A new in vitro–in vivo correlation for bioabsorbable magnesium stents from mechanical behavior
Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture m...
Saved in:
Published in | Materials Science & Engineering C Vol. 33; no. 8; pp. 5064 - 5070 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0928-4931 1873-0191 1873-0191 |
DOI | 10.1016/j.msec.2013.08.042 |
Cover
Loading…
Abstract | Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service.
[Display omitted]
•Samples of magnesium wire were corroded in vivo and in vitro and tested in tension.•Mechanical behavior of magnesium degraded in the arterial environment was described.•Correlations were formulated to quantitatively relate in vivo and in vitro corrosion. |
---|---|
AbstractList | Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service. Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service. [Display omitted] •Samples of magnesium wire were corroded in vivo and in vitro and tested in tension.•Mechanical behavior of magnesium degraded in the arterial environment was described.•Correlations were formulated to quantitatively relate in vivo and in vitro corrosion. Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service.Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service. |
Author | Drelich, Jaroslaw Goldman, Jeremy Bowen, Patrick K. |
Author_xml | – sequence: 1 givenname: Patrick K. surname: Bowen fullname: Bowen, Patrick K. organization: Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, USA – sequence: 2 givenname: Jaroslaw surname: Drelich fullname: Drelich, Jaroslaw email: jwdrelic@mtu.edu organization: Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, USA – sequence: 3 givenname: Jeremy surname: Goldman fullname: Goldman, Jeremy organization: Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24094225$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1uFDEUhS0URDaBF6BALmlmuP6ZGVuiiaLwI0VKQ2rH9twhXs3YwfYuoss78IY8CbvZpEmR6t7i-05xzgk5iikiIe8ZtAxY_2ndLgV9y4GJFlQLkr8iK6YG0QDT7IisQHPVSC3YMTkpZQ3QKzHwN-SYS9CS825Fbs5oxN80RLoNNad_938f3m2iPuWMs60hRTqlTF1I1pWUnXUz0sX-jFjCZqGlYqyFTjktdEF_a2PwdqYOb-02pPyWvJ7sXPDd4z0l118ufpx_ay6vvn4_P7tsPFd9bUar7ci4RXDWY--knhB6xG7CySmmlJOjFGDHoZc9946jV13HBq5HwZTuxCn5eMi9y-nXBks1Syge59lGTJtimJRCaBhgj354RDduwdHc5bDY_Mc8tbID1AHwOZWScTI-1IcmarZhNgzMfgCzNvsBzH4AA8rsBtip_Jn6lP6i9Pkg4a6gbcBsig8YPY4ho69mTOEl_T-BwqFl |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2020_10_024 crossref_primary_10_1016_j_msec_2019_04_032 crossref_primary_10_1016_j_msec_2022_112693 crossref_primary_10_1016_j_pnsc_2014_08_009 crossref_primary_10_1002_jbm_b_34970 crossref_primary_10_1515_bnm_2015_0004 crossref_primary_10_1108_ACMM_12_2015_1623 crossref_primary_10_3390_ma14247776 crossref_primary_10_12677_BP_2017_73005 crossref_primary_10_1016_j_actbio_2017_04_020 crossref_primary_10_1016_j_corsci_2014_09_002 crossref_primary_10_1002_advs_202409051 crossref_primary_10_1002_zamm_201700314 crossref_primary_10_1016_j_bioactmat_2018_01_003 crossref_primary_10_3390_ijms25116242 crossref_primary_10_1016_j_powtec_2016_02_042 crossref_primary_10_3390_ma16031195 crossref_primary_10_1016_j_msec_2016_02_073 crossref_primary_10_1088_2051_672X_4_1_014005 crossref_primary_10_1002_jbm_b_34424 crossref_primary_10_1016_j_actbio_2013_11_021 crossref_primary_10_1177_09544062221121990 crossref_primary_10_1016_j_msec_2017_03_216 