Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection
We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by control...
Saved in:
Published in | Journal of materials chemistry. C, Materials for optical and electronic devices Vol. 4; no. 24; pp. 5642 - 5647 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by controlling the stacking number of micrometer-sized Au nanosheets with a thickness of ∼20 nm, which enabled the control of piezoresisitivity of the sensing layer through the change in contact resistance between Au nanosheets under mechanical bending and stretching. The Au nanosheet-based strain sensors exhibited excellent electrical stability without degradation in sensing-performance even after 10 000 stretching cycles. Our highly sensitive, reproducible, tunable, and durable strain sensors were demonstrated to monitor large-scale body motions such as bending, walking, jumping, and squatting, as well as to detect small skin strains induced by minute movements of muscles upon breathing, speaking, and coughing.
We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. |
---|---|
AbstractList | We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by controlling the stacking number of micrometer-sized Au nanosheets with a thickness of similar to 20 nm, which enabled the control of piezoresisitivity of the sensing layer through the change in contact resistance between Au nanosheets under mechanical bending and stretching. The Au nanosheet-based strain sensors exhibited excellent electrical stability without degradation in sensing-performance even after 10 000 stretching cycles. Our highly sensitive, reproducible, tunable, and durable strain sensors were demonstrated to monitor large-scale body motions such as bending, walking, jumping, and squatting, as well as to detect small skin strains induced by minute movements of muscles upon breathing, speaking, and coughing. We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by controlling the stacking number of micrometer-sized Au nanosheets with a thickness of ∼20 nm, which enabled the control of piezoresisitivity of the sensing layer through the change in contact resistance between Au nanosheets under mechanical bending and stretching. The Au nanosheet-based strain sensors exhibited excellent electrical stability without degradation in sensing-performance even after 10 000 stretching cycles. Our highly sensitive, reproducible, tunable, and durable strain sensors were demonstrated to monitor large-scale body motions such as bending, walking, jumping, and squatting, as well as to detect small skin strains induced by minute movements of muscles upon breathing, speaking, and coughing. We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. The high sensitivity of the sensor at different levels of strain was achieved by controlling the stacking number of micrometer-sized Au nanosheets with a thickness of ∼20 nm, which enabled the control of piezoresisitivity of the sensing layer through the change in contact resistance between Au nanosheets under mechanical bending and stretching. The Au nanosheet-based strain sensors exhibited excellent electrical stability without degradation in sensing-performance even after 10 000 stretching cycles. Our highly sensitive, reproducible, tunable, and durable strain sensors were demonstrated to monitor large-scale body motions such as bending, walking, jumping, and squatting, as well as to detect small skin strains induced by minute movements of muscles upon breathing, speaking, and coughing. We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a sensing layer on a highly stretchable Ecoflex substrate. |
Author | Lee, Nae-Eung Lim, Guh-Hwan Lim, Byungkwon |
AuthorAffiliation | School of Advanced Materials Science and Engineering Sungkyunkwan University (SKKU) |
