Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection

We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by control...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 4; no. 24; pp. 5642 - 5647
Main Authors Lim, Guh-Hwan, Lee, Nae-Eung, Lim, Byungkwon
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by controlling the stacking number of micrometer-sized Au nanosheets with a thickness of ∼20 nm, which enabled the control of piezoresisitivity of the sensing layer through the change in contact resistance between Au nanosheets under mechanical bending and stretching. The Au nanosheet-based strain sensors exhibited excellent electrical stability without degradation in sensing-performance even after 10 000 stretching cycles. Our highly sensitive, reproducible, tunable, and durable strain sensors were demonstrated to monitor large-scale body motions such as bending, walking, jumping, and squatting, as well as to detect small skin strains induced by minute movements of muscles upon breathing, speaking, and coughing. We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate.
AbstractList We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by controlling the stacking number of micrometer-sized Au nanosheets with a thickness of similar to 20 nm, which enabled the control of piezoresisitivity of the sensing layer through the change in contact resistance between Au nanosheets under mechanical bending and stretching. The Au nanosheet-based strain sensors exhibited excellent electrical stability without degradation in sensing-performance even after 10 000 stretching cycles. Our highly sensitive, reproducible, tunable, and durable strain sensors were demonstrated to monitor large-scale body motions such as bending, walking, jumping, and squatting, as well as to detect small skin strains induced by minute movements of muscles upon breathing, speaking, and coughing.
We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by controlling the stacking number of micrometer-sized Au nanosheets with a thickness of ∼20 nm, which enabled the control of piezoresisitivity of the sensing layer through the change in contact resistance between Au nanosheets under mechanical bending and stretching. The Au nanosheet-based strain sensors exhibited excellent electrical stability without degradation in sensing-performance even after 10 000 stretching cycles. Our highly sensitive, reproducible, tunable, and durable strain sensors were demonstrated to monitor large-scale body motions such as bending, walking, jumping, and squatting, as well as to detect small skin strains induced by minute movements of muscles upon breathing, speaking, and coughing.
We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by controlling the stacking number of micrometer-sized Au nanosheets with a thickness of ∼20 nm, which enabled the control of piezoresisitivity of the sensing layer through the change in contact resistance between Au nanosheets under mechanical bending and stretching. The Au nanosheet-based strain sensors exhibited excellent electrical stability without degradation in sensing-performance even after 10 000 stretching cycles. Our highly sensitive, reproducible, tunable, and durable strain sensors were demonstrated to monitor large-scale body motions such as bending, walking, jumping, and squatting, as well as to detect small skin strains induced by minute movements of muscles upon breathing, speaking, and coughing. We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate.
Author Lee, Nae-Eung
Lim, Guh-Hwan
Lim, Byungkwon
AuthorAffiliation School of Advanced Materials Science and Engineering
Sungkyunkwan University (SKKU)
AuthorAffiliation_xml – sequence: 0