crossref_primary_10_1002_adfm_202410033 crossref_primary_10_1007_s12613_016_1336_7 crossref_primary_10_3390_ma10010055 crossref_primary_10_1002_jbm_a_35179 crossref_primary_10_3390_pharmaceutics15112595 crossref_primary_10_1002_jbm_b_33341 crossref_primary_10_3390_ma16134508 crossref_primary_10_1016_S1003_6326_20_65218_9 crossref_primary_10_3390_cryst13081213 crossref_primary_10_1002_jbm_a_37297 crossref_primary_10_1016_j_msec_2015_03_001 crossref_primary_10_1016_j_bioactmat_2023_02_004 crossref_primary_10_1093_rb_rbac002 crossref_primary_10_1007_s40843_017_9173_7 crossref_primary_10_3390_jfb14060324 crossref_primary_10_1016_j_mtcomm_2022_103467 crossref_primary_10_1002_jbm_b_33458 crossref_primary_10_1007_s11517_016_1584_8 crossref_primary_10_1016_j_msec_2015_07_022 crossref_primary_10_1021_acsbiomaterials_6b00035 crossref_primary_10_1002_jbm_b_33174 crossref_primary_10_1016_j_jmbbm_2018_06_002 crossref_primary_10_1007_s11771_024_5668_6 crossref_primary_10_1093_rb_rbu015 crossref_primary_10_1016_j_jmbbm_2018_12_008 crossref_primary_10_1016_j_jconrel_2022_02_029 crossref_primary_10_1093_rb_rbv028 crossref_primary_10_1016_j_colsurfb_2020_111153 crossref_primary_10_1088_2057_1976_ab9426 crossref_primary_10_1016_j_msec_2021_112532 crossref_primary_10_1002_adem_201800656 |
Cites_doi | 10.1002/jbm.b.32775 10.1136/heart.89.6.651 10.1016/j.mseb.2011.06.006 10.1080/10255841003766845 10.1016/j.actbio.2011.05.032 10.1016/j.actbio.2007.09.012 10.1016/j.mseb.2010.12.017 10.1002/adma.201300226 10.1680/emr.12.00017 10.1016/j.actbio.2011.11.014 10.1002/jbm.b.31922 10.2174/138161210794454905 10.1016/S0140-6736(12)61765-6 10.1016/j.actbio.2011.03.004 10.1016/j.biomaterials.2006.11.042 10.1253/circj.CJ-10-1135 10.1016/S0924-0136(01)00858-5 10.1016/j.actbio.2008.05.014 10.1016/j.mseb.2011.04.007 10.1016/j.corsci.2007.01.001 10.1002/jbm.a.34223 10.1016/j.jmbbm.2010.11.003 10.1016/j.biomaterials.2005.07.037 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N |
ContentType | Journal Article |
Copyright | 2013 Elsevier B.V. 2013. |
Copyright_xml | – notice: 2013 Elsevier B.V. – notice: 2013. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.msec.2013.08.042 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Anatomy & Physiology |
EISSN | 1873-0191 |
EndPage | 5070 |
ExternalDocumentID | 24094225 10_1016_j_msec_2013_08_042 S0928493113005055 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --M .~1 1~. 457 4G. 7-5 8P~ 9JN ABXDB ADEZE AEKER AFTJW ALMA_UNASSIGNED_HOLDINGS BLXMC EO8 EO9 EP2 EP3 FDB FNPLU G-Q J1W MO0 OAUVE PC. Q38 SDF SDP SPC SPD T5K ~G- AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c286t-da9ad12ae0bace6b49fe06ee5fefb8188b4d430ad76462cb2ec8551729d318953 |
IEDL.DBID | AIKHN |
ISSN | 0928-4931 1873-0191 |
IngestDate | Fri Jul 11 05:11:27 EDT 2025 Thu Apr 03 06:56:46 EDT 2025 Tue Jul 01 01:40:22 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Sat Apr 29 22:45:23 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 8 |
Keywords | Magnesium Corrosion Bioabsorbable stent In vitro–in vivo correlation |
Language | English |
License | 2013. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c286t-da9ad12ae0bace6b49fe06ee5fefb8188b4d430ad76462cb2ec8551729d318953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24094225 |