AuthorAffiliation_xml | – sequence: 0 name: School of Advanced Materials Science and Engineering – sequence: 0 name: Sungkyunkwan University (SKKU) |
Author_xml | – sequence: 1 givenname: Guh-Hwan surname: Lim fullname: Lim, Guh-Hwan – sequence: 2 givenname: Nae-Eung surname: Lee fullname: Lee, Nae-Eung – sequence: 3 givenname: Byungkwon surname: Lim fullname: Lim, Byungkwon |
BookMark | eNptkdtLwzAUxoNMcM69-C7kUcRqmkubPkrxysCX-VzSNNky2mQmqbD_3naTCeJ5Od-B33c4l3Mwsc4qAC5TdJciUtzLLEqEMEs3J2CKEUNJzgidHDXOzsA8hA0agqcZz4opqF7Mat3uYFA2mGi-1C2MvRV1OwhhG9j0fizgyrUNtMK6sFYqwhC9MHbvcj5A7Txc952wsHPROAsbFZUc1QU41aINav6TZ-Dj6XFZviSL9-fX8mGRSMyzmDS5VJhoTGkulCCaq0JSJnMkKcaoJjnVpKE1rylHQ42LWmukMcqLOmW0ZmQGrg99t9599irEqjNBqrYVVrk-VCnHjKU5J8WAogMqvQvBK11JE8U47LhUW6WoGs9Zldmy3J_zbbDc_LFsvemE3_0PXx1gH-SR-_0N-Qby7IH2 |
CitedBy_id | crossref_primary_10_1109_JSEN_2023_3299610 crossref_primary_10_1016_j_matdes_2020_109178 crossref_primary_10_1021_acssuschemeng_1c05574 crossref_primary_10_1016_j_cej_2024_150931 crossref_primary_10_1016_j_compositesb_2020_108224 crossref_primary_10_1063_5_0093261 crossref_primary_10_1088_1361_665X_ab1fa9 crossref_primary_10_1177_2472630319891128 crossref_primary_10_1002_adfm_202113012 crossref_primary_10_1002_adma_201704229 crossref_primary_10_1007_s12274_017_1523_5 crossref_primary_10_1016_j_cej_2019_123336 crossref_primary_10_1021_acsami_9b12600 crossref_primary_10_1039_C8NR02514B crossref_primary_10_1038_s44222_023_00102_z crossref_primary_10_1007_s13204_020_01619_0 crossref_primary_10_1016_j_sna_2022_114148 crossref_primary_10_1007_s10443_022_10029_0 crossref_primary_10_1016_j_mser_2021_100640 crossref_primary_10_1016_j_sna_2016_12_007 crossref_primary_10_1038_s41427_022_00384_6 crossref_primary_10_1016_j_cplett_2020_137615 crossref_primary_10_1016_j_optlastec_2024_112212 crossref_primary_10_1039_C6TC03713E crossref_primary_10_1016_j_bios_2018_08_037 crossref_primary_10_1039_D4TA00176A crossref_primary_10_1002_advs_201801241 crossref_primary_10_1021_acsnano_2c00880 crossref_primary_10_1016_j_sna_2022_113868 crossref_primary_10_1039_C6NR07333F crossref_primary_10_1021_acsbiomaterials_9b01659 crossref_primary_10_1002_adfm_201910717 crossref_primary_10_1002_smll_202301544 crossref_primary_10_1002_adma_201902278 crossref_primary_10_1038_s41467_019_14260_5 crossref_primary_10_1039_C7TC02630G crossref_primary_10_1002_adma_202405046 crossref_primary_10_1016_j_carbon_2018_08_028 crossref_primary_10_1016_j_materresbull_2018_02_005 crossref_primary_10_1039_C8BM01290C crossref_primary_10_1016_j_nanoen_2017_11_001 crossref_primary_10_1039_C8TC04079F crossref_primary_10_1088_1361_6528_aaabfe crossref_primary_10_1039_C9NR09557H crossref_primary_10_1016_j_ccr_2020_213540 crossref_primary_10_1007_s11814_019_0246_6 crossref_primary_10_1016_j_pmatsci_2019_100617 crossref_primary_10_1089_soro_2022_0065 crossref_primary_10_1002_adhm_202100062 crossref_primary_10_1016_j_compscitech_2022_109738 crossref_primary_10_3390_polym14112219 crossref_primary_10_1021_acs_chemrev_1c00531 crossref_primary_10_1039_C8CS00609A crossref_primary_10_1021_acs_chemrev_2c00469 crossref_primary_10_3390_gels8080515 crossref_primary_10_3390_s22030800 crossref_primary_10_1039_C7TC01977G crossref_primary_10_1016_j_mseb_2020_114803 crossref_primary_10_1016_j_carbon_2022_06_027 crossref_primary_10_1016_j_nanoen_2017_02_050 crossref_primary_10_1021_acs_langmuir_8b04049 crossref_primary_10_1088_1361_6528_aabbba crossref_primary_10_1002_adfm_201807882 crossref_primary_10_1002_aisy_202000039 crossref_primary_10_1002_adma_202200980 crossref_primary_10_1016_j_cej_2024_153861 crossref_primary_10_1016_j_matdes_2018_05_040 crossref_primary_10_1016_j_cej_2022_140763 crossref_primary_10_1016_j_mtchem_2020_100297 crossref_primary_10_1016_j_jiec_2020_05_014 crossref_primary_10_1016_j_carbon_2017_10_034 crossref_primary_10_1021_acsami_9b15546 crossref_primary_10_3390_nano7120424 crossref_primary_10_1016_j_trac_2021_116334 crossref_primary_10_1039_C7MH00071E crossref_primary_10_3390_mi12091091 crossref_primary_10_1021_acsami_0c22756 |
Cites_doi | 10.1002/adfm.201200498 10.1002/adma.201400009 10.1002/aelm.201400063 10.1038/nnano.2011.36 10.1038/ncomms2639 10.1002/adma.201201886 10.1021/nl4000739 10.1021/nn501204t 10.1016/j.carbon.2012.08.048 10.3390/s8063719 10.1039/C3NR04521H 10.1021/nn505953t 10.1021/nn202733f 10.1021/acsnano.5b01613 10.1016/j.carbon.2009.10.012 10.1126/science.1206157 10.1038/nature14002 10.1002/adfm.201400379 10.1002/adfm.201500094 10.1038/ncomms2832 10.1021/acsnano.5b01835 10.1021/nn103523t 10.1021/acsami.5b03824 10.1021/nl204052z 10.1021/nn503454h 10.1039/C4NR03295K 10.1109/JSEN.2013.2272098 10.1002/adma.201204426 10.1002/adma.201305182 10.1002/adma.201403441 10.1038/srep03048 10.1039/c3nr05496a 10.1002/adma.201300794 10.1016/j.snb.2007.12.041 10.1002/adfm.201500628 10.1002/adma.201304742 10.1038/ncomms4132 10.1002/adfm.201501000 10.1002/adfm.201301845 10.1002/adma.200904270 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c6tc00251j |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2050-7534 |
EndPage | 5647 |
ExternalDocumentID | 10_1039_C6TC00251J c6tc00251j |
GroupedDBID | -JG 0-7 0R~ 4.4 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION J3G J3H 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c286t-d7ce23f2447aea3f8e9c45c70c4220b374f3d4b8b48020b29bff0f2079b154b53 |
ISSN | 2050-7526 |
IngestDate | Fri Jul 11 16:08:59 EDT 2025 Tue Jul 01 02:08:34 EDT 2025 Thu Apr 24 23:10:37 EDT 2025 Tue Dec 17 20:59:51 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-d7ce23f2447aea3f8e9c45c70c4220b374f3d4b8b48020b29bff0f2079b154b53 |
Notes | 10.1039/c6tc00251j Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1825517839 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1039_C6TC00251J proquest_miscellaneous_1825517839 crossref_primary_10_1039_C6TC00251J rsc_primary_c6tc00251j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. C, Materials for optical and electronic devices |
PublicationYear | 2016 |
References | Gong (C6TC00251J-(cit13)/*[position()=1]) 2015; 1 Hwang (C6TC00251J-(cit14)/*[position()=1]) 2015; 9 Cohen (C6TC00251J-(cit29)/*[position()=1]) 2012; 12 Xu (C6TC00251J-(cit35)/*[position()=1]) 2012; 24 Sun (C6TC00251J-(cit9)/*[position()=1]) 2014; 26 Tian (C6TC00251J-(cit34)/*[position()=1]) 2014; 6 Moon (C6TC00251J-(cit36)/*[position()=1]) 2013; 25 Shin (C6TC00251J-(cit37)/*[position()=1]) 2014; 26 Boland (C6TC00251J-(cit22)/*[position()=1]) 2014; 8 Wu (C6TC00251J-(cit39)/*[position()=1]) 2013; 13 Jeong (C6TC00251J-(cit19)/*[position()=1]) 2015; 25 Munro (C6TC00251J-(cit6)/*[position()=1]) 2008; 131 Moon (C6TC00251J-(cit38)/*[position()=1]) 2011; 5 Roh (C6TC00251J-(cit28)/*[position()=1]) 2015; 9 Lu (C6TC00251J-(cit2)/*[position()=1]) 2012; 22 Choong (C6TC00251J-(cit25)/*[position()=1]) 2014; 26 Hu (C6TC00251J-(cit32)/*[position()=1]) 2010; 48 Trung (C6TC00251J-(cit27)/*[position()=1]) 2014; 24 Mattmann (C6TC00251J-(cit5)/*[position()=1]) 2008; 8 Yao (C6TC00251J-(cit18)/*[position()=1]) 2014; 6 Wang (C6TC00251J-(cit23)/*[position()=1]) 2014; 24 Park (C6TC00251J-(cit26)/*[position()=1]) 2014; 8 Yeo (C6TC00251J-(cit7)/*[position()=1]) 2013; 25 Kim (C6TC00251J-(cit8)/*[position()=1]) 2011; 333 Schwartz (C6TC00251J-(cit4)/*[position()=1]) 2013; 4 Shin (C6TC00251J-(cit31)/*[position()=1]) 2010; 22 Cai (C6TC00251J-(cit30)/*[position()=1]) 2013; 3 Persano (C6TC00251J-(cit3)/*[position()=1]) 2013; 4 Bae (C6TC00251J-(cit20)/*[position()=1]) 2013; 51 Amjadi (C6TC00251J-(cit15)/*[position()=1]) 2014; 8 Liao (C6TC00251J-(cit40)/*[position()=1]) 2015; 25 Lee (C6TC00251J-(cit16)/*[position()=1]) 2015; 25 Yamada (C6TC00251J-(cit1)/*[position()=1]) 2011; 6 Wei (C6TC00251J-(cit17)/*[position()=1]) 2015; 7 Gong (C6TC00251J-(cit12)/*[position()=1]) 2014; 5 Kang (C6TC00251J-(cit24)/*[position()=1]) 2014; 516 Slobodian (C6TC00251J-(cit11)/*[position()=1]) 2013; 13 Yan (C6TC00251J-(cit21)/*[position()=1]) 2014; 26 Wang (C6TC00251J-(cit33)/*[position()=1]) 2011; 5 Lee (C6TC00251J-(cit10)/*[position()=1]) 2014; 6 |