  name: School of Advanced Materials Science and Engineering
– sequence: 0
  name: Sungkyunkwan University (SKKU)
Author_xml – sequence: 1
  givenname: Guh-Hwan
  surname: Lim
  fullname: Lim, Guh-Hwan
– sequence: 2
  givenname: Nae-Eung
  surname: Lee
  fullname: Lee, Nae-Eung
– sequence: 3
  givenname: Byungkwon
  surname: Lim
  fullname: Lim, Byungkwon
BookMark eNptkdtLwzAUxoNMcM69-C7kUcRqmkubPkrxysCX-VzSNNky2mQmqbD_3naTCeJ5Od-B33c4l3Mwsc4qAC5TdJciUtzLLEqEMEs3J2CKEUNJzgidHDXOzsA8hA0agqcZz4opqF7Mat3uYFA2mGi-1C2MvRV1OwhhG9j0fizgyrUNtMK6sFYqwhC9MHbvcj5A7Txc952wsHPROAsbFZUc1QU41aINav6TZ-Dj6XFZviSL9-fX8mGRSMyzmDS5VJhoTGkulCCaq0JSJnMkKcaoJjnVpKE1rylHQ42LWmukMcqLOmW0ZmQGrg99t9599irEqjNBqrYVVrk-VCnHjKU5J8WAogMqvQvBK11JE8U47LhUW6WoGs9Zldmy3J_zbbDc_LFsvemE3_0PXx1gH-SR-_0N-Qby7IH2
CitedBy_id crossref_primary_10_1109_JSEN_2023_3299610
crossref_primary_10_1016_j_matdes_2020_109178
crossref_primary_10_1021_acssuschemeng_1c05574
crossref_primary_10_1016_j_cej_2024_150931
crossref_primary_10_1016_j_compositesb_2020_108224
crossref_primary_10_1063_5_0093261
crossref_primary_10_1088_1361_665X_ab1fa9
crossref_primary_10_1177_2472630319891128
crossref_primary_10_1002_adfm_202113012
crossref_primary_10_1002_adma_201704229
crossref_primary_10_1007_s12274_017_1523_5
crossref_primary_10_1016_j_cej_2019_123336
crossref_primary_10_1021_acsami_9b12600
crossref_primary_10_1039_C8NR02514B
crossref_primary_10_1038_s44222_023_00102_z
crossref_primary_10_1007_s13204_020_01619_0
crossref_primary_10_1016_j_sna_2022_114148
crossref_primary_10_1007_s10443_022_10029_0
crossref_primary_10_1016_j_mser_2021_100640
crossref_primary_10_1016_j_sna_2016_12_007
crossref_primary_10_1038_s41427_022_00384_6
crossref_primary_10_1016_j_cplett_2020_137615
crossref_primary_10_1016_j_optlastec_2024_112212
crossref_primary_10_1039_C6TC03713E
crossref_primary_10_1016_j_bios_2018_08_037
crossref_primary_10_1039_D4TA00176A
crossref_primary_10_1002_advs_201801241
crossref_primary_10_1021_acsnano_2c00880
crossref_primary_10_1016_j_sna_2022_113868
crossref_primary_10_1039_C6NR07333F
crossref_primary_10_1021_acsbiomaterials_9b01659
crossref_primary_10_1002_adfm_201910717
crossref_primary_10_1002_smll_202301544
crossref_primary_10_1002_adma_201902278
crossref_primary_10_1038_s41467_019_14260_5
crossref_primary_10_1039_C7TC02630G
crossref_primary_10_1002_adma_202405046
crossref_primary_10_1016_j_carbon_2018_08_028
crossref_primary_10_1016_j_materresbull_2018_02_005
crossref_primary_10_1039_C8BM01290C
crossref_primary_10_1016_j_nanoen_2017_11_001
crossref_primary_10_1039_C8TC04079F
crossref_primary_10_1088_1361_6528_aaabfe
crossref_primary_10_1039_C9NR09557H
crossref_primary_10_1016_j_ccr_2020_213540
crossref_primary_10_1007_s11814_019_0246_6
crossref_primary_10_1016_j_pmatsci_2019_100617
crossref_primary_10_1089_soro_2022_0065
crossref_primary_10_1002_adhm_202100062
crossref_primary_10_1016_j_compscitech_2022_109738
crossref_primary_10_3390_polym14112219
crossref_primary_10_1021_acs_chemrev_1c00531
crossref_primary_10_1039_C8CS00609A
crossref_primary_10_1021_acs_chemrev_2c00469
crossref_primary_10_3390_gels8080515
crossref_primary_10_3390_s22030800
crossref_primary_10_1039_C7TC01977G
crossref_primary_10_1016_j_mseb_2020_114803
crossref_primary_10_1016_j_carbon_2022_06_027
crossref_primary_10_1016_j_nanoen_2017_02_050
crossref_primary_10_1021_acs_langmuir_8b04049
crossref_primary_10_1088_1361_6528_aabbba
crossref_primary_10_1002_adfm_201807882
crossref_primary_10_1002_aisy_202000039
crossref_primary_10_1002_adma_202200980
crossref_primary_10_1016_j_cej_2024_153861
crossref_primary_10_1016_j_matdes_2018_05_040
crossref_primary_10_1016_j_cej_2022_140763
crossref_primary_10_1016_j_mtchem_2020_100297
crossref_primary_10_1016_j_jiec_2020_05_014
