A new in vitro–in vivo correlation for bioabsorbable magnesium stents from mechanical behavior

Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture m...

Full description

Saved in:
Bibliographic Details
Published inMaterials Science & Engineering C Vol. 33; no. 8; pp. 5064 - 5070
Main Authors Bowen, Patrick K., Drelich, Jaroslaw, Goldman, Jeremy
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2013
Subjects
Online AccessGet full text
ISSN0928-4931
1873-0191
1873-0191
DOI10.1016/j.msec.2013.08.042

Cover

Loading…
Abstract Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service. [Display omitted] •Samples of magnesium wire were corroded in vivo and in vitro and tested in tension.•Mechanical behavior of magnesium degraded in the arterial environment was described.•Correlations were formulated to quantitatively relate in vivo and in vitro corrosion.
AbstractList Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service.
Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service. [Display omitted] •Samples of magnesium wire were corroded in vivo and in vitro and tested in tension.•Mechanical behavior of magnesium degraded in the arterial environment was described.•Correlations were formulated to quantitatively relate in vivo and in vitro corrosion.
Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service.Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of next-generation metallic stents. In this study, pure magnesium wire samples were corroded both in the murine artery (in vivo) and in static cell culture media (in vitro), after which they were subjected to mechanical analysis by tensile testing. Wires corroded in vivo showed reductions in strength, elongation, and the work of fracture, with additional qualitative changes between tensile profiles. The in vivo degradation was 2.2±0.5, 3.1±0.8, and 2.3±0.3 times slower than corrosion in vitro in terms of effective tensile strength, strain to failure, and sample lifetime, respectively. Also, a combined metric, defined as strength multiplied by elongation, was 3.1±0.7 times faster in vitro than in vivo. Consideration of the utility and restrictions of each metric indicates that the lifetime-based multiplier is the best suited to general use for magnesium, though other metrics could be used to deduce the mechanical properties of degradable implants in service.
Author Drelich, Jaroslaw
Goldman, Jeremy
Bowen, Patrick K.
Author_xml – sequence: 1
  givenname: Patrick K.
  surname: Bowen
  fullname: Bowen, Patrick K.
  organization: Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, USA
– sequence: 2
  givenname: Jaroslaw
  surname: Drelich
  fullname: Drelich, Jaroslaw
  email: jwdrelic@mtu.edu
  organization: Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI, USA
– sequence: 3
  givenname: Jeremy
  surname: Goldman
  fullname: Goldman, Jeremy
  organization: Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24094225$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1uFDEUhS0URDaBF6BALmlmuP6ZGVuiiaLwI0VKQ2rH9twhXs3YwfYuoss78IY8CbvZpEmR6t7i-05xzgk5iikiIe8ZtAxY_2ndLgV9y4GJFlQLkr8iK6YG0QDT7IisQHPVSC3YMTkpZQ3QKzHwN-SYS9CS825Fbs5oxN80RLoNNad_938f3m2iPuWMs60hRTqlTF1I1pWUnXUz0sX-jFjCZqGlYqyFTjktdEF_a2PwdqYOb-02pPyWvJ7sXPDd4z0l118ufpx_ay6vvn4_P7tsPFd9bUar7ci4RXDWY--knhB6xG7CySmmlJOjFGDHoZc9946jV13HBq5HwZTuxCn5eMi9y-nXBks1Syge59lGTJtimJRCaBhgj354RDduwdHc5bDY_Mc8tbID1AHwOZWScTI-1IcmarZhNgzMfgCzNvsBzH4AA8rsBtip_Jn6lP6i9Pkg4a6gbcBsig8YPY4ho69mTOEl_T-BwqFl
