Solving Linear Programs in the Current Matrix Multiplication Time
This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the cu...
Saved in:
Published in | Journal of the ACM Vol. 68; no. 1; pp. 1 - 39 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Association for Computing Machinery
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time
O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O * ( n ω log ( n /δ)) time. When ω = 2, our algorithm takes O * ( n 2+1/6 log ( n /δ)) time.
Our algorithm utilizes several new concepts that we believe may be of independent interest:
• We define a stochastic central path method.
• We show how to maintain a projection matrix √ W A ⊤ ( AWA ⊤ ) −1 A √ W in sub-quadratic time under \ell 2 multiplicative changes in the diagonal matrix W . |
---|---|
AbstractList | This article shows how to solve linear programs of the form minAx=b,x≥ 0 c⊤ x with n variables in time O*((nω+n2.5−α/2+n2+1/6) log (n/δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O*(nω log (n/δ)) time. When ω = 2, our algorithm takes O*(n2+1/6 log (n/δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ WA⊤ (AWA⊤)−1A√ W in sub-quadratic time under \ell2 multiplicative changes in the diagonal matrix W. This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O * ( n ω log ( n /δ)) time. When ω = 2, our algorithm takes O * ( n 2+1/6 log ( n /δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ W A ⊤ ( AWA ⊤ ) −1 A √ W in sub-quadratic time under \ell 2 multiplicative changes in the diagonal matrix W . |
Author | Song, Zhao Cohen, Michael B. Lee, Yin Tat |
Author_xml | – sequence: 1 givenname: Michael B. surname: Cohen fullname: Cohen, Michael B. organization: Massachusetts Institute of Technology, Cambridge, Massachusetts – sequence: 2 givenname: Yin Tat surname: Lee fullname: Lee, Yin Tat organization: The University of Washington 8 MSR Redmond, Seattle, WA, USA – sequence: 3 givenname: Zhao surname: Song fullname: Song, Zhao organization: The University of Texas at Austin, Princeton, NJ, USA |
BookMark | eNpl0F1LwzAUBuAgE-ym-BcCXnhVTdJ8tJdj-AUdCk7wriRpOjO6ZCap6L-3ul3p1eHAw3s47xRMnHcGgHOMrjCm7LqghBaIHYEMMyZyUbDXCcgQQjRnFOMTMI1xM66IIJGB-bPvP6xbw9o6IwN8Cn4d5DZC62B6M3AxhGBcgkuZgv2Ey6FPdtdbLZP1Dq7s1pyC40720Zwd5gy83N6sFvd5_Xj3sJjXuSYlT7nWnVKFQpwIJpQSRHAlRUsNN4SVFUMMcSw5ajElpaIt6aTkmrOKFthQ1RYzcLHP3QX_PpiYmo0fghtPNoRWFSK8rMSoLvdKBx9jMF2zC3Yrw1eDUfPTT3PoZ5T5H6lt-n0rBWn7f_4bZ1xmpg |
CitedBy_id | crossref_primary_10_1109_TMC_2023_3311484 crossref_primary_10_1038_s42254_023_00603_1 crossref_primary_10_1109_TNET_2023_3282560 crossref_primary_10_1111_poms_14072 crossref_primary_10_1109_TCCN_2022_3147202 crossref_primary_10_1016_j_comnet_2023_109864 crossref_primary_10_1109_JIOT_2024_3369174 crossref_primary_10_1016_j_tre_2022_102963 crossref_primary_10_1007_s00186_023_00835_y crossref_primary_10_1109_TITS_2023_3305198 crossref_primary_10_1109_JIOT_2022_3197242 crossref_primary_10_1145_3626715 crossref_primary_10_1287_moor_2022_0284 crossref_primary_10_1007_s10957_024_02452_z crossref_primary_10_1016_j_ejor_2022_11_016 crossref_primary_10_1016_j_tcs_2025_115072 crossref_primary_10_1109_TNET_2024_3401758 crossref_primary_10_1016_j_trb_2024_103135 crossref_primary_10_1137_22M1536169 crossref_primary_10_1007_s10703_024_00457_y crossref_primary_10_1016_j_ins_2021_11_074 crossref_primary_10_1111_mafi_12460 crossref_primary_10_1007_s00778_022_00738_0 crossref_primary_10_1109_TAC_2024_3384834 crossref_primary_10_1080_00150193_2024_2325906 