References_xml | – volume: 22 start-page: 4044 year: 2012 ident: C6TC00251J-(cit2)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200498 – volume: 26 start-page: 3706 year: 2014 ident: C6TC00251J-(cit37)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201400009 – volume: 1 start-page: 1400063 year: 2015 ident: C6TC00251J-(cit13)/*[position()=1] publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201400063 – volume: 6 start-page: 296 year: 2011 ident: C6TC00251J-(cit1)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.36 – volume: 4 start-page: 1633 year: 2013 ident: C6TC00251J-(cit3)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2639 – volume: 24 start-page: 5117 year: 2012 ident: C6TC00251J-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201201886 – volume: 13 start-page: 2381 year: 2013 ident: C6TC00251J-(cit39)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl4000739 – volume: 8 start-page: 5154 year: 2014 ident: C6TC00251J-(cit15)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn501204t – volume: 51 start-page: 236 year: 2013 ident: C6TC00251J-(cit20)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2012.08.048 – volume: 8 start-page: 3719 year: 2008 ident: C6TC00251J-(cit5)/*[position()=1] publication-title: Sensors doi: 10.3390/s8063719 – volume: 6 start-page: 699 year: 2014 ident: C6TC00251J-(cit34)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C3NR04521H – volume: 8 start-page: 12020 year: 2014 ident: C6TC00251J-(cit26)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn505953t – volume: 5 start-page: 8600 year: 2011 ident: C6TC00251J-(cit38)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn202733f – volume: 9 start-page: 6252 year: 2015 ident: C6TC00251J-(cit28)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b01613 – volume: 48 start-page: 680 year: 2010 ident: C6TC00251J-(cit32)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2009.10.012 – volume: 333 start-page: 838 year: 2011 ident: C6TC00251J-(cit8)/*[position()=1] publication-title: Science doi: 10.1126/science.1206157 – volume: 516 start-page: 222 year: 2014 ident: C6TC00251J-(cit24)/*[position()=1] publication-title: Nature doi: 10.1038/nature14002 – volume: 24 start-page: 4666 year: 2014 ident: C6TC00251J-(cit23)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400379 – volume: 25 start-page: 2395 year: 2015 ident: C6TC00251J-(cit40)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500094 – volume: 4 start-page: 1859 year: 2013 ident: C6TC00251J-(cit4)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms2832 – volume: 9 start-page: 8801 year: 2015 ident: C6TC00251J-(cit14)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.5b01835 – volume: 5 start-page: 3645 year: 2011 ident: C6TC00251J-(cit33)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn103523t – volume: 7 start-page: 14182 year: 2015 ident: C6TC00251J-(cit17)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03824 – volume: 12 start-page: 1821 year: 2012 ident: C6TC00251J-(cit29)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl204052z – volume: 8 start-page: 8819 year: 2014 ident: C6TC00251J-(cit22)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn503454h – volume: 6 start-page: 11932 year: 2014 ident: C6TC00251J-(cit10)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C4NR03295K – volume: 13 start-page: 4045 year: 2013 ident: C6TC00251J-(cit11)/*[position()=1] publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2013.2272098 – volume: 25 start-page: 2773 year: 2013 ident: C6TC00251J-(cit7)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201204426 – volume: 26 start-page: 3451 year: 2014 ident: C6TC00251J-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201305182 – volume: 26 start-page: 7608 year: 2014 ident: C6TC00251J-(cit9)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201403441 – volume: 3 start-page: 3048 year: 2013 ident: C6TC00251J-(cit30)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep03048 – volume: 6 start-page: 2345 year: 2014 ident: C6TC00251J-(cit18)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c3nr05496a – volume: 25 start-page: 2707 year: 2013 ident: C6TC00251J-(cit36)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201300794 – volume: 131 start-page: 541 year: 2008 ident: C6TC00251J-(cit6)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2007.12.041 – volume: 25 start-page: 3114 year: 2015 ident: C6TC00251J-(cit16)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500628 – volume: 26 start-page: 2022 year: 2014 ident: C6TC00251J-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201304742 – volume: 5 start-page: 3132 year: 2014 ident: C6TC00251J-(cit12)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4132 – volume: 25 start-page: 4228 year: 2015 ident: C6TC00251J-(cit19)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501000 – volume: 24 start-page: 117 year: 2014 ident: C6TC00251J-(cit27)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201301845 – volume: 22 start-page: 2663 year: 2010 ident: C6TC00251J-(cit31)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200904270 |
SSID | ssj0000816869 |
Score | 2.4000995 |
Snippet | We report highly sensitive, tunable, and durable strain sensors based on a simple structure consisting of a multilayered film of gold (Au) nanosheets as a... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5642 |
SubjectTerms | Bending Detection Durability Gold Nanostructure Sensors Strain Stretching |
Title | Highly sensitive, tunable, and durable gold nanosheet strain sensors for human motion detection |
URI | https://www.proquest.com/docview/1825517839 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa6TUjwgGAwUW4ygheUZaSOc-njqAplQnvqpL1F8W0TVMnUJprGP-JfcnyJE1iRBi9R6tjO5Xw9Psc-Ph9C75hIGFgRIkwjlYc05qAHY07CSSZ4zNIJZ9IEyJ6mizN6cp6cj0Y_B1FLbcOO-I-t-0r-R6pQBnLVu2T_QbK-UyiAc5AvHEHCcLyTjHWQxuom2OggdK229PdqWrMbqovKFO3abI66qFciqMqq3lzqVeiNoYYwLTXbjo41tGx9ltUnELIxMVrVX4xXsHPtCwa8Y4w7CmZ28093RXdaXzU-HcGAcUdIo6B8NJCldP7cXoaL61tBQqelDOetG2H72h9voOz7tXtEN3ExGU5cGP1GoiQKs4S4TNjDMje_6RQ0HeCQ0IG2TVKbmcuN3PAz2zoqRLFOqjpL9SoK2HMn_djXrff_MST6QEWzRB9Pi77tDtoj4JGASt07ni-_fPUTeobBxFAo-hfr0uHG0w99B78bQL1Xs7PuKGeMabN8hB46seJjC7DHaCSrffRgkKlyH90zkcJ88wQVFnTYg-4QO8gdYpAydoDDGnDYAw5bwGEHOAzYwAZw2AIOe8A9RWef5svZInQsHSEnedqEIuOSxArMxKyUZaxyOeU04VnEKSERizOqYkFZzmgOrgkjU6ZUpEiUTRmY76AoDtBuVVfyGcKMKpqnKhU0g9o0KaVMJQP9IVSZC6rG6H336QruUtjrp18Vt-U0Rm993SubuGVrrTedBAr4s-jFsrKSdbspwO8GZyID_2GMDkA0vhOeNtw0_vb8Trd4ge736H-Jdpt1K1-BIduw1w5CvwANO6Ak |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+sensitive%2C+tunable%2C+and+durable+gold+nanosheet+strain+sensors+for+human+motion+detection&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Lim%2C+Guh-Hwan&rft.au=Lee%2C+Nae-Eung&rft.au=Lim%2C+Byungkwon&rft.date=2016-01-01&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=4&rft.issue=24&rft.spage=5642&rft.epage=5647&rft_id=info:doi/10.1039%2FC6TC00251J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6TC00251J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon |