The conditional maximum likelihood estimation for the Cox-Aalen model with doubly truncated data
Doubly truncated (DT) data occur when event times are observed only if they fall within subject-specific, possibly random, intervals. In this article, we consider conditional maximum likelihood estimation for the regression parameters of the Cox-Aalen model with DT data. Based on gradient projection...
Saved in:
Published in | Statistics (Berlin, DDR) Vol. 59; no. 1; pp. 228 - 245 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
02.01.2025
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Doubly truncated (DT) data occur when event times are observed only if they fall within subject-specific, possibly random, intervals. In this article, we consider conditional maximum likelihood estimation for the regression parameters of the Cox-Aalen model with DT data. Based on gradient projection method (GPM), we propose computational algorithms for obtaining the conditional maximum likelihood estimator (cMLE). The proposed cMLE is shown to be consistent and asymptotically normal. Simulation studies show that the cMLE performs well in finite samples. |
---|---|
AbstractList | Doubly truncated (DT) data occur when event times are observed only if they fall within subject-specific, possibly random, intervals. In this article, we consider conditional maximum likelihood estimation for the regression parameters of the Cox-Aalen model with DT data. Based on gradient projection method (GPM), we propose computational algorithms for obtaining the conditional maximum likelihood estimator (cMLE). The proposed cMLE is shown to be consistent and asymptotically normal. Simulation studies show that the cMLE performs well in finite samples. |
Author | Shen, Pao-sheng Su, Chun-Lung |
Author_xml | – sequence: 1 givenname: Chun-Lung surname: Su fullname: Su, Chun-Lung organization: Tunghai University – sequence: 2 givenname: Pao-sheng surname: Shen fullname: Shen, Pao-sheng email: psshen@thu.edu.tw organization: Tunghai University |
BookMark | eNp9kM1OwzAQhC1UJNrCIyBZ4pyyjp3EuVFV_EmVuJSzcRxbdXHi4jhq-_Ykarly2sPOzO58MzRpfasRuiewIMDhEVJKCed8kULKFimjpKDFFZoSSMuElQQmaDpqklF0g2ZdtwOAnNJiir42W42Vb2sbrW-lw4082qZvsLPf2tmt9zXWXbSNHPfY-IDj4Fj5Y7KUTre48bV2-GDjFte-r9wJx9C3SkZd41pGeYuujXSdvrvMOfp8ed6s3pL1x-v7arlOVMrzmChdsAxkVRFgxlQZNyZXJZBCMUYo51meEaBEEU5ppYrcmKJSXBUVyFLCsJqjh3PuPviffnhZ7HwfhkadoCSjZUlLNqqys0oF33VBG7EPQ7dwEgTECFP8wRQjTHGBOfiezj7bDggaefDB1SLKk_PBBNkqO575N-IXDll9aw |
Cites_doi | 10.1007/s00180-020-01027-6 10.32614/CRAN.package.double.truncation 10.1093/mnras/155.1.95 10.1007/s10985-014-9297-5 10.1002/sim.v29.30 10.1007/s00362-016-0870-8 10.1093/biomet/ass009 10.1016/j.stamet.2015.11.002 10.1111/biom.12809 10.1016/j.jkss.2018.12.003 10.1093/biomet/89.3.659 10.1080/03610926.2017.1390135 10.1080/10485250903556102 10.1111/sjos.2002.29.issue-1 10.1080/01621459.1989.10478828 10.1016/j.csda.2012.11.017 10.1007/s00180-015-0564-z 10.1111/sjos.v42.2 10.1098/rspb.1988.0026 10.1080/01621459.1989.10478780 