Solving Linear Programs in the Current Matrix Multiplication Time

This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the cu...

Full description

Saved in:
Bibliographic Details
Published inJournal of the ACM Vol. 68; no. 1; pp. 1 - 39
Main Authors Cohen, Michael B., Lee, Yin Tat, Song, Zhao
Format Journal Article
LanguageEnglish
Published New York Association for Computing Machinery 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O * ( n ω log ( n /δ)) time. When ω = 2, our algorithm takes O * ( n 2+1/6 log ( n /δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ W A ⊤ ( AWA ⊤ ) −1 A √ W in sub-quadratic time under \ell 2 multiplicative changes in the diagonal matrix W .
AbstractList This article shows how to solve linear programs of the form minAx=b,x≥ 0 c⊤ x with n variables in time O*((nω+n2.5−α/2+n2+1/6) log (n/δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O*(nω log (n/δ)) time. When ω = 2, our algorithm takes O*(n2+1/6 log (n/δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ WA⊤ (AWA⊤)−1A√ W in sub-quadratic time under \ell2 multiplicative changes in the diagonal matrix W.
This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O * ( n ω log ( n /δ)) time. When ω = 2, our algorithm takes O * ( n 2+1/6 log ( n /δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ W A ⊤ ( AWA ⊤ ) −1 A √ W in sub-quadratic time under \ell 2 multiplicative changes in the diagonal matrix W .
Author Song, Zhao
Cohen, Michael B.
Lee, Yin Tat
Author_xml – sequence: 1
  givenname: Michael B.
  surname: Cohen
  fullname: Cohen, Michael B.
  organization: Massachusetts Institute of Technology, Cambridge, Massachusetts
– sequence: 2
  givenname: Yin Tat
  surname: Lee
  fullname: Lee, Yin Tat
  organization: The University of Washington 8 MSR Redmond, Seattle, WA, USA
– sequence: 3
  givenname: Zhao
  surname: Song
  fullname: Song, Zhao
  organization: The University of Texas at Austin, Princeton, NJ, USA
BookMark eNpl0F1LwzAUBuAgE-ym-BcCXnhVTdJ8tJdj-AUdCk7wriRpOjO6ZCap6L-3ul3p1eHAw3s47xRMnHcGgHOMrjCm7LqghBaIHYEMMyZyUbDXCcgQQjRnFOMTMI1xM66IIJGB-bPvP6xbw9o6IwN8Cn4d5DZC62B6M3AxhGBcgkuZgv2Ey6FPdtdbLZP1Dq7s1pyC40720Zwd5gy83N6sFvd5_Xj3sJjXuSYlT7nWnVKFQpwIJpQSRHAlRUsNN4SVFUMMcSw5ajElpaIt6aTkmrOKFthQ1RYzcLHP3QX_PpiYmo0fghtPNoRWFSK8rMSoLvdKBx9jMF2zC3Yrw1eDUfPTT3PoZ5T5H6lt-n0rBWn7f_4bZ1xmpg
CitedBy_id crossref_primary_10_1109_TMC_2023_3311484
crossref_primary_10_1038_s42254_023_00603_1
crossref_primary_10_1109_TNET_2023_3282560
crossref_primary_10_1111_poms_14072
crossref_primary_10_1109_TCCN_2022_3147202
crossref_primary_10_1016_j_comnet_2023_109864
crossref_primary_10_1109_JIOT_2024_3369174
crossref_primary_10_1016_j_tre_2022_102963
crossref_primary_10_1007_s00186_023_00835_y
crossref_primary_10_1109_TITS_2023_3305198
crossref_primary_10_1109_JIOT_2022_3197242
crossref_primary_10_1145_3626715
crossref_primary_10_1287_moor_2022_0284
crossref_primary_10_1007_s10957_024_02452_z
crossref_primary_10_1016_j_ejor_2022_11_016
crossref_primary_10_1016_j_tcs_2025_115072
crossref_primary_10_1109_TNET_2024_3401758
crossref_primary_10_1016_j_trb_2024_103135
crossref_primary_10_1137_22M1536169
crossref_primary_10_1007_s10703_024_00457_y
crossref_primary_10_1016_j_ins_2021_11_074
crossref_primary_10_1111_mafi_12460
crossref_primary_10_1007_s00778_022_00738_0
crossref_primary_10_1109_TAC_2024_3384834
crossref_primary_10_1080_00150193_2024_2325906
crossref_primary_10_1109_TMC_2022_3232547
