The conditional maximum likelihood estimation for the Cox-Aalen model with doubly truncated data

Doubly truncated (DT) data occur when event times are observed only if they fall within subject-specific, possibly random, intervals. In this article, we consider conditional maximum likelihood estimation for the regression parameters of the Cox-Aalen model with DT data. Based on gradient projection...

Full description

Saved in:
Bibliographic Details
Published inStatistics (Berlin, DDR) Vol. 59; no. 1; pp. 228 - 245
Main Authors Su, Chun-Lung, Shen, Pao-sheng
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.01.2025
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Doubly truncated (DT) data occur when event times are observed only if they fall within subject-specific, possibly random, intervals. In this article, we consider conditional maximum likelihood estimation for the regression parameters of the Cox-Aalen model with DT data. Based on gradient projection method (GPM), we propose computational algorithms for obtaining the conditional maximum likelihood estimator (cMLE). The proposed cMLE is shown to be consistent and asymptotically normal. Simulation studies show that the cMLE performs well in finite samples.
AbstractList Doubly truncated (DT) data occur when event times are observed only if they fall within subject-specific, possibly random, intervals. In this article, we consider conditional maximum likelihood estimation for the regression parameters of the Cox-Aalen model with DT data. Based on gradient projection method (GPM), we propose computational algorithms for obtaining the conditional maximum likelihood estimator (cMLE). The proposed cMLE is shown to be consistent and asymptotically normal. Simulation studies show that the cMLE performs well in finite samples.
Author Shen, Pao-sheng
Su, Chun-Lung
Author_xml – sequence: 1
  givenname: Chun-Lung
  surname: Su
  fullname: Su, Chun-Lung
  organization: Tunghai University
– sequence: 2
  givenname: Pao-sheng
  surname: Shen
  fullname: Shen, Pao-sheng
  email: psshen@thu.edu.tw
  organization: Tunghai University
BookMark eNp9kM1OwzAQhC1UJNrCIyBZ4pyyjp3EuVFV_EmVuJSzcRxbdXHi4jhq-_Ykarly2sPOzO58MzRpfasRuiewIMDhEVJKCed8kULKFimjpKDFFZoSSMuElQQmaDpqklF0g2ZdtwOAnNJiir42W42Vb2sbrW-lw4082qZvsLPf2tmt9zXWXbSNHPfY-IDj4Fj5Y7KUTre48bV2-GDjFte-r9wJx9C3SkZd41pGeYuujXSdvrvMOfp8ed6s3pL1x-v7arlOVMrzmChdsAxkVRFgxlQZNyZXJZBCMUYo51meEaBEEU5ppYrcmKJSXBUVyFLCsJqjh3PuPviffnhZ7HwfhkadoCSjZUlLNqqys0oF33VBG7EPQ7dwEgTECFP8wRQjTHGBOfiezj7bDggaefDB1SLKk_PBBNkqO575N-IXDll9aw
Cites_doi 10.1007/s00180-020-01027-6
10.32614/CRAN.package.double.truncation
10.1093/mnras/155.1.95
10.1007/s10985-014-9297-5
10.1002/sim.v29.30
10.1007/s00362-016-0870-8
10.1093/biomet/ass009
10.1016/j.stamet.2015.11.002
10.1111/biom.12809
10.1016/j.jkss.2018.12.003
10.1093/biomet/89.3.659
10.1080/03610926.2017.1390135
10.1080/10485250903556102
10.1111/sjos.2002.29.issue-1
10.1080/01621459.1989.10478828
10.1016/j.csda.2012.11.017
10.1007/s00180-015-0564-z
10.1111/sjos.v42.2
10.1098/rspb.1988.0026
10.1080/01621459.1989.10478780
10.1007/s00362-015-0730-y
10.1137/0320018
10.1214/12-EJS683
10.1111/biom.12771
10.1111/biom.v78.2
10.1093/biomet/asu005
10.1515/ijb-2013-0060
10.18637/jss.v037.i07
10.1007/s00180-014-0496-z
10.1080/02331888.2019.1633327
10.1016/j.csda.2019.106862
10.3150/20-BEJ1236
10.1007/978-981-13-6241-5
10.1007/s10463-008-0192-2
10.1109/TAC.1976.1101194
10.1111/j.2517-6161.1972.tb00899.x
10.1016/j.spl.2004.10.014
10.1080/01621459.1999.10474187
10.1016/j.jkss.2018.10.005
10.1080/03610920903219272
10.1007/978-1-4757-2545-2
10.1214/aos/1176346584
10.1007/978-1-4615-7397-5_1
10.1111/stan.v73.2
10.1007/s00180-012-0318-0
10.1038/328719a0
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
DOI 10.1080/02331888.2024.2431737
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1029-4910
EndPage 245
ExternalDocumentID 10_1080_02331888_2024_2431737
2431737
Genre Research Article
GrantInformation_xml – fundername: National Science and Technology Council
  grantid: NSTC 113-2118-M-029 -004
GroupedDBID .7F
.QJ
0BK
0R~
123
29Q
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~9
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ACUHS
TASJS
ID FETCH-LOGICAL-c286t-ce7450abb104ffb58ff6c9017c4413885651031c1833bc76ff7bc8c7b0a9a0103
ISSN 0233-1888
IngestDate Wed Aug 13 06:38:40 EDT 2025
Thu Jul 03 08:35:26 EDT 2025
Sat Jun 14 04:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-ce7450abb104ffb58ff6c9017c4413885651031c1833bc76ff7bc8c7b0a9a0103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3153993940
PQPubID 216163
PageCount 18
ParticipantIDs crossref_primary_10_1080_02331888_2024_2431737
proquest_journals_3153993940
informaworld_taylorfrancis_310_1080_02331888_2024_2431737
PublicationCentury 2000
PublicationDate 2025-01-02
PublicationDateYYYYMMDD 2025-01-02
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Statistics (Berlin, DDR)
PublicationYear 2025
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_43_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
de Uña-Álvarez J (e_1_3_2_22_1) 2021
e_1_3_2_50_1
R Core Team (e_1_3_2_19_1) 2017
e_1_3_2_27_1
e_1_3_2_29_1
e_1_3_2_42_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_40_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_51_1
Zeng D (e_1_3_2_53_1) 2010; 20
References_xml – ident: e_1_3_2_35_1
  doi: 10.1007/s00180-020-01027-6
– ident: e_1_3_2_21_1
  doi: 10.32614/CRAN.package.double.truncation
– ident: e_1_3_2_5_1
  doi: 10.1093/mnras/155.1.95
– ident: e_1_3_2_15_1
  doi: 10.1007/s10985-014-9297-5
– ident: e_1_3_2_10_1
  doi: 10.1002/sim.v29.30
– ident: e_1_3_2_29_1
  doi: 10.1007/s00362-016-0870-8
– ident: e_1_3_2_2_1
  doi: 10.1093/biomet/ass009
– ident: e_1_3_2_28_1
  doi: 10.1016/j.stamet.2015.11.002
– ident: e_1_3_2_26_1
  doi: 10.1111/biom.12809
– ident: e_1_3_2_30_1