crossref_primary_10_1109_TMC_2022_3232547 crossref_primary_10_1002_dac_5920 crossref_primary_10_1038_s42005_024_01796_2 crossref_primary_10_1109_TWC_2024_3366393 crossref_primary_10_1007_s10994_024_06530_1 crossref_primary_10_1016_j_coastaleng_2024_104620 crossref_primary_10_1145_3702244 crossref_primary_10_12677_ORF_2023_132049 crossref_primary_10_1016_j_cose_2022_102740 crossref_primary_10_1016_j_sigpro_2022_108457 crossref_primary_10_1186_s13321_022_00621_8 crossref_primary_10_1016_j_tcs_2023_114353 crossref_primary_10_1109_TII_2022_3228691 crossref_primary_10_14778_3551793_3551824 crossref_primary_10_1109_TCAD_2024_3442985 crossref_primary_10_1109_TITS_2023_3279070 crossref_primary_10_1109_TSC_2024_3451187 crossref_primary_10_1016_j_ins_2022_06_045 crossref_primary_10_1109_TWC_2023_3342626 crossref_primary_10_1109_TCC_2022_3151469 crossref_primary_10_22331_q_2023_09_11_1110 crossref_primary_10_1109_TNSE_2023_3261278 crossref_primary_10_1109_TGCN_2021_3096884 |
Cites_doi | 10.1145/2488608.2488724 10.1145/3357713.3384309 10.1145/2746539.2746554 10.1007/s101070200296 10.1145/3188745.3188960 10.4230/LIPIcs.CCC.2019.12 10.1109/FOCS.2015.68 10.1109/FOCS.2018.00089 10.1145/2213977.2214056 10.1137/0801033 10.1137/1.9781611974782.142 10.1109/SFCS.1989.63499 10.1145/28395.28396 10.5555/2212 10.1109/FOCS.2018.00061 10.1109/FOCS.2006.37 10.1109/FOCS.2016.70 10.1145/2608628.2608664 10.1109/FOCS.2011.85 10.1017/S0308210511001648 10.1145/2746539.2746609 10.1109/FOCS.2014.52 10.1109/FOCS.2015.23 10.1145/1993636.1993674 10.1145/3357713.3384284 10.1145/800057.808695 10.1109/FOCS.2010.29 10.1145/2897518.2897647 10.1109/SFCS.1989.63500 10.1145/3188745.3188830 10.1137/1.9781611975031.67 10.1109/FOCS.2013.35 10.1145/3188745.3188776 10.1137/1.9781611975994.16 10.1109/FOCS.2016.68 10.1137/080734029 10.1137/1.9781611974782.48 10.1109/FOCS.2017.88 10.1287/moor.19.1.53 10.1109/FOCS46700.2020.00089 |
ContentType | Journal Article |
Copyright | Copyright Association for Computing Machinery Feb 2021 |
Copyright_xml | – notice: Copyright Association for Computing Machinery Feb 2021 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1145/3424305 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1557-735X |
EndPage | 39 |
ExternalDocumentID | 10_1145_3424305 |
GroupedDBID | --Z -DZ -~X .DC 29L 3R3 4.4 5GY 5VS 85S 8US 8VB AAHTB AAIKC AAKMM AALFJ AAMNW AAYFX AAYXX ABFSI ABPEJ ABPPZ ACGOD ACM ACNCT ADBCU ADL ADMLS AEBYY AEFXT AEGXH AEJOY AEMOZ AENEX AENSD AFWIH AFWXC AGHSJ AHQJS AIKLT AKRVB AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ASPBG AVWKF BDXCO CCLIF CITATION CS3 D0L DU5 EBS FEDTE GUFHI HGAVV H~9 IAO ICD IEA IOF K1G L7B LHSKQ P1C PQQKQ QWB RNS TAE TH9 TN5 UKR UPT WH7 XSW YQT ZCA ZL0 7SC 8FD ABCQX JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c286t-ccfbb3b062757bb7276ba7d4e6e2589505061a60d1428b4d2faa6c659431e4bd3 |
ISSN | 0004-5411 |
IngestDate | Mon Jun 30 06:33:50 EDT 2025 Thu Jul 03 08:25:05 EDT 2025 Thu Apr 24 23:07:48 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-ccfbb3b062757bb7276ba7d4e6e2589505061a60d1428b4d2faa6c659431e4bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://dl.acm.org/doi/pdf/10.1145/3424305 |
PQID | 2499026897 |
PQPubID | 47580 |
PageCount | 39 |
ParticipantIDs | proquest_journals_2499026897 crossref_primary_10_1145_3424305 crossref_citationtrail_10_1145_3424305 |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of the ACM |
PublicationYear | 2021 |