PQID | 1443390705 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1443390705 pubmed_primary_24094225 crossref_citationtrail_10_1016_j_msec_2013_08_042 crossref_primary_10_1016_j_msec_2013_08_042 elsevier_sciencedirect_doi_10_1016_j_msec_2013_08_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 2013-12-00 2013-Dec-01 20131201 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Materials Science & Engineering C |
PublicationTitleAlternate | Mater Sci Eng C Mater Biol Appl |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Bowen, Gelbaugh, Mercier, Goldman, Drelich (bb0110) 2012; 100B Dreher, Anderson (bb0080) 2012 Waksman, Pakala (bb0010) 2010; 16 Mani, Feldman, Patel, Agrawal (bb0005) 2007; 28 Meyers, Chawla (bb0140) 2009 Song, Atrens (bb0145) 1999; 1 Onuma, Ormiston, Serruys (bb0015) 2011; 75 Witte, Fischer, Nellesen, Crostack, Kaese, Pisch, Beckmann, Windhagen (bb0070) 2006; 27 Wu, Chen, Gastaldi, Petrini, Mantovani, Yang, Tan, Migliavacca (bb0055) 2012 Heublein, Rohde, Kaese, Niemeyer, Hartung, Haverich (bb0065) 2003; 89 Mueller, Arnold, Badar, Bormann, Bach, Drynda, Meyer-Lindenberg, Hauser, Peuster (bb0120) 2012; 100 Song (bb0130) 2007; 49 Bowen, Drelich, Buxbaum, Rajachar, Goldman (bb0105) 2012; 1 Beers (bb0135) 1957 Xin, Huo, Tao, Tang, Chu (bb0125) 2008; 4 Willumeit, Feyerabend, Huber (bb0060) 2013 Martin, Boyle (bb0040) 2011; 14 Willumeit, Fischer, Feyerabend, Hort, Bismayer, Heidrich, Mihailova (bb0100) 2011; 7 Russell, Burch, Hume (bb0035) 1992 Geis-Gerstorfer, Schille, Schweizer, Rupp, Scheideler, Reichel, Hort, Nolte, Wendel (bb0090) 2011; 176 Atrens, Liu, Zainal Abidin (bb0150) 2011; 176 Bowen, Drelich, Goldman (bb0025) 2013; 25 Grogan, O'Brien, Leen, McHugh (bb0050) 2011; 7 Kirkland, Birbilis, Staiger (bb0075) 2012; 8 Gastaldi, Sassi, Petrini, Vedani, Trasatti, Migliavacca (bb0045) 2011; 4 Prendergast, Maher (bb0030) 2001; 118 Levesque, Hermawan, Dube, Mantovani (bb0085) 2008; 4 Schille, Braun, Wendel, Scheideler, Hort, Reichel, Schweizer, Geis-Gerstorfer (bb0095) 2011; 176 Haude, Erbel, Erne, Verheye, Degen, Bose, Vermeersch, Wijnbergen, Weissman, Prati, Waksman, Koolen (bb0020) 2013; 381 Pierson, Edick, Tauscher, Pokorney, Bowen, Gelbaugh, Stinson, Getty, Lee, Drelich, Goldman (bb0115) 2012; 100B Witte (10.1016/j.msec.2013.08.042_bb0070) 2006; 27 Geis-Gerstorfer (10.1016/j.msec.2013.08.042_bb0090) 2011; 176 Atrens (10.1016/j.msec.2013.08.042_bb0150) 2011; 176 Mani (10.1016/j.msec.2013.08.042_bb0005) 2007; 28 Levesque (10.1016/j.msec.2013.08.042_bb0085) 2008; 4 Dreher (10.1016/j.msec.2013.08.042_bb0080) 2012 Bowen (10.1016/j.msec.2013.08.042_bb0110) 2012; 100B Song (10.1016/j.msec.2013.08.042_bb0130) 2007; 49 Gastaldi (10.1016/j.msec.2013.08.042_bb0045) 2011; 4 Wu (10.1016/j.msec.2013.08.042_bb0055) 2012 Bowen (10.1016/j.msec.2013.08.042_bb0025) 2013; 25 Grogan (10.1016/j.msec.2013.08.042_bb0050) 2011; 7 Willumeit (10.1016/j.msec.2013.08.042_bb0100) 2011; 7 Meyers (10.1016/j.msec.2013.08.042_bb0140) 2009 Mueller (10.1016/j.msec.2013.08.042_bb0120) 2012; 100 Beers (10.1016/j.msec.2013.08.042_bb0135) 1957 Bowen (10.1016/j.msec.2013.08.042_bb0105) 2012; 1 Xin (10.1016/j.msec.2013.08.042_bb0125) 2008; 4 Haude (10.1016/j.msec.2013.08.042_bb0020) 2013; 381 Russell (10.1016/j.msec.2013.08.042_bb0035) 1992 Pierson (10.1016/j.msec.2013.08.042_bb0115) 2012; 100B Onuma (10.1016/j.msec.2013.08.042_bb0015) 2011; 75 Schille (10.1016/j.msec.2013.08.042_bb0095) 2011; 176 Waksman (10.1016/j.msec.2013.08.042_bb0010) 2010; 16 Heublein (10.1016/j.msec.2013.08.042_bb0065) 2003; 89 Willumeit (10.1016/j.msec.2013.08.042_bb0060) 2013 Martin (10.1016/j.msec.2013.08.042_bb0040) 2011; 14 Prendergast (10.1016/j.msec.2013.08.042_bb0030) 2001; 118 Kirkland (10.1016/j.msec.2013.08.042_bb0075) 2012; 8 Song (10.1016/j.msec.2013.08.042_bb0145) 1999; 1 |