  doi: 10.1016/j.jkss.2018.12.003
– ident: e_1_3_2_32_1
  doi: 10.1093/biomet/89.3.659
– ident: e_1_3_2_39_1
  doi: 10.1080/03610926.2017.1390135
– ident: e_1_3_2_8_1
  doi: 10.1080/10485250903556102
– ident: e_1_3_2_36_1
  doi: 10.1111/sjos.2002.29.issue-1
– ident: e_1_3_2_51_1
  doi: 10.1080/01621459.1989.10478828
– ident: e_1_3_2_14_1
  doi: 10.1016/j.csda.2012.11.017
– ident: e_1_3_2_16_1
  doi: 10.1007/s00180-015-0564-z
– ident: e_1_3_2_41_1
  doi: 10.1111/sjos.v42.2
– ident: e_1_3_2_50_1
  doi: 10.1098/rspb.1988.0026
– ident: e_1_3_2_20_1
– ident: e_1_3_2_48_1
  doi: 10.1080/01621459.1989.10478780
– ident: e_1_3_2_17_1
  doi: 10.1007/s00362-015-0730-y
– ident: e_1_3_2_45_1
  doi: 10.1137/0320018
– ident: e_1_3_2_13_1
  doi: 10.1214/12-EJS683
– ident: e_1_3_2_25_1
  doi: 10.1111/biom.12771
– ident: e_1_3_2_33_1
  doi: 10.1111/biom.v78.2
– ident: e_1_3_2_3_1
  doi: 10.1093/biomet/asu005
– ident: e_1_3_2_4_1
  doi: 10.1515/ijb-2013-0060
– ident: e_1_3_2_9_1
  doi: 10.18637/jss.v037.i07
– volume: 20
  start-page: 871
  year: 2010
  ident: e_1_3_2_53_1
  article-title: A general asymptotic theory for maximum likelihood estimation in semiparametric regression model with censored data
  publication-title: Stat Sin
– ident: e_1_3_2_12_1
  doi: 10.1007/s00180-014-0496-z
– ident: e_1_3_2_47_1
– ident: e_1_3_2_42_1
  doi: 10.1080/02331888.2019.1633327
– ident: e_1_3_2_34_1
  doi: 10.1016/j.csda.2019.106862
– volume-title: The statistical analysis of doubly truncated data: with applications in R
  year: 2021
  ident: e_1_3_2_22_1
– ident: e_1_3_2_18_1
  doi: 10.3150/20-BEJ1236
– ident: e_1_3_2_23_1
  doi: 10.1007/978-981-13-6241-5
– ident: e_1_3_2_7_1
  doi: 10.1007/s10463-008-0192-2
– ident: e_1_3_2_44_1
  doi: 10.1109/TAC.1976.1101194
– volume-title: R: a language and environment for statistical computing
  year: 2017
  ident: e_1_3_2_19_1
– ident: e_1_3_2_31_1
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_3_2_46_1
– ident: e_1_3_2_38_1
  doi: 10.1016/j.spl.2004.10.014
– ident: e_1_3_2_6_1
  doi: 10.1080/01621459.1999.10474187
– ident: e_1_3_2_24_1
  doi: 10.1016/j.jkss.2018.10.005
– ident: e_1_3_2_11_1
  doi: 10.1080/03610920903219272
– ident: e_1_3_2_52_1
  doi: 10.1007/978-1-4757-2545-2
– ident: e_1_3_2_43_1
  doi: 10.1214/aos/1176346584
– ident: e_1_3_2_37_1
  doi: 10.1007/978-1-4615-7397-5_1
– ident: e_1_3_2_40_1
  doi: 10.1111/stan.v73.2
– ident: e_1_3_2_27_1
  doi: 10.1007/s00180-012-0318-0
– ident: e_1_3_2_49_1
  doi: 10.1038/328719a0
SSID ssj0006337
Score 2.3300831
Snippet Doubly truncated (DT) data occur when event times are observed only if they fall within subject-specific, possibly random, intervals. In this article, we...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 228
SubjectTerms additive hazard regression
Algorithms
conditional likelihood
Cox model
double truncation
EM algorithm
Maximum likelihood estimation
Maximum likelihood estimators
Parameter estimation
Primary: 62N99