CitedBy_id crossref_primary_10_1016_j_bioactmat_2020_10_024
crossref_primary_10_1016_j_msec_2019_04_032
crossref_primary_10_1016_j_msec_2022_112693
crossref_primary_10_1016_j_pnsc_2014_08_009
crossref_primary_10_1002_jbm_b_34970
crossref_primary_10_1515_bnm_2015_0004
crossref_primary_10_1108_ACMM_12_2015_1623
crossref_primary_10_3390_ma14247776
crossref_primary_10_12677_BP_2017_73005
crossref_primary_10_1016_j_actbio_2017_04_020
crossref_primary_10_1016_j_corsci_2014_09_002
crossref_primary_10_1002_advs_202409051
crossref_primary_10_1002_zamm_201700314
crossref_primary_10_1016_j_bioactmat_2018_01_003
crossref_primary_10_3390_ijms25116242
crossref_primary_10_1016_j_powtec_2016_02_042
crossref_primary_10_3390_ma16031195
crossref_primary_10_1016_j_msec_2016_02_073
crossref_primary_10_1088_2051_672X_4_1_014005
crossref_primary_10_1002_jbm_b_34424
crossref_primary_10_1016_j_actbio_2013_11_021
crossref_primary_10_1177_09544062221121990
crossref_primary_10_1016_j_msec_2017_03_216
crossref_primary_10_1002_adfm_202410033
crossref_primary_10_1007_s12613_016_1336_7
crossref_primary_10_3390_ma10010055
crossref_primary_10_1002_jbm_a_35179
crossref_primary_10_3390_pharmaceutics15112595
crossref_primary_10_1002_jbm_b_33341
crossref_primary_10_3390_ma16134508
crossref_primary_10_1016_S1003_6326_20_65218_9
crossref_primary_10_3390_cryst13081213
crossref_primary_10_1002_jbm_a_37297
crossref_primary_10_1016_j_msec_2015_03_001
crossref_primary_10_1016_j_bioactmat_2023_02_004
crossref_primary_10_1093_rb_rbac002
crossref_primary_10_1007_s40843_017_9173_7
crossref_primary_10_3390_jfb14060324
crossref_primary_10_1016_j_mtcomm_2022_103467
crossref_primary_10_1002_jbm_b_33458
crossref_primary_10_1007_s11517_016_1584_8
crossref_primary_10_1016_j_msec_2015_07_022
crossref_primary_10_1021_acsbiomaterials_6b00035
crossref_primary_10_1002_jbm_b_33174
crossref_primary_10_1016_j_jmbbm_2018_06_002
crossref_primary_10_1007_s11771_024_5668_6
crossref_primary_10_1093_rb_rbu015
crossref_primary_10_1016_j_jmbbm_2018_12_008
crossref_primary_10_1016_j_jconrel_2022_02_029
crossref_primary_10_1093_rb_rbv028
crossref_primary_10_1016_j_colsurfb_2020_111153
crossref_primary_10_1088_2057_1976_ab9426
crossref_primary_10_1016_j_msec_2021_112532
crossref_primary_10_1002_adem_201800656
Cites_doi 10.1002/jbm.b.32775
10.1136/heart.89.6.651
10.1016/j.mseb.2011.06.006
10.1080/10255841003766845
10.1016/j.actbio.2011.05.032
10.1016/j.actbio.2007.09.012
10.1016/j.mseb.2010.12.017
10.1002/adma.201300226
10.1680/emr.12.00017
10.1016/j.actbio.2011.11.014
10.1002/jbm.b.31922
10.2174/138161210794454905
10.1016/S0140-6736(12)61765-6
10.1016/j.actbio.2011.03.004
10.1016/j.biomaterials.2006.11.042
10.1253/circj.CJ-10-1135
10.1016/S0924-0136(01)00858-5
10.1016/j.actbio.2008.05.014
10.1016/j.mseb.2011.04.007
10.1016/j.corsci.2007.01.001
10.1002/jbm.a.34223
10.1016/j.jmbbm.2010.11.003
10.1016/j.biomaterials.2005.07.037
10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
ContentType Journal Article
Copyright 2013 Elsevier B.V.
2013.
Copyright_xml – notice: 2013 Elsevier B.V.
– notice: 2013.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.msec.2013.08.042
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
EISSN 1873-0191
EndPage 5070
ExternalDocumentID 24094225
10_1016_j_msec_2013_08_042
S0928493113005055
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID --M
.~1
1~.
457
4G.
7-5
8P~
9JN
ABXDB
ADEZE
AEKER
AFTJW
ALMA_UNASSIGNED_HOLDINGS
BLXMC
EO8
EO9
EP2
EP3
FDB
FNPLU
G-Q
J1W
MO0
OAUVE
PC.
Q38
SDF
SDP
SPC
SPD
T5K
~G-
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c286t-da9ad12ae0bace6b49fe06ee5fefb8188b4d430ad76462cb2ec8551729d318953
IEDL.DBID AIKHN
ISSN 0928-4931
1873-0191
IngestDate Fri Jul 11 05:11:27 EDT 2025
Thu Apr 03 06:56:46 EDT 2025
Tue Jul 01 01:40:22 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Sat Apr 29 22:45:23 EDT 2023
IsPeerReviewed false
IsScholarly false
Issue 8
Keywords Magnesium
Corrosion
Bioabsorbable stent
In vitro–in vivo correlation
Language English
License 2013.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-da9ad12ae0bace6b49fe06ee5fefb8188b4d430ad76462cb2ec8551729d318953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24094225
PQID 1443390705
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1443390705
pubmed_primary_24094225
crossref_citationtrail_10_1016_j_msec_2013_08_042
crossref_primary_10_1016_j_msec_2013_08_042
elsevier_sciencedirect_doi_10_1016_j_msec_2013_08_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-01
2013-12-00
2013-Dec-01
20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Materials Science & Engineering C
PublicationTitleAlternate Mater Sci Eng C Mater Biol Appl
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bowen, Gelbaugh, Mercier, Goldman, Drelich (bb0110) 2012; 100B
Dreher, Anderson (bb0080) 2012
Waksman, Pakala (bb0010) 2010; 16
Mani, Feldman, Patel, Agrawal (bb0005) 2007; 28
Meyers, Chawla (bb0140) 2009
Song, Atrens (bb0145) 1999; 1
Onuma, Ormiston, Serruys (bb0015) 2011; 75
Witte, Fischer, Nellesen, Crostack, Kaese, Pisch, Beckmann, Windhagen (bb0070) 2006; 27
Wu, Chen, Gastaldi, Petrini, Mantovani, Yang, Tan, Migliavacca (bb0055) 2012
Heublein, Rohde, Kaese, Niemeyer, Hartung, Haverich (bb0065) 2003; 89
Mueller, Arnold, Badar, Bormann, Bach, Drynda, Meyer-Lindenberg, Hauser, Peuster (bb0120) 2012; 100
Song (bb0130) 2007; 49
Bowen, Drelich, Buxbaum, Rajachar, Goldman (bb0105) 2012; 1
Beers (bb0135) 1957
Xin, Huo, Tao, Tang, Chu (bb0125) 2008; 4
Willumeit, Feyerabend, Huber (bb0060) 2013
Martin, Boyle (bb0040) 2011; 14
Willumeit, Fischer, Feyerabend, Hort, Bismayer, Heidrich, Mihailova (bb0100) 2011; 7
Russell, Burch, Hume (bb0035) 1992
Geis-Gerstorfer, Schille, Schweizer, Rupp, Scheideler, Reichel, Hort, Nolte, Wendel (bb0090) 2011; 176
Atrens, Liu, Zainal Abidin (bb0150) 2011; 176
Bowen, Drelich, Goldman (bb0025) 2013; 25
Grogan, O'Brien, Leen, McHugh (bb0050) 2011; 7
Kirkland, Birbilis, Staiger (bb0075) 2012; 8
Gastaldi, Sassi, Petrini, Vedani, Trasatti, Migliavacca (bb0045) 2011; 4
Prendergast, Maher (bb0030) 2001; 118
Levesque, Hermawan, Dube, Mantovani (bb0085) 2008; 4
Schille, Braun, Wendel, Scheideler, Hort, Reichel, Schweizer, Geis-Gerstorfer (bb0095) 2011; 176