Publisher | Association for Computing Machinery |
Publisher_xml | – name: Association for Computing Machinery |
References | Kenneth (e_1_2_1_10_1) e_1_2_1_60_1 Kyng Rasmus (e_1_2_1_26_1) e_1_2_1_20_1 e_1_2_1_24_1 Nelson Jelani (e_1_2_1_41_1) e_1_2_1_45_1 e_1_2_1_22_1 e_1_2_1_64_1 e_1_2_1_28_1 Renegar James (e_1_2_1_47_1) 1988; 40 Lee Yin Tat (e_1_2_1_36_1) 2019 Vaidya Pravin M. (e_1_2_1_55_1) 1987 e_1_2_1_31_1 e_1_2_1_56_1 e_1_2_1_6_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_33_1 Nesterov Yurii (e_1_2_1_42_1) e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 e_1_2_1_14_1 e_1_2_1_37_1 Wright Stephen J. (e_1_2_1_62_1) e_1_2_1_58_1 e_1_2_1_18_1 Daniel (e_1_2_1_53_1) Yinyu Ye. (e_1_2_1_63_1) e_1_2_1_23_1 e_1_2_1_46_1 Renegar James (e_1_2_1_48_1) e_1_2_1_21_1 e_1_2_1_44_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_29_1 Cohen Michael B. (e_1_2_1_12_1) 2014 Terlaky Tamás (e_1_2_1_54_1) Christandl Matthias (e_1_2_1_8_1) 2020 Megiddo Nimrod (e_1_2_1_40_1) Chen Beidi (e_1_2_1_7_1) 2020 e_1_2_1_30_1 e_1_2_1_5_1 Roos Cornelis (e_1_2_1_49_1) e_1_2_1_57_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_1_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – ident: e_1_2_1_23_1 doi: 10.1145/2488608.2488724 – ident: e_1_2_1_21_1 – ident: e_1_2_1_59_1 doi: 10.1145/3357713.3384309 – ident: e_1_2_1_3_1 doi: 10.1145/2746539.2746554 – ident: e_1_2_1_46_1 doi: 10.1007/s101070200296 – ident: e_1_2_1_51_1 – volume-title: Proceedings of the Computational Complexity Conference (CCC’20) year: 2020 ident: e_1_2_1_8_1 – ident: e_1_2_1_27_1 doi: 10.1145/3188745.3188960 – volume-title: Proceedings of the Conference on Learning Theory (COLT’19) year: 2019 ident: e_1_2_1_36_1 – volume-title: Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC’16) ident: e_1_2_1_26_1 – ident: e_1_2_1_1_1 doi: 10.4230/LIPIcs.CCC.2019.12 – volume-title: Tri Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re. year: 2020 ident: e_1_2_1_7_1 – ident: e_1_2_1_35_1 doi: 10.1109/FOCS.2015.68 – ident: e_1_2_1_11_1 doi: 10.1109/FOCS.2018.00089 – ident: e_1_2_1_4_1 – ident: e_1_2_1_60_1 doi: 10.1145/2213977.2214056 – volume-title: Interior Point Algorithms: Theory and Analysis ident: e_1_2_1_63_1 – ident: e_1_2_1_44_1 doi: 10.1137/0801033 – ident: e_1_2_1_29_1 doi: 10.1137/1.9781611974782.142 – volume-title: Interior Point Methods of Mathematical Programming ident: e_1_2_1_54_1 – ident: e_1_2_1_57_1 doi: 10.1109/SFCS.1989.63499 – ident: e_1_2_1_16_1 doi: 10.1145/28395.28396 – ident: e_1_2_1_45_1 doi: 10.5555/2212 – ident: e_1_2_1_2_1 doi: 10.1109/FOCS.2018.00061 – ident: e_1_2_1_50_1 doi: 10.1109/FOCS.2006.37 – ident: e_1_2_1_39_1 doi: 10.1109/FOCS.2016.70 – volume-title: Progress in Mathematical Programming: Interior-Point and Related Methods ident: e_1_2_1_40_1 – ident: e_1_2_1_30_1 doi: 10.1145/2608628.2608664 – ident: e_1_2_1_25_1 doi: 10.1109/FOCS.2011.85 – ident: e_1_2_1_17_1 doi: 10.1017/S0308210511001648 – ident: e_1_2_1_32_1 – volume-title: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04) ident: e_1_2_1_53_1 – ident: e_1_2_1_18_1 doi: 10.1145/2746539.2746609 – ident: e_1_2_1_33_1 doi: 10.1109/FOCS.2014.52 – ident: e_1_2_1_34_1 doi: 10.1109/FOCS.2015.23 – volume: 40 start-page: 1 year: 1988 ident: e_1_2_1_47_1 article-title: A polynomial-time algorithm, based on Newton’s method, for linear programming publication-title: Math. Program. – volume-title: Interior-point Polynomial Algorithms in Convex Programming ident: e_1_2_1_42_1 – ident: e_1_2_1_9_1 