crossref_primary_10_1016_j_carbon_2017_10_034
crossref_primary_10_1021_acsami_9b15546
crossref_primary_10_3390_nano7120424
crossref_primary_10_1016_j_trac_2021_116334
crossref_primary_10_1039_C7MH00071E
crossref_primary_10_3390_mi12091091
crossref_primary_10_1021_acsami_0c22756
Cites_doi 10.1002/adfm.201200498
10.1002/adma.201400009
10.1002/aelm.201400063
10.1038/nnano.2011.36
10.1038/ncomms2639
10.1002/adma.201201886
10.1021/nl4000739
10.1021/nn501204t
10.1016/j.carbon.2012.08.048
10.3390/s8063719
10.1039/C3NR04521H
10.1021/nn505953t
10.1021/nn202733f
10.1021/acsnano.5b01613
10.1016/j.carbon.2009.10.012
10.1126/science.1206157
10.1038/nature14002
10.1002/adfm.201400379
10.1002/adfm.201500094
10.1038/ncomms2832
10.1021/acsnano.5b01835
10.1021/nn103523t
10.1021/acsami.5b03824
10.1021/nl204052z
10.1021/nn503454h
10.1039/C4NR03295K
10.1109/JSEN.2013.2272098
10.1002/adma.201204426
10.1002/adma.201305182
10.1002/adma.201403441
10.1038/srep03048
10.1039/c3nr05496a
10.1002/adma.201300794
10.1016/j.snb.2007.12.041
10.1002/adfm.201500628
10.1002/adma.201304742
10.1038/ncomms4132
10.1002/adfm.201501000
10.1002/adfm.201301845
10.1002/adma.200904270
ContentType Journal Article
DBID AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c6tc00251j
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 5647
ExternalDocumentID 10_1039_C6TC00251J
c6tc00251j
GroupedDBID -JG
0-7
0R~
4.4
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
J3G
J3H
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c286t-d7ce23f2447aea3f8e9c45c70c4220b374f3d4b8b48020b29bff0f2079b154b53
ISSN 2050-7526
IngestDate Fri Jul 11 16:08:59 EDT 2025
Tue Jul 01 02:08:34 EDT 2025
Thu Apr 24 23:10:37 EDT 2025
Tue Dec 17 20:59:51 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-d7ce23f2447aea3f8e9c45c70c4220b374f3d4b8b48020b29bff0f2079b154b53
Notes 10.1039/c6tc00251j
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825517839
PQPubID 23500
PageCount 6
ParticipantIDs crossref_citationtrail_10_1039_C6TC00251J
proquest_miscellaneous_1825517839
crossref_primary_10_1039_C6TC00251J
rsc_primary_c6tc00251j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2016
References Gong (C6TC00251J-(cit13)/*[position()=1]) 2015; 1
Hwang (C6TC00251J-(cit14)/*[position()=1]) 2015; 9
Cohen (C6TC00251J-(cit29)/*[position()=1]) 2012; 12
Xu (C6TC00251J-(cit35)/*[position()=1]) 2012; 24
Sun (C6TC00251J-(cit9)/*[position()=1]) 2014; 26
Tian (C6TC00251J-(cit34)/*[position()=1]) 2014; 6
Moon (C6TC00251J-(cit36)/*[position()=1]) 2013; 25
Shin (C6TC00251J-(cit37)/*[position()=1]) 2014; 26
Boland (C6TC00251J-(cit22)/*[position()=1]) 2014; 8
Wu (C6TC00251J-(cit39)/*[position()=1]) 2013; 13
Jeong (C6TC00251J-(cit19)/*[position()=1]) 2015; 25
Munro (C6TC00251J-(cit6)/*[position()=1]) 2008; 131
Moon (C6TC00251J-(cit38)/*[position()=1]) 2011; 5
Roh (C6TC00251J-(cit28)/*[position()=1]) 2015; 9
Lu (C6TC00251J-(cit2)/*[position()=1]) 2012; 22
Choong (C6TC00251J-(cit25)/*[position()=1]) 2014; 26
Hu (C6TC00251J-(cit32)/*[position()=1]) 2010; 48
Trung (C6TC00251J-(cit27)/*[position()=1]) 2014; 24
Mattmann (C6TC00251J-(cit5)/*[position()=1]) 2008; 8
Yao (C6TC00251J-(cit18)/*[position()=1]) 2014; 6
Wang (C6TC00251J-(cit23)/*[position()=1]) 2014; 24
Park (C6TC00251J-(cit26)/*[position()=1]) 2014; 8
Yeo (C6TC00251J-(cit7)/*[position()=1]) 2013; 25
Kim (C6TC00251J-(cit8)/*[position()=1]) 2011; 333
Schwartz (C6TC00251J-(cit4)/*[position()=1]) 2013; 4
Shin (C6TC00251J-(cit31)/*[position()=1]) 2010; 22
Cai (C6TC00251J-(cit30)/*[position()=1]) 2013; 3
Persano (C6TC00251J-(cit3)/*[position()=1]) 2013; 4
Bae (C6TC00251J-(cit20)/*[position()=1]) 2013; 51
Amjadi (C6TC00251J-(cit15)/*[position()=1]) 2014; 8
Liao (C6TC00251J-(cit40)/*[position()=1]) 2015; 25