Haude, Erbel, Erne, Verheye, Degen, Bose, Vermeersch, Wijnbergen, Weissman, Prati, Waksman, Koolen (bb0020) 2013; 381
Pierson, Edick, Tauscher, Pokorney, Bowen, Gelbaugh, Stinson, Getty, Lee, Drelich, Goldman (bb0115) 2012; 100B
Witte (10.1016/j.msec.2013.08.042_bb0070) 2006; 27
Geis-Gerstorfer (10.1016/j.msec.2013.08.042_bb0090) 2011; 176
Atrens (10.1016/j.msec.2013.08.042_bb0150) 2011; 176
Mani (10.1016/j.msec.2013.08.042_bb0005) 2007; 28
Levesque (10.1016/j.msec.2013.08.042_bb0085) 2008; 4
Dreher (10.1016/j.msec.2013.08.042_bb0080) 2012
Bowen (10.1016/j.msec.2013.08.042_bb0110) 2012; 100B
Song (10.1016/j.msec.2013.08.042_bb0130) 2007; 49
Gastaldi (10.1016/j.msec.2013.08.042_bb0045) 2011; 4
Wu (10.1016/j.msec.2013.08.042_bb0055) 2012
Bowen (10.1016/j.msec.2013.08.042_bb0025) 2013; 25
Grogan (10.1016/j.msec.2013.08.042_bb0050) 2011; 7
Willumeit (10.1016/j.msec.2013.08.042_bb0100) 2011; 7
Meyers (10.1016/j.msec.2013.08.042_bb0140) 2009
Mueller (10.1016/j.msec.2013.08.042_bb0120) 2012; 100
Beers (10.1016/j.msec.2013.08.042_bb0135) 1957
Bowen (10.1016/j.msec.2013.08.042_bb0105) 2012; 1
Xin (10.1016/j.msec.2013.08.042_bb0125) 2008; 4
Haude (10.1016/j.msec.2013.08.042_bb0020) 2013; 381
Russell (10.1016/j.msec.2013.08.042_bb0035) 1992
Pierson (10.1016/j.msec.2013.08.042_bb0115) 2012; 100B
Onuma (10.1016/j.msec.2013.08.042_bb0015) 2011; 75
Schille (10.1016/j.msec.2013.08.042_bb0095) 2011; 176
Waksman (10.1016/j.msec.2013.08.042_bb0010) 2010; 16
Heublein (10.1016/j.msec.2013.08.042_bb0065) 2003; 89
Willumeit (10.1016/j.msec.2013.08.042_bb0060) 2013
Martin (10.1016/j.msec.2013.08.042_bb0040) 2011; 14
Prendergast (10.1016/j.msec.2013.08.042_bb0030) 2001; 118
Kirkland (10.1016/j.msec.2013.08.042_bb0075) 2012; 8
Song (10.1016/j.msec.2013.08.042_bb0145) 1999; 1
References_xml – volume: 1
  start-page: 11
  year: 1999
  end-page: 33
  ident: bb0145
  publication-title: Adv. Eng. Mater.
– year: 2009
  ident: bb0140
  article-title: Mechanical Behavior of Materials
– volume: 118
  start-page: 337
  year: 2001
  end-page: 342
  ident: bb0030
  publication-title: J. Mater. Process. Technol.
– volume: 176
  start-page: 1761
  year: 2011
  end-page: 1766
  ident: bb0090
  publication-title: Mater. Sci. Eng. B
– volume: 381
  start-page: 836
  year: 2013
  end-page: 844
  ident: bb0020
  publication-title: Lancet
– volume: 27
  start-page: 1013
  year: 2006
  end-page: 1018
  ident: bb0070
  publication-title: Biomaterials
– year: 2012
  ident: bb0080
  article-title: ASTM-FDA Workshop on Absorbable Medical Devices: Lessons Learned from Correlations of Bench Testing and Clinical Performance
– volume: 4
  start-page: 352
  year: 2011
  end-page: 365
  ident: bb0045
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 8
  start-page: 925
  year: 2012
  end-page: 936
  ident: bb0075
  publication-title: Acta Biomater.
– volume: 1
  start-page: 237
  year: 2012
  end-page: 255
  ident: bb0105
  publication-title: Emerg. Mater. Res.
– volume: 100
  start-page: 2881
  year: 2012
  end-page: 2889
  ident: bb0120
  publication-title: J. Biomed. Mater. Res. A
– year: 2012
  ident: bb0055
  publication-title: Acta Biomater.
– volume: 7
  start-page: 3523
  year: 2011
  end-page: 3533
  ident: bb0050
  publication-title: Acta Biomater.
– volume: 75
  start-page: 509
  year: 2011
  end-page: 520
  ident: bb0015
  publication-title: Circ. J.
– volume: 4
  start-page: 284
  year: 2008
  end-page: 295
  ident: bb0085
  publication-title: Acta Biomater.
– volume: 16
  start-page: 4041
  year: 2010
  end-page: 4051
  ident: bb0010
  publication-title: Curr. Pharm. Des.
– volume: 176
  start-page: 1797
  year: 2011
  end-page: 1801
  ident: bb0095
  publication-title: Mater. Sci. Eng. B
– volume: 49
  start-page: 1696
  year: 2007
  end-page: 1701
  ident: bb0130
  publication-title: Corros. Sci.
– volume: 28
  start-page: 1689
  year: 2007
  end-page: 1710
  ident: bb0005
  publication-title: Biomaterials
– volume: 4
  start-page: 2008
  year: 2008
  end-page: 2015
  ident: bb0125
  publication-title: Acta Biomater.
– year: 1992
  ident: bb0035
  article-title: The Principles of Humane Experimental Technique
– volume: 100B
  start-page: 2101
  year: 2012
  end-page: 2113
  ident: bb0110
  publication-title: J. Biomed. Mater. Res. B
– volume: 100B
  start-page: 58
  year: 2012
  end-page: 67
  ident: bb0115
  publication-title: J. Biomed. Mater. Res. B
– volume: 14
  start-page: 331
  year: 2011
  end-page: 348
  ident: bb0040
  publication-title: Comput. Methods Biomech.
– volume: 25
  start-page: 2577
  year: 2013
  end-page: 2582
  ident: bb0025
  publication-title: Adv. Mater.
– volume: 7
  start-page: 2704
  year: 2011
  end-page: 2715
  ident: bb0100
  publication-title: Acta Biomater.
– volume: 89
  start-page: 651
  year: 2003
  end-page: 656
  ident: bb0065
  publication-title: Heart
– year: 1957
  ident: bb0135
  article-title: Introduction to the Theory of Error
– volume: 176
  start-page: 1609
  year: 2011
  end-page: 1636
  ident: bb0150
  publication-title: Mater. Sci. Eng. B
– year: 2013
  ident: bb0060
  publication-title: Acta Biomater.
– year: 1992
  ident: 10.1016/j.msec.2013.08.042_bb0035
– volume: 100B
  start-page: 2101
  year: 2012
  ident: 10.1016/j.msec.2013.08.042_bb0110
  publication-title: J. Biomed. Mater. Res. B
  doi: 10.1002/jbm.b.32775
– volume: 89
  start-page: 651
  year: 2003
  ident: 10.1016/j.msec.2013.08.042_bb0065
  publication-title: Heart
  doi: 10.1136/heart.89.6.651
– year: 1957
  ident: 10.1016/j.msec.2013.08.042_bb0135
– volume: 176
  start-page: 1761
  year: 2011
  ident: 10.1016/j.msec.2013.08.042_bb0090
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2011.06.006
– volume: 14
  start-page: 331
  year: 2011
  ident: 10.1016/j.msec.2013.08.042_bb0040
  publication-title: Comput. Methods Biomech.
