN 0736-2994
IngestDate Wed Aug 13 07:22:26 EDT 2025
Tue Jul 01 02:53:18 EDT 2025
Wed Dec 25 09:06:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-dcbe25ac90a65c5612ea6c63fcb20433ec3440e7e610e4eacb2d35919f8a612b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2587505277
PQPubID 216162
PageCount 25
ParticipantIDs informaworld_taylorfrancis_310_1080_07362994_2020_1864405
proquest_journals_2587505277
crossref_primary_10_1080_07362994_2020_1864405
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-02
PublicationDateYYYYMMDD 2021-11-02
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Stochastic analysis and applications
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0021
CIT0020
CIT0001
CIT0011
Archibald T. W. (CIT0010) 2019
Yong J. (CIT0016) 1999
Biswas S. (CIT0015) 2020
CIT0003
CIT0014
Rao C.R. (CIT0018) 1965
CIT0002
CIT0013
CIT0005
Régisa D. E. (CIT0012) 2016; 26
CIT0004
CIT0007
CIT0006
CIT0017
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0002
  doi: 10.1137/16M1100861
– ident: CIT0003
  doi: 10.1108/15265940610648571
– ident: CIT0019
  doi: 10.1137/1.9781611971309
– ident: CIT0020
– volume-title: Linear Statistical Inference and Its Applications
  year: 1965
  ident: CIT0018
– ident: CIT0006
  doi: 10.1007/978-1-4757-2435-6_3
– volume: 26
  issue: 2
  year: 2016
  ident: CIT0012
  publication-title: Production
– ident: CIT0014
  doi: 10.1017/apr.2016.6
– ident: CIT0021
  doi: 10.1002/9780470723609
– volume-title: Stochastic Controls Hamiltonian Systems and HJB Equations
  year: 1999
  ident: CIT0016
– ident: CIT0001
  doi: 10.1108/15265940510633488
– ident: CIT0004
  doi: 10.1007/s10479-012-1229-8
– ident: CIT0005
  doi: 10.1111/j.1467-9965.1993.tb00044.x
– ident: CIT0013
  doi: 10.4236/ojs.2019.92014
– ident: CIT0008
  doi: 10.1111/0022-1082.215228
– year: 2020
  ident: CIT0015
  publication-title: Int. J. Math. Modell. Numer. Optim
– ident: CIT0017
  doi: 10.2307/2297772
– ident: CIT0011
  doi: 10.1016/j.procs.2018.10.259
– ident: CIT0009
  doi: 10.1177/1748301818779059
– year: 2019
  ident: CIT0010
  publication-title: Ann. Oper. Res
– ident: CIT0007
  doi: 10.1016/B978-0-12-780850-5.50044-7
SSID ssj0009107
Score 2.2358942
SecondaryResourceType review_article
Snippet We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset's return has a heavy tailed distribution and...
We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset’s return has a heavy tailed distribution and...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1025
SubjectTerms Distribution functions
Dynamic programming
Empirical equations
Exact solutions
Expected utility
finance
Hamiltonian system
heavy tailed distribution
Maximum principle
Normality
Optimization
portfolio optimization
Quantiles
Risk management
Smoothness
stochastic maximum principle
Strategy
Title Portfolio optimization managing value at risk under heavy tail return, using stochastic maximum principle