crossref_primary_10_1002_dac_5920
crossref_primary_10_1038_s42005_024_01796_2
crossref_primary_10_1109_TWC_2024_3366393
crossref_primary_10_1007_s10994_024_06530_1
crossref_primary_10_1016_j_coastaleng_2024_104620
crossref_primary_10_1145_3702244
crossref_primary_10_12677_ORF_2023_132049
crossref_primary_10_1016_j_cose_2022_102740
crossref_primary_10_1016_j_sigpro_2022_108457
crossref_primary_10_1186_s13321_022_00621_8
crossref_primary_10_1016_j_tcs_2023_114353
crossref_primary_10_1109_TII_2022_3228691
crossref_primary_10_14778_3551793_3551824
crossref_primary_10_1109_TCAD_2024_3442985
crossref_primary_10_1109_TITS_2023_3279070
crossref_primary_10_1109_TSC_2024_3451187
crossref_primary_10_1016_j_ins_2022_06_045
crossref_primary_10_1109_TWC_2023_3342626
crossref_primary_10_1109_TCC_2022_3151469
crossref_primary_10_22331_q_2023_09_11_1110
crossref_primary_10_1109_TNSE_2023_3261278
crossref_primary_10_1109_TGCN_2021_3096884
Cites_doi 10.1145/2488608.2488724
10.1145/3357713.3384309
10.1145/2746539.2746554
10.1007/s101070200296
10.1145/3188745.3188960
10.4230/LIPIcs.CCC.2019.12
10.1109/FOCS.2015.68
10.1109/FOCS.2018.00089
10.1145/2213977.2214056
10.1137/0801033
10.1137/1.9781611974782.142
10.1109/SFCS.1989.63499
10.1145/28395.28396
10.5555/2212
10.1109/FOCS.2018.00061
10.1109/FOCS.2006.37
10.1109/FOCS.2016.70
10.1145/2608628.2608664
10.1109/FOCS.2011.85
10.1017/S0308210511001648
10.1145/2746539.2746609
10.1109/FOCS.2014.52
10.1109/FOCS.2015.23
10.1145/1993636.1993674
10.1145/3357713.3384284
10.1145/800057.808695
10.1109/FOCS.2010.29
10.1145/2897518.2897647
10.1109/SFCS.1989.63500
10.1145/3188745.3188830
10.1137/1.9781611975031.67
10.1109/FOCS.2013.35
10.1145/3188745.3188776
10.1137/1.9781611975994.16
10.1109/FOCS.2016.68
10.1137/080734029
10.1137/1.9781611974782.48
10.1109/FOCS.2017.88
10.1287/moor.19.1.53
10.1109/FOCS46700.2020.00089
ContentType Journal Article
Copyright Copyright Association for Computing Machinery Feb 2021
Copyright_xml – notice: Copyright Association for Computing Machinery Feb 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1145/3424305
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1557-735X
EndPage 39
ExternalDocumentID 10_1145_3424305
GroupedDBID --Z
-DZ
-~X
.DC
29L
3R3
4.4
5GY
5VS
85S
8US
8VB
AAHTB
AAIKC
AAKMM
AALFJ
AAMNW
AAYFX
AAYXX
ABFSI
ABPEJ
ABPPZ
ACGOD
ACM
ACNCT
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEGXH
AEJOY
AEMOZ
AENEX
AENSD
AFWIH
AFWXC
AGHSJ
AHQJS
AIKLT
AKRVB
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
D0L
DU5
EBS
FEDTE
GUFHI
HGAVV
H~9
IAO
ICD
IEA
IOF
K1G
L7B
LHSKQ
P1C
PQQKQ
QWB
RNS
TAE
TH9
TN5
UKR
UPT
WH7
XSW
YQT
ZCA
ZL0
7SC
8FD
ABCQX
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-ccfbb3b062757bb7276ba7d4e6e2589505061a60d1428b4d2faa6c659431e4bd3
ISSN 0004-5411
IngestDate Mon Jun 30 06:33:50 EDT 2025
Thu Jul 03 08:25:05 EDT 2025
Thu Apr 24 23:07:48 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-ccfbb3b062757bb7276ba7d4e6e2589505061a60d1428b4d2faa6c659431e4bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/3424305
PQID 2499026897
PQPubID 47580
PageCount 39
ParticipantIDs proquest_journals_2499026897
crossref_primary_10_1145_3424305
crossref_citationtrail_10_1145_3424305
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of the ACM
PublicationYear 2021
Publisher Association for Computing Machinery
Publisher_xml – name: Association for Computing Machinery