  doi: 10.1080/10255841003766845
– volume: 7
  start-page: 3523
  year: 2011
  ident: 10.1016/j.msec.2013.08.042_bb0050
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.05.032
– volume: 4
  start-page: 284
  year: 2008
  ident: 10.1016/j.msec.2013.08.042_bb0085
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2007.09.012
– volume: 176
  start-page: 1609
  year: 2011
  ident: 10.1016/j.msec.2013.08.042_bb0150
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2010.12.017
– volume: 25
  start-page: 2577
  year: 2013
  ident: 10.1016/j.msec.2013.08.042_bb0025
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300226
– volume: 1
  start-page: 237
  year: 2012
  ident: 10.1016/j.msec.2013.08.042_bb0105
  publication-title: Emerg. Mater. Res.
  doi: 10.1680/emr.12.00017
– volume: 8
  start-page: 925
  year: 2012
  ident: 10.1016/j.msec.2013.08.042_bb0075
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.11.014
– volume: 100B
  start-page: 58
  year: 2012
  ident: 10.1016/j.msec.2013.08.042_bb0115
  publication-title: J. Biomed. Mater. Res. B
  doi: 10.1002/jbm.b.31922
– year: 2012
  ident: 10.1016/j.msec.2013.08.042_bb0055
  publication-title: Acta Biomater.
– volume: 16
  start-page: 4041
  year: 2010
  ident: 10.1016/j.msec.2013.08.042_bb0010
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161210794454905
– volume: 381
  start-page: 836
  year: 2013
  ident: 10.1016/j.msec.2013.08.042_bb0020
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61765-6
– volume: 7
  start-page: 2704
  year: 2011
  ident: 10.1016/j.msec.2013.08.042_bb0100
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.03.004
– volume: 28
  start-page: 1689
  year: 2007
  ident: 10.1016/j.msec.2013.08.042_bb0005
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.11.042
– volume: 75
  start-page: 509
  year: 2011
  ident: 10.1016/j.msec.2013.08.042_bb0015
  publication-title: Circ. J.
  doi: 10.1253/circj.CJ-10-1135
– volume: 118
  start-page: 337
  year: 2001
  ident: 10.1016/j.msec.2013.08.042_bb0030
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(01)00858-5
– volume: 4
  start-page: 2008
  year: 2008
  ident: 10.1016/j.msec.2013.08.042_bb0125
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2008.05.014
– volume: 176
  start-page: 1797
  year: 2011
  ident: 10.1016/j.msec.2013.08.042_bb0095
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2011.04.007
– volume: 49
  start-page: 1696
  year: 2007
  ident: 10.1016/j.msec.2013.08.042_bb0130
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2007.01.001
– year: 2013
  ident: 10.1016/j.msec.2013.08.042_bb0060
  publication-title: Acta Biomater.
– volume: 100
  start-page: 2881
  year: 2012
  ident: 10.1016/j.msec.2013.08.042_bb0120
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34223
– volume: 4
  start-page: 352
  year: 2011
  ident: 10.1016/j.msec.2013.08.042_bb0045
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2010.11.003
– year: 2009
  ident: 10.1016/j.msec.2013.08.042_bb0140
– volume: 27
  start-page: 1013
  year: 2006
  ident: 10.1016/j.msec.2013.08.042_bb0070
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.037