URI https://www.tandfonline.com/doi/abs/10.1080/07362994.2020.1864405
https://www.proquest.com/docview/2587505277
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbK7gUOiKdYWJAP3JZUiR3ncVyxQAUqF7pixSVyHJtmlzarJgXEz-AXM34lWW0lXpeoclI79XyeGU9nPiP0vBQiUypjgaIyDeI0jgMe5VUApigSSZ7FudLFyfP3yew0fnvGziaTn6OspW1XTsWPnXUl_yJVaAO56irZv5Bs3yk0wGeQL1xBwnD9IxnrNFDVfKmbowZW_sqVVNqMVB0C0EzeUpcrmgRyXS620Z7hV_A4ea0J_cHeGK2zbW1YoRFLromboYvv9Wq7Orr0sfixE_theI57ThPD-Tr6M3wIvrffbM0YqKhlc173aTZvlk1rYjrzjTmZ6910EP4FIOncpgid1J9B-HwcnSCRKdMb9rKLaweFjPRbSpMArKGNJ0ivf0mQU8s17hW0ZTtyQBxrW3CO2Mhyw84y32kVXBoljKeHm8J7QmMGnmDIBjPYJye6OzfQPoGtB-jO_ePZyaePA5VzZIvw_ev7ujDN2L5riCsezxU-3Gv23zg1izvottuN4GMLrbtoItf30K15T-Xb3kd1DzI8Bhn2IMMGZJh3WIMMG5BhAzKsQYYtyF5gAzE8QAw7iOEeYg_Q6etXi5ezwJ3PEQiSJV1QiVISxkUe8oQJfcyq5IlIqBKlrrimUlD4_TKV4KLLGCx8SSrK8ihXGYeHS_oQ7a2btXyEMKGUKpKUYaZELCpw2lOZZRWXKSnDWCYHaOrnsLi0NCxF5Nlt3aQXetILN-kHKB_PdNEZICqLwYL-5ruHXiyFW-1tQRjs7EMGkHj8H10_QTeHVXKI9rrNVj4Fr7YrnzmY_QLv56KN
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHIADb8RgQA4c6WiTNk2PCDEN2HZi0m5RkyYwwTY0OgT8euy15SnEgWvVRE3s2I77-TMhR9oY6ZyMPMdt7IVxGHppkGQeuKLAiESGicPi5E5XtHrhZT_qf6qFQVgl3qFdQRQxs9V4uDEZXUHiTkAtBZhRTIkweCTBpyON6UKUiBh1nfvdD-LdoCiZhiEejqmqeH6b5ot_-sJe-sNaz1xQc5WY6uML5MldY5rrhnn9xuv4v9WtkZUyQqWnhUqtkzk72iDLnXd618dNMkD8qRvfD8Z0DCZnWNZy0mHZ9IgihbilaU4RuU6xTm1Cweo_vVAErNKJBUc3OqYIur-hEH6a2xT5omGC58FwOqQP1S-ALdJrnl-ftbyyZ4NnmBS5lxltWZSaxE9FZLD1pk2FEdwZjVW43BoOy7GxhbDNhmD1Nct4lASJkym8rPk2mR-NR3aHUMY5d0xoXzoTmgwCudhKmaU2ZtoPraiRRiUp9VBQc6igYjwt91DhHqpyD2sk-SxPlc9yIq5oYKL4H2PrlfBVecofFYvgtudHLI53_zH1IVlsXXfaqn3RvdojSwxBM5i3ZnUyn0-mdh-inlwfzNT6DYcQ9nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IhCAR84kpLYieMcEVCxteIAEjcrdmyooIvaFAFfz0yTsApx4BrFVuyxZ8bOe28I2dPGSOdk5DluYy-Mw9BLgyTzIBQFRiQyTBySk1ttcXoTnt9GFZpwVMIq8QztCqGIia_GzT3IXIWIO4BVKcCL4o0Ig0cSQjqqmM4IJFoii8Nvf-juBgVjGpp42KYi8fzWzZfw9EW89IeznkSg5iLR1bcXwJOHxjjXDfP6TdbxX4NbIgtlfkoPiwW1TKZsb4XMt97FXUerpIPoU9d_7PRpHxxOt2Ry0m5Z8oiigLilaU4Rt06RpTak4POfXijCVenQQpjr7VOE3N9RSD7NfYpq0dDBc6c77tJB9QNgjdw0T66PTr2yYoNnmBS5lxltWZSaxE9FZLDwpk2FEdwZjRxcbg2H4djYQtJmQ_D5mmU8SoLEyRRe1nydTPf6PbtBKOOcOya0L50JTQZpXGylzFIbM-2HVtRIozKUGhTCHCqo9E7LOVQ4h6qcwxpJPptT5ZMbEVeUL1H8j7b1yvaq3OMjxSI46_kRi-PNf3S9S2avjpvq8qx9sUXmGCJm8NKa1cl0PhzbbUh5cr0zWdRvhYT1IA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Portfolio+optimization+managing+value+at+risk+under+heavy+tail+return%2C+using+stochastic+maximum+principle&rft.jtitle=Stochastic+analysis+and+applications&rft.au=Biswas%2C+Subhojit&rft.au=Ghosh%2C+Mrinal+K.&rft.au=Mukherjee%2C+Diganta&rft.date=2021-11-02&rft.pub=Taylor+%26+Francis&rft.issn=0736-2994&rft.eissn=1532-9356&rft.volume=39&rft.issue=6&rft.spage=1025&rft.epage=1049&rft_id=info:doi/10.1080%2F07362994.2020.1864405&rft.externalDocID=1864405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-2994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-2994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-2994&client=summon