Portfolio optimization managing value at risk under heavy tail return, using stochastic maximum principle
We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset's return has a heavy tailed distribution and thus does not have higher order moments. Hence, she aims to maximize the expected utility of the portfolio defined in terms of the median...
Saved in:
Published in | Stochastic analysis and applications Vol. 39; no. 6; pp. 1025 - 1049 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.11.2021
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset's return has a heavy tailed distribution and thus does not have higher order moments. Hence, she aims to maximize the expected utility of the portfolio defined in terms of the median return. This is done subject to managing the Value at Risk (VaR) defined in terms of a high order quantile. Recalling that the median and other quantiles always exist and appealing to the asymptotic normality of their joint distribution, we use the stochastic maximum principle to formulate the dynamic optimization problem in its full generality. The issue of non-smoothness of the objective function is resolved by appropriate approximation technique. We also provide detailed empirical illustration using real life data. The equations which we obtain does not have any explicit analytical solution, so for numerical work we look for accurate approximations to estimate the value function and optimal strategy. As our calibration strategy is non-parametric in nature, no prior knowledge on the form of the distribution function is needed. Our results show close concordance with financial intuition. We expect that our results will add to the arsenal of the high frequency traders. |
---|---|
AbstractList | We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset’s return has a heavy tailed distribution and thus does not have higher order moments. Hence, she aims to maximize the expected utility of the portfolio defined in terms of the median return. This is done subject to managing the Value at Risk (VaR) defined in terms of a high order quantile. Recalling that the median and other quantiles always exist and appealing to the asymptotic normality of their joint distribution, we use the stochastic maximum principle to formulate the dynamic optimization problem in its full generality. The issue of non-smoothness of the objective function is resolved by appropriate approximation technique. We also provide detailed empirical illustration using real life data. The equations which we obtain does not have any explicit analytical solution, so for numerical work we look for accurate approximations to estimate the value function and optimal strategy. As our calibration strategy is non-parametric in nature, no prior knowledge on the form of the distribution function is needed. Our results show close concordance with financial intuition. We expect that our results will add to the arsenal of the high frequency traders. |
Author | Biswas, Subhojit Mukherjee, Diganta Ghosh, Mrinal K. |
Author_xml | – sequence: 1 givenname: Subhojit surname: Biswas fullname: Biswas, Subhojit organization: Statistical Quality Control & Operations Research, Indian Statistical Institute – sequence: 2 givenname: Mrinal K. surname: Ghosh fullname: Ghosh, Mrinal K. organization: Department of Mathematics, Indian Institute of Science – sequence: 3 givenname: Diganta surname: Mukherjee fullname: Mukherjee, Diganta organization: Sampling and Official Statistics Unit, Indian Statistical Institute |