– volume: 1
  start-page: 11
  year: 1999
  ident: 10.1016/j.msec.2013.08.042_bb0145
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N
– year: 2012
  ident: 10.1016/j.msec.2013.08.042_bb0080
SSID ssj0068372
ssj0047218
ssj0001906
Score 1.9318213
Snippet Correlating the in vitro and in vivo degradation of candidate materials for bioabsorbable implants is a subject of interest in the development of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5064
SubjectTerms Absorbable Implants
Animals
Aorta - physiology
Bioabsorbable stent
Corrosion
Culture Media - chemistry
Hydrogen-Ion Concentration
In vitro–in vivo correlation
Magnesium
Magnesium - chemistry
Rats
Rats, Sprague-Dawley
Stents
Tensile Strength
Title A new in vitro–in vivo correlation for bioabsorbable magnesium stents from mechanical behavior
URI https://dx.doi.org/10.1016/j.msec.2013.08.042
https://www.ncbi.nlm.nih.gov/pubmed/24094225
https://www.proquest.com/docview/1443390705
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB612wscUGl5bCmVkRAXFDbxq_FxVbVaQOoFKvUWbMdBqUhS7WYrcan4D_xDfkln8ljBoT1wi6M4sTzON994HgZ4iwyeysjxqDCUksNTHVl1nEfa2gIlLoniU7TFuV5cyE-X6nILTsZcGAqrHLC_x_QOrYc7s2E2Z9dlOfsSG4RWIxJyyKAeV9uww4XRagI784-fF-cbQE66iuZ9Q6LFs3EzaLTOOjeDoS0mfNWQVdMHgFWrQDUOE9HV-JT8Ps11HzPtNNTZLjwZqCWb96N_Cluh3oP9eY1mdfWTvWNdsGe3i74Hj_-qQ7gP3-YM2TUra3ZTtsvmz6_f3eVNwzwd3tGHyzGkt8yVjXWrZuko44pV9jsiZbmuGK6Vul0xSlZhVaBsYhI-G4sAPIOLs9OvJ4toOHoh8iiuNsqtsXnCbYid9UE7aYoQ6xBUEQqHOj51Mpcitvmxlpp7x4NPkXshU88RJIwSz2FSN3V4CcyjCZZ67XTMg4xzkRbeBxEHZRxHcy1MIRmnNfNDXXI6HuNHNgagXWUkioxEkdGZmZJP4f2mz3VflePBp9UoreyftZWh2niw35tRtBn-dORJsXVo1iu0l6QQBtFSTeFFL_PNODhZzIiSB__51VfwiFp9yMwhTNrlOrxG4tO6I9j-cJscDcv7Dqvp_34
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOUAPCFoey9NIiAsKm_i18XFVUS1QeqGVejO241RBJKl2s5V6QfwH_iG_hBknWeDQHrjl5cTyODPfeL4ZE_IKEDyWkWNJqTElh-UqsXJWJMraEiQuEOIj2-JILU7Eh1N5ukX2x1wYpFUOur_X6VFbD1emw2hOz6tq-jnVoFo1zzAgA3Zc3iA3heQz5PW9_f6H55HFeub9iQB_ZxNkUOCbxSCDxgUmeNGQU9PTv-pVwAqHGY8VPgW7ym5dhUujfTq4S-4MwJLO-77fI1uh2SV78wac6vqSvqaR6hnX0HfJzl9VCPfIlzkFbE2rhl5U3bL99eNnPLxoqcetO3qyHAVwS13VWrdqlw7zrWhtz0BPVuuawkxpuhXFVBVaB8wlRtHTsQTAfXJy8O54f5EMGy8kHoTVJYXVtsiYDamzPigndBlSFYIsQ-nAwudOFIKntpgpoZh3LPgckBfg9AJUhJb8Adlu2iY8ItSDA5Z75VTKgkgLnpfeB54GqR0DZy1MSDYOq_FDVXLcHOObGelnXw2KwqAoDO6YKdiEvNm0Oe9rclz7tBylZf6ZWQaMxrXtXo6iNfDLYRzFNqFdr8BbEpxr0JVyQh72Mt_0g6G_DDry8X9-9QW5tTj-dGgO3x99fEJu452ePPOUbHfLdXgGEKhzz-MU_w3UAQBY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+in+vitro-in+vivo+correlation+for+bioabsorbable+magnesium+stents+from+mechanical+behavior&rft.jtitle=Materials+science+%26+engineering.+C%2C+Materials+for+biological+applications&rft.au=Bowen%2C+Patrick+K&rft.au=Drelich%2C+Jaroslaw&rft.au=Goldman%2C+Jeremy&rft.date=2013-12-01&rft.eissn=1873-0191&rft.volume=33&rft.issue=8&rft.spage=5064&rft_id=info:doi/10.1016%2Fj.msec.2013.08.042&rft_id=info%3Apmid%2F24094225&rft.externalDocID=24094225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0928-4931&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0928-4931&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0928-4931&client=summon