Regression models
Secondary: 62N02
Simulation
Title The conditional maximum likelihood estimation for the Cox-Aalen model with doubly truncated data
URI https://www.tandfonline.com/doi/abs/10.1080/02331888.2024.2431737
https://www.proquest.com/docview/3153993940
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgu4wDggFiMJAP3JCrNHZi51htoAoxDtCJiUuI3RhVa1PEGmnir-e9-OVH10n8uqSRq8SR35fn7zl-32PslYycHbskEvBjhUpdIWzkY6E8VkpS47mVmI189iGdnqt3F8nFjeySjR25n7fmlfyLVaEN7IpZsn9h2e6m0ADnYF84goXh-Mc2hnh2vqAFvVVxvVjVq9fLxWW5XDSCxSiisdreUHiyvhYTmBeqUAYnLMXO17VdAhP9UaNKLLBQSlrrmCuyUhJ1BlIaVLIah3X6cbCa8KkO3_DrSryvaVIMApBV4KtrcQXn34aLDXHSLDb0oelsp-7HwF3FUoqxCUX6RmVwp7i5RmW0cZX8LSmAD3FFzpPSxMM8HAeZyR0XT3sioTfsDCL8WI1ipEFBPOaGejb9c5ftxxBHgCPcn0xPv3zuJutUBlnV9uHbJC-UX7-tiy36siVuuzOZNwxl9oDdp9CCTwJOHrI7ZXXI7p11urxXh-ygt-Ij9hXgwwfw4QQf3sOH9_Dh8AwcbsU7-PAGPhzhwwN8eAcfjvB5zM7fvpmdTAUV3BAuNulGuFKrJCqshRjde5sY71MHhFE7IM3SGCD_WBXEwTQgrdOp99o647SNiqzAgiFP2F61rsqnjNsEizrpTBfeKGm0KYoy81nkoNVo547YqB3H_HvQVcnHrVwtDXyOA5_TwB-xbDja-aaBog8ozOVvrj1uTZPT64uXoCizzFT07D9u_Zwd9O_JMduDcS5fAE3d2JcEtV9iW4wv
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIADb8R45sA1o2vaJj1OE2g8thOTditN1kgTeyDopMGvx25axEOIA6dKlRy1jmM7lv19AOfCM7ppQo_jQ_MgMinXnvV5YIkpKWgOtaBp5G4v6vSDm0E4-DQLQ22VdIe2Diii8NV0uKkYXbXEXWCcQVNU1JnlBw2fYqCQy7ASxpEkWxde78MbR8LhZqIIJ5lqiue3Zb7Epy_opT-8dRGCrjbBVB_vOk8eG_NcN8zbN1zH__3dFmyUGSprOZPahqVsugPr3Q9415cdWKMU1SE878IDWhrDW_Vw5MqKbJIuRpP5hI1Hj9l4RLDJjKA83Iwkwz9luBRrzxa8hdFpygoyHkYFYTaczfX4leXPc8KqzYaMGlj3oH91ed_u8JK3gRtfRTk3mQxCL9Uar3rW6lBZGxnMO6TB3EsohTkkkUsY9CZCGxlZK7VRRmovjVPindiH2nQ2zQ6A6ZC4gWQsU6sCoaRK0yy2sWfwrZLG1KFR7Vby5OA5kmaFelrqMSE9JqUe6xB_3tMkL-oi1pGYJOIP2ePKAJLypJMIYfsSv_zhP5Y-g9XOffcuubvu3R7Bmk8kw1Tn8Y-hhjrPTjDzyfVpYdrvh7X1nw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gNSDb_FRdQ9et6Z57eYoaqmPFg8WvMXsJgvFPsSmUP31zmQTsYp48BQIzJLMzs7MDjPfB3DqOVo1deBwfCjuhzrhyjEu9w0xJfnNVHk0jdzphu2ef_MYVN2Ek7Ktku7QxgJFFL6aDvdLaqqOuDMMM2iJkhqzXL_hUgj0xCIshzRoSVMcTvfTGYeehc1EEU4y1RDPb8vMhac58NIfzrqIQK11UNW328aT58Y0Vw39_g3W8V8_twFrZX7Kzq1BbcJCNtqC1c4nuOtkC2qUoFp85214QjtjeKdO-7aoyIbJrD-cDtmg_5wN-gSazAjIw05IMvxRhkuxi_GMn2NsGrGCiodROZil46kavLH8dUpItVnKqH11B3qtq4eLNi9ZG7h2ZZhznQk_cBKl8KJnjAqkMaHGrENozLw8KTGDJGoJjb7EU1qExgilpRbKSaKEWCd2YWk0HmV7wFRAzEAiEomRvieFTJIsMpGj8a0UWu9Do9qs-MWCc8TNCvO01GNMeoxLPe5D9HVL47yoihhLYRJ7f8jWq_2Py3NOIoTsS-zyB_9Y-gRW7i9b8d119_YQai4xDFORx63DEqo8O8K0J1fHhWF_AILK9EM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+conditional+maximum+likelihood+estimation+for+the+Cox-Aalen+model+with+doubly+truncated+data&rft.jtitle=Statistics+%28Berlin%2C+DDR%29&rft.au=Su%2C+Chun-Lung&rft.au=Shen%2C+Pao-sheng&rft.date=2025-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0233-1888&rft.eissn=1029-4910&rft.volume=59&rft.issue=1&rft.spage=228&rft.epage=245&rft_id=info:doi/10.1080%2F02331888.2024.2431737&rft.externalDocID=2431737
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1888&client=summon