Lee (C6TC00251J-(cit16)/*[position()=1]) 2015; 25
Yamada (C6TC00251J-(cit1)/*[position()=1]) 2011; 6
Wei (C6TC00251J-(cit17)/*[position()=1]) 2015; 7
Gong (C6TC00251J-(cit12)/*[position()=1]) 2014; 5
Kang (C6TC00251J-(cit24)/*[position()=1]) 2014; 516
Slobodian (C6TC00251J-(cit11)/*[position()=1]) 2013; 13
Yan (C6TC00251J-(cit21)/*[position()=1]) 2014; 26
Wang (C6TC00251J-(cit33)/*[position()=1]) 2011; 5
Lee (C6TC00251J-(cit10)/*[position()=1]) 2014; 6
References_xml – volume: 22
  start-page: 4044
  year: 2012
  ident: C6TC00251J-(cit2)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200498
– volume: 26
  start-page: 3706
  year: 2014
  ident: C6TC00251J-(cit37)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400009
– volume: 1
  start-page: 1400063
  year: 2015
  ident: C6TC00251J-(cit13)/*[position()=1]
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201400063
– volume: 6
  start-page: 296
  year: 2011
  ident: C6TC00251J-(cit1)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.36
– volume: 4
  start-page: 1633
  year: 2013
  ident: C6TC00251J-(cit3)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2639
– volume: 24
  start-page: 5117
  year: 2012
  ident: C6TC00251J-(cit35)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201886
– volume: 13
  start-page: 2381
  year: 2013
  ident: C6TC00251J-(cit39)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl4000739
– volume: 8
  start-page: 5154
  year: 2014
  ident: C6TC00251J-(cit15)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn501204t
– volume: 51
  start-page: 236
  year: 2013
  ident: C6TC00251J-(cit20)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.08.048
– volume: 8
  start-page: 3719
  year: 2008
  ident: C6TC00251J-(cit5)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s8063719
– volume: 6
  start-page: 699
  year: 2014
  ident: C6TC00251J-(cit34)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C3NR04521H
– volume: 8
  start-page: 12020
  year: 2014
  ident: C6TC00251J-(cit26)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn505953t
– volume: 5
  start-page: 8600
  year: 2011
  ident: C6TC00251J-(cit38)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn202733f
– volume: 9
  start-page: 6252
  year: 2015
  ident: C6TC00251J-(cit28)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01613
– volume: 48
  start-page: 680
  year: 2010
  ident: C6TC00251J-(cit32)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.10.012
– volume: 333
  start-page: 838
  year: 2011
  ident: C6TC00251J-(cit8)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1206157
– volume: 516
  start-page: 222
  year: 2014
  ident: C6TC00251J-(cit24)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature14002
– volume: 24
  start-page: 4666
  year: 2014
  ident: C6TC00251J-(cit23)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201400379
– volume: 25
  start-page: 2395
  year: 2015
  ident: C6TC00251J-(cit40)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500094
– volume: 4
  start-page: 1859
  year: 2013
  ident: C6TC00251J-(cit4)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2832
– volume: 9
  start-page: 8801
  year: 2015
  ident: C6TC00251J-(cit14)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01835
– volume: 5
  start-page: 3645
  year: 2011
  ident: C6TC00251J-(cit33)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn103523t
– volume: 7
  start-page: 14182
  year: 2015
  ident: C6TC00251J-(cit17)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03824
– volume: 12
  start-page: 1821
  year: 2012
  ident: C6TC00251J-(cit29)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl204052z
– volume: 8
  start-page: 8819
  year: 2014
  ident: C6TC00251J-(cit22)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn503454h