References Kenneth (e_1_2_1_10_1)
e_1_2_1_60_1
Kyng Rasmus (e_1_2_1_26_1)
e_1_2_1_20_1
e_1_2_1_24_1
Nelson Jelani (e_1_2_1_41_1)
e_1_2_1_45_1
e_1_2_1_22_1
e_1_2_1_64_1
e_1_2_1_28_1
Renegar James (e_1_2_1_47_1) 1988; 40
Lee Yin Tat (e_1_2_1_36_1) 2019
Vaidya Pravin M. (e_1_2_1_55_1) 1987
e_1_2_1_31_1
e_1_2_1_56_1
e_1_2_1_6_1
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_4_1
e_1_2_1_33_1
Nesterov Yurii (e_1_2_1_42_1)
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
e_1_2_1_14_1
e_1_2_1_37_1
Wright Stephen J. (e_1_2_1_62_1)
e_1_2_1_58_1
e_1_2_1_18_1
Daniel (e_1_2_1_53_1)
Yinyu Ye. (e_1_2_1_63_1)
e_1_2_1_23_1
e_1_2_1_46_1
Renegar James (e_1_2_1_48_1)
e_1_2_1_21_1
e_1_2_1_44_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_29_1
Cohen Michael B. (e_1_2_1_12_1) 2014
Terlaky Tamás (e_1_2_1_54_1)
Christandl Matthias (e_1_2_1_8_1) 2020
Megiddo Nimrod (e_1_2_1_40_1)
Chen Beidi (e_1_2_1_7_1) 2020
e_1_2_1_30_1
e_1_2_1_5_1
Roos Cornelis (e_1_2_1_49_1)
e_1_2_1_57_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_1_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_59_1
e_1_2_1_9_1
e_1_2_1_19_1
References_xml – ident: e_1_2_1_23_1
  doi: 10.1145/2488608.2488724
– ident: e_1_2_1_21_1
– ident: e_1_2_1_59_1
  doi: 10.1145/3357713.3384309
– ident: e_1_2_1_3_1
  doi: 10.1145/2746539.2746554
– ident: e_1_2_1_46_1
  doi: 10.1007/s101070200296
– ident: e_1_2_1_51_1
– volume-title: Proceedings of the Computational Complexity Conference (CCC’20)
  year: 2020
  ident: e_1_2_1_8_1
– ident: e_1_2_1_27_1
  doi: 10.1145/3188745.3188960
– volume-title: Proceedings of the Conference on Learning Theory (COLT’19)
  year: 2019
  ident: e_1_2_1_36_1
– volume-title: Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC’16)
  ident: e_1_2_1_26_1
– ident: e_1_2_1_1_1
  doi: 10.4230/LIPIcs.CCC.2019.12
– volume-title: Tri Dao, Zhao Song, Anshumali Shrivastava, and Christopher Re.
  year: 2020
  ident: e_1_2_1_7_1
– ident: e_1_2_1_35_1
  doi: 10.1109/FOCS.2015.68
– ident: e_1_2_1_11_1
  doi: 10.1109/FOCS.2018.00089
– ident: e_1_2_1_4_1
– ident: e_1_2_1_60_1
  doi: 10.1145/2213977.2214056
– volume-title: Interior Point Algorithms: Theory and Analysis
  ident: e_1_2_1_63_1
– ident: e_1_2_1_44_1
  doi: 10.1137/0801033
– ident: e_1_2_1_29_1
  doi: 10.1137/1.9781611974782.142
– volume-title: Interior Point Methods of Mathematical Programming
  ident: e_1_2_1_54_1
– ident: e_1_2_1_57_1
  doi: 10.1109/SFCS.1989.63499
– ident: e_1_2_1_16_1
  doi: 10.1145/28395.28396
– ident: e_1_2_1_45_1
  doi: 10.5555/2212
– ident: e_1_2_1_2_1
  doi: 10.1109/FOCS.2018.00061
– ident: e_1_2_1_50_1
  doi: 10.1109/FOCS.2006.37
– ident: e_1_2_1_39_1
  doi: 10.1109/FOCS.2016.70
– volume-title: Progress in Mathematical Programming: Interior-Point and Related Methods
  ident: e_1_2_1_40_1
– ident: e_1_2_1_30_1
  doi: 10.1145/2608628.2608664
– ident: e_1_2_1_25_1
  doi: 10.1109/FOCS.2011.85
– ident: e_1_2_1_17_1
  doi: 10.1017/S0308210511001648
– ident: e_1_2_1_32_1
– volume-title: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC’04)
  ident: e_1_2_1_53_1
– ident: e_1_2_1_18_1
  doi: 10.1145/2746539.2746609
– ident: e_1_2_1_33_1
  doi: 10.1109/FOCS.2014.52
– ident: e_1_2_1_34_1
  doi: 10.1109/FOCS.2015.23
– volume: 40
  start-page: 1
  year: 1988
  ident: e_1_2_1_47_1
  article-title: A polynomial-time algorithm, based on Newton’s method, for linear programming
  publication-title: Math. Program.