References_xml | – volume: 1 start-page: 11 year: 1999 end-page: 33 ident: bb0145 publication-title: Adv. Eng. Mater. – year: 2009 ident: bb0140 article-title: Mechanical Behavior of Materials – volume: 118 start-page: 337 year: 2001 end-page: 342 ident: bb0030 publication-title: J. Mater. Process. Technol. – volume: 176 start-page: 1761 year: 2011 end-page: 1766 ident: bb0090 publication-title: Mater. Sci. Eng. B – volume: 381 start-page: 836 year: 2013 end-page: 844 ident: bb0020 publication-title: Lancet – volume: 27 start-page: 1013 year: 2006 end-page: 1018 ident: bb0070 publication-title: Biomaterials – year: 2012 ident: bb0080 article-title: ASTM-FDA Workshop on Absorbable Medical Devices: Lessons Learned from Correlations of Bench Testing and Clinical Performance – volume: 4 start-page: 352 year: 2011 end-page: 365 ident: bb0045 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 8 start-page: 925 year: 2012 end-page: 936 ident: bb0075 publication-title: Acta Biomater. – volume: 1 start-page: 237 year: 2012 end-page: 255 ident: bb0105 publication-title: Emerg. Mater. Res. – volume: 100 start-page: 2881 year: 2012 end-page: 2889 ident: bb0120 publication-title: J. Biomed. Mater. Res. A – year: 2012 ident: bb0055 publication-title: Acta Biomater. – volume: 7 start-page: 3523 year: 2011 end-page: 3533 ident: bb0050 publication-title: Acta Biomater. – volume: 75 start-page: 509 year: 2011 end-page: 520 ident: bb0015 publication-title: Circ. J. – volume: 4 start-page: 284 year: 2008 end-page: 295 ident: bb0085 publication-title: Acta Biomater. – volume: 16 start-page: 4041 year: 2010 end-page: 4051 ident: bb0010 publication-title: Curr. Pharm. Des. – volume: 176 start-page: 1797 year: 2011 end-page: 1801 ident: bb0095 publication-title: Mater. Sci. Eng. B – volume: 49 start-page: 1696 year: 2007 end-page: 1701 ident: bb0130 publication-title: Corros. Sci. – volume: 28 start-page: 1689 year: 2007 end-page: 1710 ident: bb0005 publication-title: Biomaterials – volume: 4 start-page: 2008 year: 2008 end-page: 2015 ident: bb0125 publication-title: Acta Biomater. – year: 1992 ident: bb0035 article-title: The Principles of Humane Experimental Technique – volume: 100B start-page: 2101 year: 2012 end-page: 2113 ident: bb0110 publication-title: J. Biomed. Mater. Res. B – volume: 100B start-page: 58 year: 2012 end-page: 67 ident: bb0115 publication-title: J. Biomed. Mater. Res. B – volume: 14 start-page: 331 year: 2011 end-page: 348 ident: bb0040 publication-title: Comput. Methods Biomech. – volume: 25 start-page: 2577 year: 2013 end-page: 2582 ident: bb0025 publication-title: Adv. Mater. – volume: 7 start-page: 2704 year: 2011 end-page: 2715 ident: bb0100 publication-title: Acta Biomater. – volume: 89 start-page: 651 year: 2003 end-page: 656 ident: bb0065 publication-title: Heart – year: 1957 ident: bb0135 article-title: Introduction to the Theory of Error – volume: 176 start-page: 1609 year: 2011 end-page: 1636 ident: bb0150 publication-title: Mater. Sci. Eng. B – year: 2013 ident: bb0060 publication-title: Acta Biomater. – year: 1992 ident: 10.1016/j.msec.2013.08.042_bb0035 – volume: 100B start-page: 2101 year: 2012 ident: 10.1016/j.msec.2013.08.042_bb0110 publication-title: J. Biomed. Mater. Res. B doi: 10.1002/jbm.b.32775 – volume: 89 start-page: 651 year: 2003 ident: 10.1016/j.msec.2013.08.042_bb0065 publication-title: Heart doi: 10.1136/heart.89.6.651 – year: 1957 ident: 10.1016/j.msec.2013.08.042_bb0135 – volume: 176 start-page: 1761 year: 2011 ident: 10.1016/j.msec.2013.08.042_bb0090 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2011.06.006 – volume: 14 start-page: 331 year: 2011 ident: 10.1016/j.msec.2013.08.042_bb0040 publication-title: Comput. Methods Biomech. doi: 10.1080/10255841003766845 – volume: 7 start-page: 3523 year: 2011 ident: 10.1016/j.msec.2013.08.042_bb0050 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.05.032 – volume: 4 start-page: 284 year: 2008 ident: 10.1016/j.msec.2013.08.042_bb0085 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2007.09.012 – volume: 176 start-page: 1609 year: 2011 ident: 10.1016/j.msec.2013.08.042_bb0150 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2010.12.017 – volume: 25 start-page: 2577 year: 2013 ident: 10.1016/j.msec.2013.08.042_bb0025 publication-title: Adv. Mater. doi: 10.1002/adma.201300226 – volume: 1 start-page: 237 year: 2012 ident: 10.1016/j.msec.2013.08.042_bb0105 publication-title: Emerg. Mater. Res. doi: 10.1680/emr.12.00017 – volume: 8 start-page: 925 year: 2012 ident: 10.1016/j.msec.2013.08.042_bb0075 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.11.014 – volume: 100B start-page: 58 year: 2012 ident: 10.1016/j.msec.2013.08.042_bb0115 publication-title: J. Biomed. Mater. Res. B doi: 10.1002/jbm.b.31922 – year: 2012 ident: 10.1016/j.msec.2013.08.042_bb0055 publication-title: Acta Biomater. – volume: 16 start-page: 4041 year: 2010 ident: 10.1016/j.msec.2013.08.042_bb0010 publication-title: Curr. Pharm. Des. doi: 10.2174/138161210794454905 – volume: 381 start-page: 836 year: 2013 ident: 10.1016/j.msec.2013.08.042_bb0020 publication-title: Lancet doi: 10.1016/S0140-6736(12)61765-6 – volume: 7 start-page: 2704 year: 2011 ident: 10.1016/j.msec.2013.08.042_bb0100 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.03.004 – volume: 28 start-page: 1689 year: 2007 ident: 10.1016/j.msec.2013.08.042_bb0005 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.11.042 – volume: 75 start-page: 509 year: 2011 ident: 10.1016/j.msec.2013.08.042_bb0015 publication-title: Circ. J. doi: 10.1253/circj.CJ-10-1135 – volume: 118 start-page: 337 year: 2001 ident: 10.1016/j.msec.2013.08.042_bb0030 publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(01)00858-5 – volume: 4 start-page: 2008 year: 2008 ident: 10.1016/j.msec.2013.08.042_bb0125 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2008.05.014 – volume: 176 start-page: 1797 year: 2011 ident: 10.1016/j.msec.2013.08.042_bb0095 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2011.04.007 – volume: 49 start-page: 1696 year: 2007 ident: 10.1016/j.msec.2013.08.042_bb0130 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2007.01.001 – year: 2013 ident: 10.1016/j.msec.2013.08.042_bb0060 publication-title: Acta Biomater. – volume: 100 start-page: 2881 year: 2012 ident: 10.1016/j.msec.2013.08.042_bb0120 publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.34223 – volume: 4 start-page: 352 year: 2011 ident: 10.1016/j.msec.2013.08.042_bb0045 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2010.11.003 – year: 2009 ident: 10.1016/j.msec.2013.08.042_bb0140 – volume: 27 start-page: 1013 year: 2006 ident: 10.1016/j.msec.2013.08.042_bb0070 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.037 – volume: 1 start-page: 11 year: 1999 ident: 10.1016/j.msec.2013.08.042_bb0145 publication-title: Adv. Eng. Mater. doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N – year: 2012 ident: 10.1016/j.msec.2013.08.042_bb0080 |
SSID | ssj0068372 ssj0047218 ssj0001906 |
Score | 1.9318213 |
Snippet | Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5064 |
SubjectTerms | Absorbable Implants Animals Aorta - physiology Bioabsorbable stent Corrosion Culture Media - chemistry Hydrogen-Ion Concentration In vitro–in vivo correlation Magnesium Magnesium - chemistry Rats Rats, Sprague-Dawley Stents Tensile Strength |
Title | A new in vitro–in vivo correlation for bioabsorbable magnesium stents from mechanical behavior |
URI | https://dx.doi.org/10.1016/j.msec.2013.08.042 https://www.ncbi.nlm.nih.gov/pubmed/24094225 https://www.proquest.com/docview/1443390705 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wscUGl5bCmVkRAXFDbxq_FxVbVaQOoFKvUWbMdBqUhS7WYrcan4D_xDfkln8ljBoT1wi6M4sTzON994HgZ4iwyeysjxqDCUksNTHVl1nEfa2gIlLoniU7TFuV5cyE-X6nILTsZcGAqrHLC_x_QOrYc7s2E2Z9dlOfsSG4RWIxJyyKAeV9uww4XRagI784-fF-cbQE66iuZ9Q6LFs3EzaLTOOjeDoS0mfNWQVdMHgFWrQDUOE9HV-JT8Ps11HzPtNNTZLjwZqCWb96N_Cluh3oP9eY1mdfWTvWNdsGe3i74Hj_-qQ7gP3-YM2TUra3ZTtsvmz6_f3eVNwzwd3tGHyzGkt8yVjXWrZuko44pV9jsiZbmuGK6Vul0xSlZhVaBsYhI-G4sAPIOLs9OvJ4toOHoh8iiuNsqtsXnCbYid9UE7aYoQ6xBUEQqHOj51Mpcitvmxlpp7x4NPkXshU88RJIwSz2FSN3V4CcyjCZZ67XTMg4xzkRbeBxEHZRxHcy1MIRmnNfNDXXI6HuNHNgagXWUkioxEkdGZmZJP4f2mz3VflePBp9UoreyftZWh2niw35tRtBn-dORJsXVo1iu0l6QQBtFSTeFFL_PNODhZzIiSB__51VfwiFp9yMwhTNrlOrxG4tO6I9j-cJscDcv7Dqvp_34 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOUAPCFoey9NIiAsKm_i18XFVUS1QeqGVejO241RBJKl2s5V6QfwH_iG_hBknWeDQHrjl5cTyODPfeL4ZE_IKEDyWkWNJqTElh-UqsXJWJMraEiQuEOIj2-JILU7Eh1N5ukX2x1wYpFUOur_X6VFbD1emw2hOz6tq-jnVoFo1zzAgA3Zc3iA3heQz5PW9_f6H55HFeub9iQB_ZxNkUOCbxSCDxgUmeNGQU9PTv-pVwAqHGY8VPgW7ym5dhUujfTq4S-4MwJLO-77fI1uh2SV78wac6vqSvqaR6hnX0HfJzl9VCPfIlzkFbE2rhl5U3bL99eNnPLxoqcetO3qyHAVwS13VWrdqlw7zrWhtz0BPVuuawkxpuhXFVBVaB8wlRtHTsQTAfXJy8O54f5EMGy8kHoTVJYXVtsiYDamzPigndBlSFYIsQ-nAwudOFIKntpgpoZh3LPgckBfg9AJUhJb8Adlu2iY8ItSDA5Z75VTKgkgLnpfeB54GqR0DZy1MSDYOq_FDVXLcHOObGelnXw2KwqAoDO6YKdiEvNm0Oe9rclz7tBylZf6ZWQaMxrXtXo6iNfDLYRzFNqFdr8BbEpxr0JVyQh72Mt_0g6G_DDry8X9-9QW5tTj-dGgO3x99fEJu452ePPOUbHfLdXgGEKhzz-MU_w3UAQBY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+in+vitro-in+vivo+correlation+for+bioabsorbable+magnesium+stents+from+mechanical+behavior&rft.jtitle=Materials+science+%26+engineering.+C%2C+Materials+for+biological+applications&rft.au=Bowen%2C+Patrick+K&rft.au=Drelich%2C+Jaroslaw&rft.au=Goldman%2C+Jeremy&rft.date=2013-12-01&rft.eissn=1873-0191&rft.volume=33&rft.issue=8&rft.spage=5064&rft_id=info:doi/10.1016%2Fj.msec.2013.08.042&rft_id=info%3Apmid%2F24094225&rft.externalDocID=24094225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-4931&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-4931&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-4931&client=summon |