10.1007/s00362-015-0730-y 10.1137/0320018 10.1214/12-EJS683 10.1111/biom.12771 10.1111/biom.v78.2 10.1093/biomet/asu005 10.1515/ijb-2013-0060 10.18637/jss.v037.i07 10.1007/s00180-014-0496-z 10.1080/02331888.2019.1633327 10.1016/j.csda.2019.106862 10.3150/20-BEJ1236 10.1007/978-981-13-6241-5 10.1007/s10463-008-0192-2 10.1109/TAC.1976.1101194 10.1111/j.2517-6161.1972.tb00899.x 10.1016/j.spl.2004.10.014 10.1080/01621459.1999.10474187 10.1016/j.jkss.2018.10.005 10.1080/03610920903219272 10.1007/978-1-4757-2545-2 10.1214/aos/1176346584 10.1007/978-1-4615-7397-5_1 10.1111/stan.v73.2 10.1007/s00180-012-0318-0 10.1038/328719a0 |
ContentType | Journal Article |
Copyright | 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 2024 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024 – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION |
DOI | 10.1080/02331888.2024.2431737 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1029-4910 |
EndPage | 245 |
ExternalDocumentID | 10_1080_02331888_2024_2431737 2431737 |
Genre | Research Article |
GrantInformation_xml | – fundername: National Science and Technology Council grantid: NSTC 113-2118-M-029 -004 |
GroupedDBID | .7F .QJ 0BK 0R~ 123 29Q 30N 4.4 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~9 H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION ACUHS TASJS |
ID | FETCH-LOGICAL-c286t-ce7450abb104ffb58ff6c9017c4413885651031c1833bc76ff7bc8c7b0a9a0103 |
ISSN | 0233-1888 |
IngestDate | Wed Aug 13 06:38:40 EDT 2025 Thu Jul 03 08:35:26 EDT 2025 Sat Jun 14 04:00:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-ce7450abb104ffb58ff6c9017c4413885651031c1833bc76ff7bc8c7b0a9a0103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3153993940 |
PQPubID | 216163 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1080_02331888_2024_2431737 proquest_journals_3153993940 informaworld_taylorfrancis_310_1080_02331888_2024_2431737 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-02 |
PublicationDateYYYYMMDD | 2025-01-02 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Statistics (Berlin, DDR) |
PublicationYear | 2025 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_2_28_1 e_1_3_2_49_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_43_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 de Uña-Álvarez J (e_1_3_2_22_1) 2021 e_1_3_2_50_1 R Core Team (e_1_3_2_19_1) 2017 e_1_3_2_27_1 e_1_3_2_29_1 e_1_3_2_42_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_40_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_51_1 Zeng D (e_1_3_2_53_1) 2010; 20 |
References_xml | – ident: e_1_3_2_35_1 doi: 10.1007/s00180-020-01027-6 – ident: e_1_3_2_21_1 doi: 10.32614/CRAN.package.double.truncation – ident: e_1_3_2_5_1 doi: 10.1093/mnras/155.1.95 – ident: e_1_3_2_15_1 doi: 10.1007/s10985-014-9297-5 – ident: e_1_3_2_10_1 doi: 10.1002/sim.v29.30 – ident: e_1_3_2_29_1 doi: 10.1007/s00362-016-0870-8 – ident: e_1_3_2_2_1 doi: 10.1093/biomet/ass009 – ident: e_1_3_2_28_1 doi: 10.1016/j.stamet.2015.11.002 – ident: e_1_3_2_26_1 doi: 10.1111/biom.12809 – ident: e_1_3_2_30_1 doi: 10.1016/j.jkss.2018.12.003 – ident: e_1_3_2_32_1 doi: 10.1093/biomet/89.3.659 – ident: e_1_3_2_39_1 doi: 10.1080/03610926.2017.1390135 – ident: e_1_3_2_8_1 doi: 10.1080/10485250903556102 – ident: e_1_3_2_36_1 doi: 10.1111/sjos.2002.29.issue-1 – ident: e_1_3_2_51_1 doi: 10.1080/01621459.1989.10478828 – ident: e_1_3_2_14_1 doi: 10.1016/j.csda.2012.11.017 – ident: e_1_3_2_16_1 doi: 10.1007/s00180-015-0564-z – ident: e_1_3_2_41_1 doi: 10.1111/sjos.v42.2 – ident: e_1_3_2_50_1 doi: 10.1098/rspb.1988.0026 – ident: e_1_3_2_20_1 – ident: e_1_3_2_48_1 doi: 10.1080/01621459.1989.10478780 – ident: e_1_3_2_17_1 doi: 10.1007/s00362-015-0730-y – ident: e_1_3_2_45_1 doi: 10.1137/0320018 – ident: e_1_3_2_13_1 doi: 10.1214/12-EJS683 – ident: e_1_3_2_25_1 doi: 10.1111/biom.12771 – ident: e_1_3_2_33_1 doi: 10.1111/biom.v78.2 – ident: e_1_3_2_3_1 doi: 10.1093/biomet/asu005 – ident: e_1_3_2_4_1 doi: 10.1515/ijb-2013-0060 – ident: e_1_3_2_9_1 doi: 10.18637/jss.v037.i07 – volume: 20 start-page: 871 year: 2010 ident: e_1_3_2_53_1 article-title: A general asymptotic theory for maximum likelihood estimation in semiparametric regression model with censored data publication-title: Stat Sin – ident: e_1_3_2_12_1 doi: 10.1007/s00180-014-0496-z – ident: e_1_3_2_47_1 – ident: e_1_3_2_42_1 doi: 10.1080/02331888.2019.1633327 – ident: e_1_3_2_34_1 doi: 10.1016/j.csda.2019.106862 – volume-title: The statistical analysis of doubly truncated data: with applications in R year: 2021 ident: e_1_3_2_22_1 – ident: e_1_3_2_18_1 doi: 10.3150/20-BEJ1236 – ident: e_1_3_2_23_1 doi: 10.1007/978-981-13-6241-5 – ident: e_1_3_2_7_1 doi: 10.1007/s10463-008-0192-2 – ident: e_1_3_2_44_1 doi: 10.1109/TAC.1976.1101194 – volume-title: R: a language and environment for statistical computing year: 2017 ident: e_1_3_2_19_1 – ident: e_1_3_2_31_1 doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: e_1_3_2_46_1 – ident: e_1_3_2_38_1 doi: 10.1016/j.spl.2004.10.014 – ident: e_1_3_2_6_1 doi: 10.1080/01621459.1999.10474187 – ident: e_1_3_2_24_1 doi: 10.1016/j.jkss.2018.10.005 – ident: e_1_3_2_11_1 doi: 10.1080/03610920903219272 – ident: e_1_3_2_52_1 doi: 10.1007/978-1-4757-2545-2 – ident: e_1_3_2_43_1 doi: 10.1214/aos/1176346584 – ident: e_1_3_2_37_1 doi: 10.1007/978-1-4615-7397-5_1 – ident: e_1_3_2_40_1 doi: 10.1111/stan.v73.2 – ident: e_1_3_2_27_1 doi: 10.1007/s00180-012-0318-0 – ident: e_1_3_2_49_1 doi: 10.1038/328719a0 |
SSID | ssj0006337 |
Score | 2.3300831 |
Snippet | Doubly truncated (DT) data occur when event times are observed only if they fall within subject-specific, possibly random, intervals. In this article, we... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 228 |
SubjectTerms | additive hazard regression Algorithms conditional likelihood Cox model double truncation EM algorithm Maximum likelihood estimation Maximum likelihood estimators Parameter estimation Primary: 62N99 Regression models Secondary: 62N02 Simulation |