– volume-title: Interior-point Polynomial Algorithms in Convex Programming
  ident: e_1_2_1_42_1
– ident: e_1_2_1_9_1
  doi: 10.1145/1993636.1993674
– ident: e_1_2_1_20_1
  doi: 10.1145/3357713.3384284
– volume-title: Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC’14)
  year: 2014
  ident: e_1_2_1_12_1
– ident: e_1_2_1_37_1
– volume-title: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC’87)
  year: 1987
  ident: e_1_2_1_55_1
– volume-title: A Mathematical View of Interior-point Methods in Convex Optimization
  ident: e_1_2_1_48_1
– ident: e_1_2_1_22_1
  doi: 10.1145/800057.808695
– ident: e_1_2_1_24_1
  doi: 10.1109/FOCS.2010.29
– ident: e_1_2_1_13_1
  doi: 10.1145/2897518.2897647
– ident: e_1_2_1_56_1
  doi: 10.1109/SFCS.1989.63500
– volume-title: Proceedings of the Symposium on Theory of Computing Conference (STOC’13)
  ident: e_1_2_1_10_1
– ident: e_1_2_1_6_1
  doi: 10.1145/3188745.3188830
– ident: e_1_2_1_31_1
  doi: 10.1137/1.9781611975031.67
– ident: e_1_2_1_38_1
  doi: 10.1109/FOCS.2013.35
– ident: e_1_2_1_5_1
  doi: 10.1145/3188745.3188776
– ident: e_1_2_1_58_1
  doi: 10.1137/1.9781611975994.16
– ident: e_1_2_1_28_1
  doi: 10.1109/FOCS.2016.68
– ident: e_1_2_1_52_1
  doi: 10.1137/080734029
– ident: e_1_2_1_14_1
  doi: 10.1137/1.9781611974782.48
– volume-title: Proceedings of the IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS’13)
  ident: e_1_2_1_41_1
– ident: e_1_2_1_15_1
  doi: 10.1109/FOCS.2017.88
– volume-title: Interior Point Methods for Linear Optimization
  ident: e_1_2_1_49_1
– volume-title: Primal-dual Interior-point Methods
  ident: e_1_2_1_62_1
– ident: e_1_2_1_64_1
  doi: 10.1287/moor.19.1.53
– ident: e_1_2_1_19_1
  doi: 10.1109/FOCS46700.2020.00089
SSID ssj0000207
Score 2.662564
Snippet This article shows how to solve linear programs of the form min Ax = b , x ≥ 0 c ⊤ x with n variables in time O * (( n ω + n 2.5−α/2 + n 2+1/6 ) log ( n /δ)),...
This article shows how to solve linear programs of the form minAx=b,x≥ 0 c⊤ x with n variables in time O*((nω+n2.5−α/2+n2+1/6) log (n/δ)), where ω is the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Algorithms
Linear programming
Mathematical analysis
Matrix methods
Multiplication
Title Solving Linear Programs in the Current Matrix Multiplication Time
URI https://www.proquest.com/docview/2499026897
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swGLWgXHaBDYaAlckHxKUyC47tJMeubEITRUhtpW6XyHYcbVKVItpN0_76fY7tpj9Ag12iKIoTxS_5vmfne88InaUiinlRRkRmVBNWppoonRpSZpFKpLU4q82q-7fiesS-jPm4WVaxVpfM1YX-86iu5H9QhWOAq1XJvgDZxUXhAOwDvrAFhGH7LIwH08kvp1KqrB_Pnau1moXaxeC91Lc2_L87fVc76CfpavHHE9S0lpv0mv8TQcLha-w7Hy_W6ni-wh2HclFBM_B1vt--y-nytAK9DJXIS6GSEc58JDQ-OvKEJDEfL4dPkW68Ji4WXi4lVWdYtBmumXW2iBm1xmNNRgp_4dcS1aJ80Impee4bbqMdCoMEiHI73av-zaDJxNTJ5cOjONG0bfrBN11lI6vJuGYYw9do1_c_7jqc36AtU-2jvbDsBvZR-AAyoYMdO9hxgB3_qDAghz3s2MGOV2HHFva3aPT507B3TfxKGETTVMyJ1qVSsaotpROlgHMKJZOCGWEoTzNgsUDLpIgK65-nWEFLKYUWPAN6aJgq4kPUqqaVOUI4KXWSlYUyRsDQU2opDFA-TTmTPI10eYzOQ4_k2tvE29VKJvlarx8jvDjx3jmjbJ7SDl2a-89mlsN4P4OBf5olJ_--wjv0qnk526g1f_hpToEFztV7D_ZfSWNatg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+Linear+Programs+in+the+Current+Matrix+Multiplication+Time&rft.jtitle=Journal+of+the+ACM&rft.au=Cohen%2C+Michael+B.&rft.au=Lee%2C+Yin+Tat&rft.au=Song%2C+Zhao&rft.date=2021-02-01&rft.issn=0004-5411&rft.eissn=1557-735X&rft.volume=68&rft.issue=1&rft.spage=1&rft.epage=39&rft_id=info:doi/10.1145%2F3424305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3424305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-5411&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-5411&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-5411&client=summon