BookMark | eNp9kM1OwzAQhC0EEqXwCEiWuJLi2LGT3EAVfxISHOBsbR2ndUnsYjuF8vQ4Klw5rbT6dnZmTtChdVYjdJ6TWU4qckVKJmhdFzNKaFpVoigIP0CTnDOa1YyLQzQZmWyEjtFJCGtCSJ2TcoLMi_OxdZ1x2G2i6c03ROMs7sHC0tgl3kI3aAwRexPe8WAb7fFKw3aHI5gOex0Hby_xEEY4RKdWEKJRSeDL9EOPN95YZTadPkVHLXRBn_3OKXq7u32dP2RPz_eP85unTNFKxKxRC005qJqA4IqLnGoQSrBWLSgpGNOKpXi61CInutCQ1g3jdV63FSR4waboYq-78e5j0CHKtUsW00tJeVVywmlZJorvKeVdCF63Mhntwe9kTuTYqvxrVY6tyt9W0931_s7Y1vkePp3vGhlh1znfekhRg2T_S_wAGOCCcg |
Cites_doi | 10.1137/16M1100861 10.1108/15265940610648571 10.1137/1.9781611971309 10.1007/978-1-4757-2435-6_3 10.1017/apr.2016.6 10.1002/9780470723609 10.1108/15265940510633488 10.1007/s10479-012-1229-8 10.1111/j.1467-9965.1993.tb00044.x 10.4236/ojs.2019.92014 10.1111/0022-1082.215228 10.2307/2297772 10.1016/j.procs.2018.10.259 10.1177/1748301818779059 10.1016/B978-0-12-780850-5.50044-7 |
ContentType | Journal Article |
Copyright | 2021 Taylor & Francis Group, LLC 2021 2021 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2021 Taylor & Francis Group, LLC 2021 – notice: 2021 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/07362994.2020.1864405 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-9356 |
EndPage | 1049 |
ExternalDocumentID | 10_1080_07362994_2020_1864405 1864405 |
Genre | Review |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 123 29Q 30N 4.4 8V8 AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c286t-dcbe25ac90a65c5612ea6c63fcb20433ec3440e7e610e4eacb2d35919f8a612b3 |
ISSN | 0736-2994 |
IngestDate | Wed Aug 13 07:22:26 EDT 2025 Tue Jul 01 02:53:18 EDT 2025 Wed Dec 25 09:06:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-dcbe25ac90a65c5612ea6c63fcb20433ec3440e7e610e4eacb2d35919f8a612b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2587505277 |
PQPubID | 216162 |
PageCount | 25 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_07362994_2020_1864405 proquest_journals_2587505277 crossref_primary_10_1080_07362994_2020_1864405 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-02 |
PublicationDateYYYYMMDD | 2021-11-02 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Stochastic analysis and applications |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0021 CIT0020 CIT0001 CIT0011 Archibald T. W. (CIT0010) 2019 Yong J. (CIT0016) 1999 Biswas S. (CIT0015) 2020 CIT0003 CIT0014 Rao C.R. (CIT0018) 1965 CIT0002 CIT0013 CIT0005 Régisa D. E. (CIT0012) 2016; 26 CIT0004 CIT0007 CIT0006 CIT0017 CIT0009 CIT0008 CIT0019 |
References_xml | – ident: CIT0002 doi: 10.1137/16M1100861 – ident: CIT0003 doi: 10.1108/15265940610648571 – ident: CIT0019 doi: 10.1137/1.9781611971309 – ident: CIT0020 – volume-title: Linear Statistical Inference and Its Applications year: 1965 ident: CIT0018 – ident: CIT0006 doi: 10.1007/978-1-4757-2435-6_3 – volume: 26 issue: 2 year: 2016 ident: CIT0012 publication-title: Production – ident: CIT0014 doi: 10.1017/apr.2016.6 – ident: CIT0021 doi: 10.1002/9780470723609 – volume-title: Stochastic Controls Hamiltonian Systems and HJB Equations year: 1999 ident: CIT0016 – ident: CIT0001 doi: 10.1108/15265940510633488 – ident: CIT0004 doi: 10.1007/s10479-012-1229-8 – ident: CIT0005 doi: 10.1111/j.1467-9965.1993.tb00044.x – ident: CIT0013 doi: 10.4236/ojs.2019.92014 – ident: CIT0008 doi: 10.1111/0022-1082.215228 – year: 2020 ident: CIT0015 publication-title: Int. J. Math. Modell. Numer. Optim – ident: CIT0017 doi: 10.2307/2297772 – ident: CIT0011 doi: 10.1016/j.procs.2018.10.259 – ident: CIT0009 doi: 10.1177/1748301818779059 – year: 2019 ident: CIT0010 publication-title: Ann. Oper. Res – ident: CIT0007 doi: 10.1016/B978-0-12-780850-5.50044-7 |
SSID | ssj0009107 |
Score | 2.2358942 |
SecondaryResourceType | review_article |
Snippet | We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset's return has a heavy tailed distribution and... We consider an investor whose portfolio consists of a single risky asset and a risk free asset. The risky asset’s return has a heavy tailed distribution and... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1025 |
SubjectTerms | Distribution functions Dynamic programming Empirical equations Exact solutions Expected utility finance Hamiltonian system heavy tailed distribution Maximum principle Normality Optimization portfolio optimization Quantiles Risk management Smoothness stochastic maximum principle Strategy |
Title | Portfolio optimization managing value at risk under heavy tail return, using stochastic maximum principle |
URI | https://www.tandfonline.com/doi/abs/10.1080/07362994.2020.1864405 https://www.proquest.com/docview/2587505277 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbK7gUOiKdYWJAP3JZUiR3ncVyxQAUqF7pixSVyHJtmlzarJgXEz-AXM34lWW0lXpeoclI79XyeGU9nPiP0vBQiUypjgaIyDeI0jgMe5VUApigSSZ7FudLFyfP3yew0fnvGziaTn6OspW1XTsWPnXUl_yJVaAO56irZv5Bs3yk0wGeQL1xBwnD9IxnrNFDVfKmbowZW_sqVVNqMVB0C0EzeUpcrmgRyXS620Z7hV_A4ea0J_cHeGK2zbW1YoRFLromboYvv9Wq7Orr0sfixE_theI57ThPD-Tr6M3wIvrffbM0YqKhlc173aTZvlk1rYjrzjTmZ6910EP4FIOncpgid1J9B-HwcnSCRKdMb9rKLaweFjPRbSpMArKGNJ0ivf0mQU8s17hW0ZTtyQBxrW3CO2Mhyw84y32kVXBoljKeHm8J7QmMGnmDIBjPYJye6OzfQPoGtB-jO_ePZyaePA5VzZIvw_ev7ujDN2L5riCsezxU-3Gv23zg1izvottuN4GMLrbtoItf30K15T-Xb3kd1DzI8Bhn2IMMGZJh3WIMMG5BhAzKsQYYtyF5gAzE8QAw7iOEeYg_Q6etXi5ezwJ3PEQiSJV1QiVISxkUe8oQJfcyq5IlIqBKlrrimUlD4_TKV4KLLGCx8SSrK8ihXGYeHS_oQ7a2btXyEMKGUKpKUYaZELCpw2lOZZRWXKSnDWCYHaOrnsLi0NCxF5Nlt3aQXetILN-kHKB_PdNEZICqLwYL-5ruHXiyFW-1tQRjs7EMGkHj8H10_QTeHVXKI9rrNVj4Fr7YrnzmY_QLv56KN |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QHIADb8RgQA4c6WiTNk2PCDEN2HZi0m5RkyYwwTY0OgT8euy15SnEgWvVRE3s2I77-TMhR9oY6ZyMPMdt7IVxGHppkGQeuKLAiESGicPi5E5XtHrhZT_qf6qFQVgl3qFdQRQxs9V4uDEZXUHiTkAtBZhRTIkweCTBpyON6UKUiBh1nfvdD-LdoCiZhiEejqmqeH6b5ot_-sJe-sNaz1xQc5WY6uML5MldY5rrhnn9xuv4v9WtkZUyQqWnhUqtkzk72iDLnXd618dNMkD8qRvfD8Z0DCZnWNZy0mHZ9IgihbilaU4RuU6xTm1Cweo_vVAErNKJBUc3OqYIur-hEH6a2xT5omGC58FwOqQP1S-ALdJrnl-ftbyyZ4NnmBS5lxltWZSaxE9FZLD1pk2FEdwZjVW43BoOy7GxhbDNhmD1Nct4lASJkym8rPk2mR-NR3aHUMY5d0xoXzoTmgwCudhKmaU2ZtoPraiRRiUp9VBQc6igYjwt91DhHqpyD2sk-SxPlc9yIq5oYKL4H2PrlfBVecofFYvgtudHLI53_zH1IVlsXXfaqn3RvdojSwxBM5i3ZnUyn0-mdh-inlwfzNT6DYcQ9nw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSAgO7IhCAR84kpLYieMcEVCxteIAEjcrdmyooIvaFAFfz0yTsApx4BrFVuyxZ8bOe28I2dPGSOdk5DluYy-Mw9BLgyTzIBQFRiQyTBySk1ttcXoTnt9GFZpwVMIq8QztCqGIia_GzT3IXIWIO4BVKcCL4o0Ig0cSQjqqmM4IJFoii8Nvf-juBgVjGpp42KYi8fzWzZfw9EW89IeznkSg5iLR1bcXwJOHxjjXDfP6TdbxX4NbIgtlfkoPiwW1TKZsb4XMt97FXUerpIPoU9d_7PRpHxxOt2Ry0m5Z8oiigLilaU4Rt06RpTak4POfXijCVenQQpjr7VOE3N9RSD7NfYpq0dDBc6c77tJB9QNgjdw0T66PTr2yYoNnmBS5lxltWZSaxE9FZLDwpk2FEdwZjRxcbg2H4djYQtJmQ_D5mmU8SoLEyRRe1nydTPf6PbtBKOOcOya0L50JTQZpXGylzFIbM-2HVtRIozKUGhTCHCqo9E7LOVQ4h6qcwxpJPptT5ZMbEVeUL1H8j7b1yvaq3OMjxSI46_kRi-PNf3S9S2avjpvq8qx9sUXmGCJm8NKa1cl0PhzbbUh5cr0zWdRvhYT1IA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Portfolio+optimization+managing+value+at+risk+under+heavy+tail+return%2C+using+stochastic+maximum+principle&rft.jtitle=Stochastic+analysis+and+applications&rft.au=Biswas%2C+Subhojit&rft.au=Ghosh%2C+Mrinal+K.&rft.au=Mukherjee%2C+Diganta&rft.date=2021-11-02&rft.pub=Taylor+%26+Francis&rft.issn=0736-2994&rft.eissn=1532-9356&rft.volume=39&rft.issue=6&rft.spage=1025&rft.epage=1049&rft_id=info:doi/10.1080%2F07362994.2020.1864405&rft.externalDocID=1864405 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0736-2994&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0736-2994&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0736-2994&client=summon |