Title | The conditional maximum likelihood estimation for the Cox-Aalen model with doubly truncated data |
URI | https://www.tandfonline.com/doi/abs/10.1080/02331888.2024.2431737 https://www.proquest.com/docview/3153993940 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgu4wDggFiMJAP3JCrNHZi51htoAoxDtCJiUuI3RhVa1PEGmnir-e9-OVH10n8uqSRq8SR35fn7zl-32PslYycHbskEvBjhUpdIWzkY6E8VkpS47mVmI189iGdnqt3F8nFjeySjR25n7fmlfyLVaEN7IpZsn9h2e6m0ADnYF84goXh-Mc2hnh2vqAFvVVxvVjVq9fLxWW5XDSCxSiisdreUHiyvhYTmBeqUAYnLMXO17VdAhP9UaNKLLBQSlrrmCuyUhJ1BlIaVLIah3X6cbCa8KkO3_DrSryvaVIMApBV4KtrcQXn34aLDXHSLDb0oelsp-7HwF3FUoqxCUX6RmVwp7i5RmW0cZX8LSmAD3FFzpPSxMM8HAeZyR0XT3sioTfsDCL8WI1ipEFBPOaGejb9c5ftxxBHgCPcn0xPv3zuJutUBlnV9uHbJC-UX7-tiy36siVuuzOZNwxl9oDdp9CCTwJOHrI7ZXXI7p11urxXh-ygt-Ij9hXgwwfw4QQf3sOH9_Dh8AwcbsU7-PAGPhzhwwN8eAcfjvB5zM7fvpmdTAUV3BAuNulGuFKrJCqshRjde5sY71MHhFE7IM3SGCD_WBXEwTQgrdOp99o647SNiqzAgiFP2F61rsqnjNsEizrpTBfeKGm0KYoy81nkoNVo547YqB3H_HvQVcnHrVwtDXyOA5_TwB-xbDja-aaBog8ozOVvrj1uTZPT64uXoCizzFT07D9u_Zwd9O_JMduDcS5fAE3d2JcEtV9iW4wv |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLZgHIADb8R45sA1o2vaJj1OE2g8thOTditN1kgTeyDopMGvx25axEOIA6dKlRy1jmM7lv19AOfCM7ppQo_jQ_MgMinXnvV5YIkpKWgOtaBp5G4v6vSDm0E4-DQLQ22VdIe2Diii8NV0uKkYXbXEXWCcQVNU1JnlBw2fYqCQy7ASxpEkWxde78MbR8LhZqIIJ5lqiue3Zb7Epy_opT-8dRGCrjbBVB_vOk8eG_NcN8zbN1zH__3dFmyUGSprOZPahqVsugPr3Q9415cdWKMU1SE878IDWhrDW_Vw5MqKbJIuRpP5hI1Hj9l4RLDJjKA83Iwkwz9luBRrzxa8hdFpygoyHkYFYTaczfX4leXPc8KqzYaMGlj3oH91ed_u8JK3gRtfRTk3mQxCL9Uar3rW6lBZGxnMO6TB3EsohTkkkUsY9CZCGxlZK7VRRmovjVPindiH2nQ2zQ6A6ZC4gWQsU6sCoaRK0yy2sWfwrZLG1KFR7Vby5OA5kmaFelrqMSE9JqUe6xB_3tMkL-oi1pGYJOIP2ePKAJLypJMIYfsSv_zhP5Y-g9XOffcuubvu3R7Bmk8kw1Tn8Y-hhjrPTjDzyfVpYdrvh7X1nw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58gNSDb_FRdQ9et6Z57eYoaqmPFg8WvMXsJgvFPsSmUP31zmQTsYp48BQIzJLMzs7MDjPfB3DqOVo1deBwfCjuhzrhyjEu9w0xJfnNVHk0jdzphu2ef_MYVN2Ek7Ktku7QxgJFFL6aDvdLaqqOuDMMM2iJkhqzXL_hUgj0xCIshzRoSVMcTvfTGYeehc1EEU4y1RDPb8vMhac58NIfzrqIQK11UNW328aT58Y0Vw39_g3W8V8_twFrZX7Kzq1BbcJCNtqC1c4nuOtkC2qUoFp85214QjtjeKdO-7aoyIbJrD-cDtmg_5wN-gSazAjIw05IMvxRhkuxi_GMn2NsGrGCiodROZil46kavLH8dUpItVnKqH11B3qtq4eLNi9ZG7h2ZZhznQk_cBKl8KJnjAqkMaHGrENozLw8KTGDJGoJjb7EU1qExgilpRbKSaKEWCd2YWk0HmV7wFRAzEAiEomRvieFTJIsMpGj8a0UWu9Do9qs-MWCc8TNCvO01GNMeoxLPe5D9HVL47yoihhLYRJ7f8jWq_2Py3NOIoTsS-zyB_9Y-gRW7i9b8d119_YQai4xDFORx63DEqo8O8K0J1fHhWF_AILK9EM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+conditional+maximum+likelihood+estimation+for+the+Cox-Aalen+model+with+doubly+truncated+data&rft.jtitle=Statistics+%28Berlin%2C+DDR%29&rft.au=Su%2C+Chun-Lung&rft.au=Shen%2C+Pao-sheng&rft.date=2025-01-02&rft.pub=Taylor+%26+Francis&rft.issn=0233-1888&rft.eissn=1029-4910&rft.volume=59&rft.issue=1&rft.spage=228&rft.epage=245&rft_id=info:doi/10.1080%2F02331888.2024.2431737&rft.externalDocID=2431737 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-1888&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-1888&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-1888&client=summon |