doi: 10.1145/1993636.1993674 – ident: e_1_2_1_20_1 doi: 10.1145/3357713.3384284 – volume-title: Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC’14) year: 2014 ident: e_1_2_1_12_1 – ident: e_1_2_1_37_1 – volume-title: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC’87) year: 1987 ident: e_1_2_1_55_1 – volume-title: A Mathematical View of Interior-point Methods in Convex Optimization ident: e_1_2_1_48_1 – ident: e_1_2_1_22_1 doi: 10.1145/800057.808695 – ident: e_1_2_1_24_1 doi: 10.1109/FOCS.2010.29 – ident: e_1_2_1_13_1 doi: 10.1145/2897518.2897647 – ident: e_1_2_1_56_1 doi: 10.1109/SFCS.1989.63500 – volume-title: Proceedings of the Symposium on Theory of Computing Conference (STOC’13) ident: e_1_2_1_10_1 – ident: e_1_2_1_6_1 doi: 10.1145/3188745.3188830 – ident: e_1_2_1_31_1 doi: 10.1137/1.9781611975031.67 – ident: e_1_2_1_38_1 doi: 10.1109/FOCS.2013.35 – ident: e_1_2_1_5_1 doi: 10.1145/3188745.3188776 – ident: e_1_2_1_58_1 doi: 10.1137/1.9781611975994.16 – ident: e_1_2_1_28_1 doi: 10.1109/FOCS.2016.68 – ident: e_1_2_1_52_1 doi: 10.1137/080734029 – ident: e_1_2_1_14_1 doi: 10.1137/1.9781611974782.48 – volume-title: Proceedings of the IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS’13) ident: e_1_2_1_41_1 – ident: e_1_2_1_15_1 doi: 10.1109/FOCS.2017.88 – volume-title: Interior Point Methods for Linear Optimization ident: e_1_2_1_49_1 – volume-title: Primal-dual Interior-point Methods ident: e_1_2_1_62_1 – ident: e_1_2_1_64_1 doi: 10.1287/moor.19.1.53 – ident: e_1_2_1_19_1 doi: 10.1109/FOCS46700.2020.00089 |
SSID | ssj0000207 |
Score | 2.662564 |
Snippet | This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time
O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)),... This article shows how to solve linear programs of the form minAx=b,x≥ 0 c⊤ x with n variables in time O*((nω+n2.5−α/2+n2+1/6) log (n/δ)), where ω is the... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Algorithms Linear programming Mathematical analysis Matrix methods Multiplication |
Title | Solving Linear Programs in the Current Matrix Multiplication Time |
URI | https://www.proquest.com/docview/2499026897 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swGLWgXHaBDYaAlckHxKUyC47tJMeubEITRUhtpW6XyHYcbVKVItpN0_76fY7tpj9Ag12iKIoTxS_5vmfne88InaUiinlRRkRmVBNWppoonRpSZpFKpLU4q82q-7fiesS-jPm4WVaxVpfM1YX-86iu5H9QhWOAq1XJvgDZxUXhAOwDvrAFhGH7LIwH08kvp1KqrB_Pnau1moXaxeC91Lc2_L87fVc76CfpavHHE9S0lpv0mv8TQcLha-w7Hy_W6ni-wh2HclFBM_B1vt--y-nytAK9DJXIS6GSEc58JDQ-OvKEJDEfL4dPkW68Ji4WXi4lVWdYtBmumXW2iBm1xmNNRgp_4dcS1aJ80Impee4bbqMdCoMEiHI73av-zaDJxNTJ5cOjONG0bfrBN11lI6vJuGYYw9do1_c_7jqc36AtU-2jvbDsBvZR-AAyoYMdO9hxgB3_qDAghz3s2MGOV2HHFva3aPT507B3TfxKGETTVMyJ1qVSsaotpROlgHMKJZOCGWEoTzNgsUDLpIgK65-nWEFLKYUWPAN6aJgq4kPUqqaVOUI4KXWSlYUyRsDQU2opDFA-TTmTPI10eYzOQ4_k2tvE29VKJvlarx8jvDjx3jmjbJ7SDl2a-89mlsN4P4OBf5olJ_--wjv0qnk526g1f_hpToEFztV7D_ZfSWNatg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Linear+Programs+in+the+Current+Matrix+Multiplication+Time&rft.jtitle=Journal+of+the+ACM&rft.au=Cohen%2C+Michael+B.&rft.au=Lee%2C+Yin+Tat&rft.au=Song%2C+Zhao&rft.date=2021-02-01&rft.issn=0004-5411&rft.eissn=1557-735X&rft.volume=68&rft.issue=1&rft.spage=1&rft.epage=39&rft_id=info:doi/10.1145%2F3424305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3424305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-5411&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-5411&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-5411&client=summon |