– volume: 6
  start-page: 11932
  year: 2014
  ident: C6TC00251J-(cit10)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C4NR03295K
– volume: 13
  start-page: 4045
  year: 2013
  ident: C6TC00251J-(cit11)/*[position()=1]
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2013.2272098
– volume: 25
  start-page: 2773
  year: 2013
  ident: C6TC00251J-(cit7)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204426
– volume: 26
  start-page: 3451
  year: 2014
  ident: C6TC00251J-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305182
– volume: 26
  start-page: 7608
  year: 2014
  ident: C6TC00251J-(cit9)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201403441
– volume: 3
  start-page: 3048
  year: 2013
  ident: C6TC00251J-(cit30)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep03048
– volume: 6
  start-page: 2345
  year: 2014
  ident: C6TC00251J-(cit18)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c3nr05496a
– volume: 25
  start-page: 2707
  year: 2013
  ident: C6TC00251J-(cit36)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300794
– volume: 131
  start-page: 541
  year: 2008
  ident: C6TC00251J-(cit6)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2007.12.041
– volume: 25
  start-page: 3114
  year: 2015
  ident: C6TC00251J-(cit16)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500628
– volume: 26
  start-page: 2022
  year: 2014
  ident: C6TC00251J-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304742
– volume: 5
  start-page: 3132
  year: 2014
  ident: C6TC00251J-(cit12)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4132
– volume: 25
  start-page: 4228
  year: 2015
  ident: C6TC00251J-(cit19)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501000
– volume: 24
  start-page: 117
  year: 2014
  ident: C6TC00251J-(cit27)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301845
– volume: 22
  start-page: 2663
  year: 2010
  ident: C6TC00251J-(cit31)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200904270
SSID ssj0000816869
Score 2.4000995
Snippet We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5642
SubjectTerms Bending
Detection
Durability
Gold
Nanostructure
Sensors
Strain
Stretching
Title Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection
URI https://www.proquest.com/docview/1825517839
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TUjwgGAwUW4ygheUZaSOc-njqAplQnvqpL1F8W0TVMnUJprGP-JfcnyJE1iRBi9R6tjO5Xw9Psc-Ph9C75hIGFgRIkwjlYc05qAHY07CSSZ4zNIJZ9IEyJ6mizN6cp6cj0Y_B1FLbcOO-I-t-0r-R6pQBnLVu2T_QbK-UyiAc5AvHEHCcLyTjHWQxuom2OggdK229PdqWrMbqovKFO3abI66qFciqMqq3lzqVeiNoYYwLTXbjo41tGx9ltUnELIxMVrVX4xXsHPtCwa8Y4w7CmZ28093RXdaXzU-HcGAcUdIo6B8NJCldP7cXoaL61tBQqelDOetG2H72h9voOz7tXtEN3ExGU5cGP1GoiQKs4S4TNjDMje_6RQ0HeCQ0IG2TVKbmcuN3PAz2zoqRLFOqjpL9SoK2HMn_djXrff_MST6QEWzRB9Pi77tDtoj4JGASt07ni-_fPUTeobBxFAo-hfr0uHG0w99B78bQL1Xs7PuKGeMabN8hB46seJjC7DHaCSrffRgkKlyH90zkcJ88wQVFnTYg-4QO8gdYpAydoDDGnDYAw5bwGEHOAzYwAZw2AIOe8A9RWef5svZInQsHSEnedqEIuOSxArMxKyUZaxyOeU04VnEKSERizOqYkFZzmgOrgkjU6ZUpEiUTRmY76AoDtBuVVfyGcKMKpqnKhU0g9o0KaVMJQP9IVSZC6rG6H336QruUtjrp18Vt-U0Rm993SubuGVrrTedBAr4s-jFsrKSdbspwO8GZyID_2GMDkA0vhOeNtw0_vb8Trd4ge736H-Jdpt1K1-BIduw1w5CvwANO6Ak
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive%2C+tunable%2C+and+durable+gold+nanosheet+strain+sensors+for+human+motion+detection&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Lim%2C+Guh-Hwan&rft.au=Lee%2C+Nae-Eung&rft.au=Lim%2C+Byungkwon&rft.date=2016-01-01&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=4&rft.issue=24&rft.spage=5642&rft.epage=5647&rft_id=info:doi/10.1039%2FC6TC00251J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6TC00251J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon