Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles

Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg 2+ -substituted Mn–Zn ferrites with nominal composition Mn 0.5 Zn 0 . 5− x Mg x Fe 2 O 4 NPs ( x  = 0, 0.125, 0.25, 0.375, and 0.5) are synthesized via...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials science. Materials in electronics Vol. 31; no. 3; pp. 2598 - 2616
Main Authors Abdel Maksoud, M. I. A., El-Sayyad, Gharieb S., Abokhadra, A., Soliman, L. I., El-Bahnasawy, H. H., Ashour, A. H.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.02.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg 2+ -substituted Mn–Zn ferrites with nominal composition Mn 0.5 Zn 0 . 5− x Mg x Fe 2 O 4 NPs ( x  = 0, 0.125, 0.25, 0.375, and 0.5) are synthesized via a facile sol–gel method. The samples after sintered at 1173 K are characterized via the X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, the energy-dispersive X-ray spectra (EDX), high-resolution scanning electron microscopy (SEM), ultraviolet - diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM) technique. The XRD and FTIR patterns reveal that the formation of the cubic phase of Mn 0.5 Zn 0.5− x Mg x Fe 2 O 4 NPs. Also, small peaks associated with the phase of hematite (α-Fe 2 O 3 ) are observed due to the heating of spinel ferrites. The optical band gap for Mg 2+ -substituted Mn–Zn ferrites ranges between 1.36 and 1.78 eV. The saturation magnetization is enhanced with increasing Mg 2+ concentration. Furthermore, the M–H curves show a typical S-shaped exhibiting superparamagnetic nature for the studied samples. Also, the anisotropy constant enhances as Mg 2+ content increases in Mn–Zn NPs. Overall, the results revealed that the Mn 0.5 Zn 0.5− x Mg x Fe 2 O 4 NPs presented a unique properties, and consequently, they can be candidate materials for transformer's cores, antenna, and switching applications. On other hands, antimicrobial potential of the produced ferrite NPs was estimated towards multidrug-resistant (MDR) yeast and bacteria creating urinary tract infection (UTI). All the prepared ferrite NPs showed a hopeful antimicrobial potential upon all UTI-causing pathogens. Between them, Mn 0.5 Mg 0.5 Fe 2 O 4 NPs at 20 µg/ml was the most promising ferrite NPs produced superior antimicrobial activity due to the narrow band gap.
AbstractList Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg2+-substituted Mn–Zn ferrites with nominal composition Mn0.5Zn0.5−xMgxFe2O4 NPs (x = 0, 0.125, 0.25, 0.375, and 0.5) are synthesized via a facile sol–gel method. The samples after sintered at 1173 K are characterized via the X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, the energy-dispersive X-ray spectra (EDX), high-resolution scanning electron microscopy (SEM), ultraviolet-diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM) technique. The XRD and FTIR patterns reveal that the formation of the cubic phase of Mn0.5Zn0.5−xMgxFe2O4 NPs. Also, small peaks associated with the phase of hematite (α-Fe2O3) are observed due to the heating of spinel ferrites. The optical band gap for Mg2+-substituted Mn–Zn ferrites ranges between 1.36 and 1.78 eV. The saturation magnetization is enhanced with increasing Mg2+ concentration. Furthermore, the M–H curves show a typical S-shaped exhibiting superparamagnetic nature for the studied samples. Also, the anisotropy constant enhances as Mg2+ content increases in Mn–Zn NPs. Overall, the results revealed that the Mn0.5Zn0.5−xMgxFe2O4 NPs presented a unique properties, and consequently, they can be candidate materials for transformer's cores, antenna, and switching applications. On other hands, antimicrobial potential of the produced ferrite NPs was estimated towards multidrug-resistant (MDR) yeast and bacteria creating urinary tract infection (UTI). All the prepared ferrite NPs showed a hopeful antimicrobial potential upon all UTI-causing pathogens. Between them, Mn0.5Mg0.5 Fe2O4 NPs at 20 µg/ml was the most promising ferrite NPs produced superior antimicrobial activity due to the narrow band gap.
Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg 2+ -substituted Mn–Zn ferrites with nominal composition Mn 0.5 Zn 0 . 5− x Mg x Fe 2 O 4 NPs ( x  = 0, 0.125, 0.25, 0.375, and 0.5) are synthesized via a facile sol–gel method. The samples after sintered at 1173 K are characterized via the X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, the energy-dispersive X-ray spectra (EDX), high-resolution scanning electron microscopy (SEM), ultraviolet - diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM) technique. The XRD and FTIR patterns reveal that the formation of the cubic phase of Mn 0.5 Zn 0.5− x Mg x Fe 2 O 4 NPs. Also, small peaks associated with the phase of hematite (α-Fe 2 O 3 ) are observed due to the heating of spinel ferrites. The optical band gap for Mg 2+ -substituted Mn–Zn ferrites ranges between 1.36 and 1.78 eV. The saturation magnetization is enhanced with increasing Mg 2+ concentration. Furthermore, the M–H curves show a typical S-shaped exhibiting superparamagnetic nature for the studied samples. Also, the anisotropy constant enhances as Mg 2+ content increases in Mn–Zn NPs. Overall, the results revealed that the Mn 0.5 Zn 0.5− x Mg x Fe 2 O 4 NPs presented a unique properties, and consequently, they can be candidate materials for transformer's cores, antenna, and switching applications. On other hands, antimicrobial potential of the produced ferrite NPs was estimated towards multidrug-resistant (MDR) yeast and bacteria creating urinary tract infection (UTI). All the prepared ferrite NPs showed a hopeful antimicrobial potential upon all UTI-causing pathogens. Between them, Mn 0.5 Mg 0.5 Fe 2 O 4 NPs at 20 µg/ml was the most promising ferrite NPs produced superior antimicrobial activity due to the narrow band gap.
Author El-Bahnasawy, H. H.
El-Sayyad, Gharieb S.
Ashour, A. H.
Soliman, L. I.
Abokhadra, A.
Abdel Maksoud, M. I. A.
Author_xml – sequence: 1
  givenname: M. I. A.
  orcidid: 0000-0001-7708-9646
  surname: Abdel Maksoud
  fullname: Abdel Maksoud, M. I. A.
  email: muhamadmqsod@gmail.com, muhamad.mqsod@eaea.org.eg
  organization: Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority
– sequence: 2
  givenname: Gharieb S.
  orcidid: 0000-0001-5410-7936
  surname: El-Sayyad
  fullname: El-Sayyad, Gharieb S.
  organization: Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Chemical Engineering Department, Military Technical College, Egyptian Armed Forces
– sequence: 3
  givenname: A.
  surname: Abokhadra
  fullname: Abokhadra, A.
  organization: Basic Science Department, Modern Academy of Engineering and Technology
– sequence: 4
  givenname: L. I.
  surname: Soliman
  fullname: Soliman, L. I.
  organization: Basic Science Department, Modern Academy of Engineering and Technology
– sequence: 5
  givenname: H. H.
  surname: El-Bahnasawy
  fullname: El-Bahnasawy, H. H.
  organization: Physics Department, Faculty of Science, Al-Azhar University
– sequence: 6
  givenname: A. H.
  surname: Ashour
  fullname: Ashour, A. H.
  organization: Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority
BookMark eNp9kM1qGzEUhUVJoI7TF-hK0GU9qX5npGUwSWpI6SaB0o2Q5TtGZqyZSppFNiHv0DfMk1RjBwJdGCR0hc459-q7QGehD4DQZ0quKCHNt0SJkqIiVFeENVpX4gOaUdnwSij26wzNiJZNJSRjH9FFSjtCSC24mqHnVWi7EYID3Lf4x5Z9xWlcp-zzmH0fcFkpx9HlMdpugfshezcVe7sNUOoFtmFTdvZ772K_9rbDQ-wHiNlDOmSG15e_vwNuIUafAQcb-sGWZ9dBukTnre0SfHo75-jx9uZh-b26_3m3Wl7fV46pOlfOMS7XTEtGuWNtS5sN15Lwdb1phWqIYmoDFISl01UTUEzWoJvGQS1rJvgcfTnmltn-jJCy2fVjDKWlYVwoWiI0Kyp1VJWfpBShNc5nO3HI0frOUGIm2uZI2xTa5kDbTA3Yf9Yh-r2NT6dN_GhKRRy2EN-nOuH6B7_IllA
CitedBy_id crossref_primary_10_1002_pssa_202300263
crossref_primary_10_1016_j_jhazmat_2020_123000
crossref_primary_10_1016_j_optmat_2021_111396
crossref_primary_10_1007_s10311_021_01351_3
crossref_primary_10_1016_j_surfin_2023_103525
crossref_primary_10_1016_j_mssp_2024_108950
crossref_primary_10_1007_s10854_024_13407_5
crossref_primary_10_1007_s00170_024_13207_5
crossref_primary_10_1515_ntrev_2022_0027
crossref_primary_10_1016_j_micpath_2022_105440
crossref_primary_10_1140_epjp_s13360_024_05469_5
crossref_primary_10_3390_w14030454
crossref_primary_10_1016_j_micpath_2022_105680
crossref_primary_10_1016_j_matchemphys_2023_127641
crossref_primary_10_1134_S1063782624602188
crossref_primary_10_1016_j_surfin_2024_104106
crossref_primary_10_1007_s10854_021_05913_7
crossref_primary_10_1016_j_envres_2022_114500
crossref_primary_10_1016_j_matchemphys_2021_125301
crossref_primary_10_1016_j_ceramint_2022_12_107
crossref_primary_10_1016_j_ijbiomac_2024_130010
crossref_primary_10_1016_j_inoche_2024_112309
crossref_primary_10_1016_j_jics_2024_101545
crossref_primary_10_1016_j_jpcs_2020_109687
crossref_primary_10_1007_s13201_021_01555_6
crossref_primary_10_1016_j_physb_2023_414835
crossref_primary_10_1016_j_mseb_2023_116879
crossref_primary_10_1007_s00339_022_06277_3
crossref_primary_10_1016_j_ceramint_2023_08_213
crossref_primary_10_1016_j_ceramint_2023_11_071
crossref_primary_10_1016_j_optmat_2021_111216
crossref_primary_10_1007_s00339_020_04194_x
crossref_primary_10_1149_2162_8777_ac31d2
crossref_primary_10_1007_s43939_023_00056_4
crossref_primary_10_1007_s10854_020_04254_1
crossref_primary_10_1007_s10904_020_01523_8
crossref_primary_10_1039_C9RA10765G
crossref_primary_10_1007_s10854_020_03982_8
crossref_primary_10_1007_s10854_024_12036_2
crossref_primary_10_1016_j_jallcom_2023_173145
crossref_primary_10_1590_1980_5373_mr_2022_0312
crossref_primary_10_3390_coatings13101766
crossref_primary_10_1007_s10854_020_05224_3
crossref_primary_10_1016_j_inoche_2024_112283
crossref_primary_10_1016_j_ijbiomac_2020_09_160
crossref_primary_10_1016_j_nanoso_2021_100792
crossref_primary_10_1016_j_matchemphys_2021_125648
crossref_primary_10_1016_j_chemosphere_2022_136983
crossref_primary_10_15407_fm28_03_437
crossref_primary_10_1007_s00339_021_05054_y
crossref_primary_10_1016_j_ceramint_2022_07_291
crossref_primary_10_1016_j_ceramint_2023_03_170
crossref_primary_10_3103_S106138622201006X
crossref_primary_10_1016_j_chemosphere_2020_128607
crossref_primary_10_1134_S1070363223030209
crossref_primary_10_1007_s10311_020_01075_w
crossref_primary_10_1149_2162_8777_ad6503
Cites_doi 10.1007/s12011-019-01842-z
10.1007/s10876-019-01707-4
10.1155/2016/2106756
10.1007/s12011-019-01894-1
10.1007/s10854-019-02678-y
10.1016/j.solidstatesciences.2010.11.024
10.1007/s11051-011-0595-5
10.1016/j.jallcom.2016.05.200
10.1155/2016/4709687
10.1016/j.ceramint.2018.02.129
10.1016/j.diagmicrobio.2018.11.005
10.1111/j.1875-595X.2011.00049.x
10.1016/j.radphyschem.2016.07.014
10.1016/j.cplett.2018.12.025
10.1016/j.jre.2017.06.011
10.1533/9780857096012.197
10.1016/j.msec.2018.07.007
10.1016/j.jmmm.2016.08.035
10.1007/s10876-018-1411-5
10.1016/j.matchemphys.2019.02.030
10.1016/j.jmmm.2014.12.069
10.1016/j.colsurfa.2019.123821
10.1128/AEM.02218-06
10.1016/j.jmmm.2018.07.084
10.1016/j.molstruc.2012.05.014
10.1002/adma.19960080216
10.1016/j.colsurfb.2019.05.008
10.1016/j.jmmm.2016.10.078
10.1016/j.matchemphys.2011.11.009
10.1002/jobm.201500503
10.1016/j.powtec.2011.02.008
10.1016/j.ceramint.2014.07.017
10.1007/s10876-019-01533-8
10.9734/BJPR/2014/9566
10.1039/C6RA03377F
10.1016/j.measurement.2019.03.046
10.1007/s10971-019-05048-6
10.1016/j.matchemphys.2011.10.030
10.1016/B978-0-08-101925-2.00007-3
10.1016/j.jallcom.2014.01.248
10.1021/ic502497a
10.1039/C3CP54257B
10.1016/j.jpcs.2013.02.013
10.1016/j.ssc.2006.05.026
10.1016/j.nantod.2017.02.006
10.1016/j.ceramint.2016.10.053
10.1016/j.pnsc.2015.02.001
10.1016/j.jallcom.2018.04.093
10.1007/s10832-016-0023-4
10.1016/j.jallcom.2019.04.059
10.1016/j.apsusc.2010.03.124
10.1016/j.jallcom.2018.09.394
10.1016/j.jallcom.2013.07.139
10.1016/j.jallcom.2016.08.199
10.1007/s10876-019-01553-4
10.1039/C5RA14351A
10.1038/s41429-018-0133-0
10.1016/j.ceramint.2012.02.065
10.1016/j.jallcom.2017.10.103
10.1590/0104-6632.20140313s00002813
10.1016/j.jmmm.2017.09.033
10.1016/j.jallcom.2018.11.390
10.1002/jbm.a.36657
10.1016/j.jmmm.2014.03.027
10.1007/s10876-016-1101-0
10.1016/j.ceramint.2017.07.076
10.1016/j.micpath.2018.11.045
10.1063/1.4761987
10.1590/S0365-05962010000300005
10.1186/2251-7235-6-6
10.1016/j.ceramint.2012.12.023
10.1039/C5RA04553C
10.1016/j.partic.2017.12.001
10.1002/pssb.19660150224
10.1016/j.jmmm.2014.01.035
10.1007/s10971-019-04964-x
10.1021/acsearthspacechem.8b00189
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2020). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2020). All Rights Reserved.
DBID AAYXX
CITATION
7SP
7SR
8BQ
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
D1I
DWQXO
F28
FR3
HCIFZ
JG9
KB.
L7M
P5Z
P62
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
S0W
DOI 10.1007/s10854-019-02799-4
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
ProQuest Materials Science Collection
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-482X
EndPage 2616
ExternalDocumentID 10_1007_s10854_019_02799_4
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8FE
8FG
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P62
P9N
PDBOC
PKN
PT4
PT5
Q2X
QF4
QM1
QN7
QO4
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
Z8M
Z8N
Z8P
Z8R
Z8T
Z8W
Z8Z
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SP
7SR
8BQ
8FD
ABRTQ
DWQXO
F28
FR3
JG9
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c286t-cc235b295213c2ff17d39503b6df4870828de1e4a1f48790e8256e977ce656243
IEDL.DBID U2A
ISSN 0957-4522
IngestDate Fri Jul 25 12:14:50 EDT 2025
Thu Apr 24 23:13:22 EDT 2025
Tue Jul 01 02:34:41 EDT 2025
Fri Feb 21 02:39:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c286t-cc235b295213c2ff17d39503b6df4870828de1e4a1f48790e8256e977ce656243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7708-9646
0000-0001-5410-7936
PQID 2348170892
PQPubID 326250
PageCount 19
ParticipantIDs proquest_journals_2348170892
crossref_citationtrail_10_1007_s10854_019_02799_4
crossref_primary_10_1007_s10854_019_02799_4
springer_journals_10_1007_s10854_019_02799_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of materials science. Materials in electronics
PublicationTitleAbbrev J Mater Sci: Mater Electron
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Kumar, Jayaprakash, Seehra, Prakash, Kumar (CR34) 2013; 74
Rahman, Nadeem, Anis-ur-Rehman, Mumtaz, Naeem, Letofsky-Papst (CR64) 2013; 39
Khanna, Verma, Tripathi (CR9) 2018; 752
El-Batal, Mosallam, El-Sayyad (CR27) 2018; 29
Xavier, Cleetus, Nimila, Thankachan, Sebastian, Mohammed (CR83) 2014; 5
Smit, Wijn, Marton (CR72) 1954
Humbe, Nawle, Shinde, Jadhav (CR70) 2017; 691
El-Baz, El-Batal, Abomosalam, Tayel, Shetaia, Yang (CR13) 2016; 56
Maksoud, El-ghandour, El-Sayyad, Awed, Ashour, El-Batal, Gobara, Abdel-Khalek, El-Okr (CR23) 2019; 90
Yadav, Kuřitka, Havlica, Hnatko, Alexander, Masilko, Kalina, Hajdúchová, Rusnak, Enev (CR50) 2018; 447
Pal, Tak, Song (CR81) 2007; 73
El-Batal, Balabel, Attia, El-Sayyad (CR14) 2019
Maksoud, El-ghandour, El-Sayyad, Awed, Fahim, Atta, Ashour, El-Batal, Gobara, Abdel-Khalek, El-Okr (CR22) 2019; 30
Sharma, Thakur, Kumar, Thakur, Negi, Sharma, Sharma (CR39) 2016; 684
Zak, Majid, Abrishami, Yousefi (CR45) 2011; 13
Tiwari, Verma, Kane, Tatarchuk, Mazaleyrat (CR38) 2019; 229
Peulon, Lincot (CR80) 1996; 8
Hajarpour, Raouf, Gheisari (CR65) 2014; 363
Lynch (CR79) 2011; 61
CR2
Bohara, Thorat, Chaurasia, Pawar (CR8) 2015; 5
Gingasu, Mindru, Patron, Calderon-Moreno, Mocioiu, Preda, Stanica, Nita, Dobre, Popa (CR84) 2016
Kumar, Shah, Kotnala, Dhiman, Rani, Singh, Garg, Shirsath, Batoo, Singh (CR42) 2014; 40
Kumar, Kar (CR67) 2012; 38
Elkodous, El-Sayyad, Nasser, Elshamy, Morsi, Abdelrahman, Kodous, Mosallam, Gobara, El-Batal (CR73) 2019; 30
Ghazi, Chenari, Ghodsi (CR60) 2018; 468
Shirsath, Patange, Kadam, Mane, Jadhav (CR52) 2012; 1024
CR5
Bahhar, Lemziouka, Boutahar, Bioud, Lassri, Hlil (CR41) 2019; 716
Khot, Shinde, Ladgaonkar, Kale, Watawe (CR66) 2011; 2
Jin, He (CR74) 2011; 13
Ghasemi (CR1) 2014; 360
Blanco-Andujar, Teran, Ortega, Mahmoudi, Laurent (CR4) 2018
Reyes-Rodríguez, Cortés-Hernández, Escobedo-Bocardo, Almanza-Robles, Sánchez-Fuentes, Jasso-Terán, De León-Prado, Méndez-Nonell, Hurtado-López (CR18) 2017; 427
Ashok, Kennedy, Vijaya (CR61) 2019; 780
Goldman (CR62) 2006
El Moussaoui, Mounkachi, Masrour, Hamedoun, Hlil, Benyoussef (CR68) 2013; 581
Ghodake, Kambale, Suryavanshi (CR33) 2017; 43
Singha, Workman, Pant, Hopkins, Handa (CR77) 2019; 107
Ma, Tong, Yuan, Liu (CR86) 2019; 3
Zhang, Zhang, Xu, Ji (CR44) 2006; 139
Belavi, Chavan, Naik, Somashekar, Kotnala (CR25) 2012; 132
Satalkar, Kane, Ghosh, Ghodke, Barrera, Celegato, Coisson, Tiberto, Vinai (CR36) 2014; 615
Knaack, Idelevich, Schleimer, Molinaro, Kriegeskorte, Peters, Becker (CR31) 2019; 93
Murugesan, Chandrasekaran (CR47) 2015; 5
Dippong, Deac, Cadar, Levei, Diamandescu, Borodi (CR55) 2019; 792
Isaka, Yangchum, Supothina, Veeranondha, Komwijit, Phongpaichit (CR29) 2019; 72
Tatarchuk, Paliychuk, Bououdina, Al-Najar, Pacia, Macyk, Shyichuk (CR58) 2018; 731
Reheem, Atta, Maksoud (CR24) 2016; 127
Banerjee, Chakraborti, Saha (CR56) 2019; 140
El-Batal, El-Sayyad, Al-Hazmi, Gobara (CR28) 2019; 30
Abd, El-Sayyad, Abdel, Abdelrahman, Mosallam, Gobara, El-Batal (CR76) 2019
Srinivasamurthy, Angadi, Kubrin, Matteppanavar, Sarychev, Kumar, Azale, Rudraswamy (CR53) 2018; 44
Hassan, Maksoud, Attia (CR6) 2019
CR16
Tang, Lv (CR75) 2014; 31
Kakade, Kambale, Ramanna, Kolekar (CR40) 2016; 6
Modi, Raval, Shah, Kathad, Dulera, Popat, Zankat, Saija, Pathak, Vasoya, Lakhani, Chandra, Jha (CR48) 2015; 54
Angelakeris, Li, Hilgendorff, Simeonidis, Sakellari, Filippousi, Tian, Van Tendeloo, Spasova, Acet, Farle (CR7) 2015; 381
Brownlee (CR32) 1952
El-Sayyad, El-Bastawisy, Gobara, El-Batal (CR89) 2019
Seil, Webster (CR11) 2012; 7
El-Batal, El-Sayyad, El-Ghamery, Gobara (CR82) 2017; 28
Diogo, Melhem, Sarpieri, Pires (CR26) 2010; 85
Chen, Liang, Xiao, Wei (CR10) 2016; 36
Maksoud, El-Sayyad, Ashour, El-Batal, Elsayed, Gobara, El-Khawaga, Abdel-Khalek, El-Okr (CR20) 2019; 127
Clinical (CR30) 1999
Gutiérrez-López, Rodriguez-Senín, Pastor, Paris, Martín, Levenfeld, Várez (CR37) 2011; 210
Sharma, Thakur, Kumar, Barman, Sharma, Sharma (CR35) 2017; 43
Hezma, Rajeh, Mannaa (CR87) 2019; 581
Sanpo, Berndt, Wang (CR88) 2012; 112
Elkodous, El-Sayyad, Abdelrahman, El-Bastawisy, Mohamed, Mosallam, Nasser, Gobara, Baraka, Elsayed, El-Batal (CR15) 2019; 180
Shirsath, Mane, Yasukawa, Liu, Morisako (CR71) 2014; 16
Zipare, Bandgar, Shahane (CR54) 2018; 36
El-Batal, Haroun, Farrag, Baraka, El-Sayyad (CR12) 2014; 4
Ramakanth (CR43) 2007
Naik, Naik, Kottam, Vinuth, Nagaraju, Prabhakara (CR85) 2019; 91
Li, Wang, Low (CR51) 2012
Noh, Moon, Shin, Lim, Cheon (CR3) 2017; 13
Ashour, El-Batal, Maksoud, El-Sayyad, Labib, Abdeltwab, El-Okr (CR19) 2018; 40
Akhtar, Khan, Ahmad, Nazir, Imran, Ali, Sattar, Murtaza (CR69) 2017; 421
Maksoud, El-Sayyad, Ashour, El-Batal, Abd-Elmonem, Hendawy, Abdel-Khalek, Labib, Abdeltwab, El-Okr (CR21) 2018; 92
Tauc, Grigorovici, Vancu (CR59) 1966; 15
Stanić, Dimitrijević, Antić-Stanković, Mitrić, Jokić, Plećaš, Raičević (CR78) 2010; 256
da Silva, Valente (CR17) 2012; 132
Gao, Wang, Pei, Zhang (CR49) 2019; 774
Devmunde, Raut, Birajdar, Shukla, Shengule, Jadhav (CR57) 2016; 2016
Nadeem, Rahman, Mumtaz (CR63) 2015; 25
Mote, Purushotham, Dole (CR46) 2012; 6
ER Kumar (2799_CR34) 2013; 74
AI El-Batal (2799_CR82) 2017; 28
D Gingasu (2799_CR84) 2016
JT Seil (2799_CR11) 2012; 7
D Knaack (2799_CR31) 2019; 93
C Murugesan (2799_CR47) 2015; 5
2799_CR5
PY Reyes-Rodríguez (2799_CR18) 2017; 427
C Li (2799_CR51) 2012
B. H. Devmunde (2799_CR57) 2016; 2016
2799_CR2
2799_CR16
S. G. Kakade (2799_CR40) 2016; 6
J Gutiérrez-López (2799_CR37) 2011; 210
V Stanić (2799_CR78) 2010; 256
RJ Lynch (2799_CR79) 2011; 61
K Nadeem (2799_CR63) 2015; 25
AI El-Batal (2799_CR14) 2019
K Ramakanth (2799_CR43) 2007
RS Yadav (2799_CR50) 2018; 447
L Kumar (2799_CR67) 2012; 38
P Singha (2799_CR77) 2019; 107
P Tiwari (2799_CR38) 2019; 229
J Smit (2799_CR72) 1954
S Ma (2799_CR86) 2019; 3
C Blanco-Andujar (2799_CR4) 2018
A Ghasemi (2799_CR1) 2014; 360
MA Elkodous (2799_CR15) 2019; 180
S Khot (2799_CR66) 2011; 2
LS Clinical (2799_CR30) 1999
N Ghazi (2799_CR60) 2018; 468
L Khanna (2799_CR9) 2018; 752
D Chen (2799_CR10) 2016; 36
AI El-Batal (2799_CR27) 2018; 29
A Goldman (2799_CR62) 2006
S Hajarpour (2799_CR65) 2014; 363
MA Elkodous (2799_CR73) 2019; 30
RA Bohara (2799_CR8) 2015; 5
SE Shirsath (2799_CR52) 2012; 1024
T Tatarchuk (2799_CR58) 2018; 731
MM Naik (2799_CR85) 2019; 91
S Xavier (2799_CR83) 2014; 5
P Belavi (2799_CR25) 2012; 132
S Banerjee (2799_CR56) 2019; 140
KB Modi (2799_CR48) 2015; 54
Z-X Tang (2799_CR75) 2014; 31
R Sharma (2799_CR39) 2016; 684
AK Zak (2799_CR45) 2011; 13
A Ashok (2799_CR61) 2019; 780
S Peulon (2799_CR80) 1996; 8
HC Diogo (2799_CR26) 2010; 85
R Sharma (2799_CR35) 2017; 43
VD Mote (2799_CR46) 2012; 6
T Dippong (2799_CR55) 2019; 792
MIA Maksoud (2799_CR23) 2019; 90
HS Hassan (2799_CR6) 2019
U Ghodake (2799_CR33) 2017; 43
S Pal (2799_CR81) 2007; 73
M Isaka (2799_CR29) 2019; 72
S Bahhar (2799_CR41) 2019; 716
AV Humbe (2799_CR70) 2017; 691
A El-Batal (2799_CR12) 2014; 4
A Hezma (2799_CR87) 2019; 581
K Brownlee (2799_CR32) 1952
K Zipare (2799_CR54) 2018; 36
MIAA Maksoud (2799_CR22) 2019; 30
MIAA Maksoud (2799_CR20) 2019; 127
N Sanpo (2799_CR88) 2012; 112
S Rahman (2799_CR64) 2013; 39
MN Akhtar (2799_CR69) 2017; 421
SE Shirsath (2799_CR71) 2014; 16
GS El-Sayyad (2799_CR89) 2019
AH Ashour (2799_CR19) 2018; 40
T Jin (2799_CR74) 2011; 13
AA Reheem (2799_CR24) 2016; 127
AI El-Batal (2799_CR28) 2019; 30
ME Abd (2799_CR76) 2019
G Kumar (2799_CR42) 2014; 40
AF El-Baz (2799_CR13) 2016; 56
H El Moussaoui (2799_CR68) 2013; 581
MF da Silva (2799_CR17) 2012; 132
J Tauc (2799_CR59) 1966; 15
S-H Noh (2799_CR3) 2017; 13
J-M Zhang (2799_CR44) 2006; 139
KM Srinivasamurthy (2799_CR53) 2018; 44
M Angelakeris (2799_CR7) 2015; 381
Y Gao (2799_CR49) 2019; 774
MIA Maksoud (2799_CR21) 2018; 92
M Satalkar (2799_CR36) 2014; 615
References_xml – volume: 581
  start-page: 776
  year: 2013
  end-page: 781
  ident: CR68
  article-title: Synthesis and super-paramagnetic properties of neodymium ferrites nanorods
  publication-title: J. Alloys Compd.
– volume: 381
  start-page: 179
  year: 2015
  end-page: 187
  ident: CR7
  article-title: Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles
  publication-title: J. Magn. Magn. Mater.
– start-page: 197
  year: 2012
  end-page: 222
  ident: CR51
  article-title: Computational modelling and ab initio calculations in MAX phases—I
  publication-title: Advances in Science and Technology of Mn+1AXn Phases
– volume: 30
  start-page: 4908
  issue: 5
  year: 2019
  end-page: 4919
  ident: CR22
  article-title: Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications
  publication-title: J. Mater. Sci.
– volume: 180
  start-page: 411
  year: 2019
  end-page: 428
  ident: CR15
  article-title: Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications
  publication-title: Colloids Surf. B
– volume: 6
  start-page: 6
  issue: 1
  year: 2012
  ident: CR46
  article-title: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles
  publication-title: J. Theor. Appl. Phys.
– volume: 61
  start-page: 46
  year: 2011
  end-page: 54
  ident: CR79
  article-title: Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature
  publication-title: Int. Dent. J.
– volume: 73
  start-page: 1712
  issue: 6
  year: 2007
  end-page: 1720
  ident: CR81
  article-title: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli
  publication-title: Appl. Environ. Microbiol.
– volume: 581
  start-page: 123821
  year: 2019
  ident: CR87
  article-title: An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite
  publication-title: Colloids Surf. A
– ident: CR16
– volume: 5
  start-page: 47225
  issue: 58
  year: 2015
  end-page: 47234
  ident: CR8
  article-title: Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles
  publication-title: RSC Adv.
– volume: 731
  start-page: 1256
  year: 2018
  end-page: 1266
  ident: CR58
  article-title: Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles
  publication-title: J. Alloy Compd.
– volume: 90
  start-page: 631
  issue: 3
  year: 2019
  end-page: 642
  ident: CR23
  article-title: Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 15
  start-page: 627
  issue: 2
  year: 1966
  end-page: 637
  ident: CR59
  article-title: Optical properties and electronic structure of amorphous germanium
  publication-title: Physica Status Solidi (b)
– volume: 615
  start-page: S313
  year: 2014
  end-page: S316
  ident: CR36
  article-title: Synthesis and soft magnetic properties of Zn0.8−xNixMg0.1Cu0.1Fe2O4 (x=0.0−0.8) ferrites prepared by sol–gel auto-combustion method
  publication-title: J. Alloys Compd.
– volume: 43
  start-page: 1129
  issue: 1
  year: 2017
  end-page: 1134
  ident: CR33
  article-title: Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg–Zn ferrites
  publication-title: Ceram. Int.
– volume: 5
  start-page: 364
  issue: 5
  year: 2014
  end-page: 371
  ident: CR83
  article-title: Structural and antibacterial properties of silver substituted cobalt ferrite nanoparticles
  publication-title: Res. J. Pharm. Biol. Chem. Sci.
– volume: 36
  start-page: 158
  issue: 1
  year: 2016
  end-page: 164
  ident: CR10
  article-title: Synthesis of Co-substituted Mn–Zn ferrite nanoparticles by mechanochemistry approach
  publication-title: J. Electroceram.
– volume: 468
  start-page: 132
  year: 2018
  end-page: 140
  ident: CR60
  article-title: Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers
  publication-title: J. Magn. Magn. Mater.
– year: 2019
  ident: CR89
  article-title: Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens
  publication-title: Trace Elem. Res. Biol.
  doi: 10.1007/s12011-019-01842-z
– volume: 36
  start-page: 86
  issue: 1
  year: 2018
  end-page: 94
  ident: CR54
  article-title: Effect of Dy-substitution on structural and magnetic properties of MnZn ferrite nanoparticles
  publication-title: J. Rare Earths
– volume: 43
  start-page: 13661
  issue: 16
  year: 2017
  end-page: 13669
  ident: CR35
  article-title: Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg–Zn ferrites as a heating source in hyperthermia applications
  publication-title: Ceram. Int.
– volume: 127
  start-page: 269
  year: 2016
  end-page: 275
  ident: CR24
  article-title: Low energy ion beam induced changes in structural and thermal properties of polycarbonate
  publication-title: Radiat. Phys. Chem.
– volume: 421
  start-page: 260
  year: 2017
  end-page: 268
  ident: CR69
  article-title: Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0. 5− xNi0. 5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications
  publication-title: J. Magn. Magn. Mater.
– volume: 13
  start-page: 251
  issue: 1
  year: 2011
  end-page: 256
  ident: CR45
  article-title: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods
  publication-title: Solid State Sci.
– volume: 4
  start-page: 1341
  issue: 11
  year: 2014
  ident: CR12
  article-title: Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation
  publication-title: Brit. J. Pharm. Res.
– volume: 139
  start-page: 87
  issue: 3
  year: 2006
  end-page: 91
  ident: CR44
  article-title: General compliance transformation relation and applications for anisotropic hexagonal metals
  publication-title: Solid State Commun.
– year: 2019
  ident: CR14
  article-title: Antibacterial and antibiofilm potential of mono-dispersed stable copper oxide nanoparticles-streptomycin nano-drug: implications for some potato plant bacterial pathogen treatment
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-019-01707-4
– year: 2016
  ident: CR84
  article-title: Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential
  publication-title: J. Nanomater.
  doi: 10.1155/2016/2106756
– start-page: 197
  year: 2018
  end-page: 245
  ident: CR4
  article-title: Chapter 8—Current outlook and perspectives on nanoparticle-mediated magnetic hyperthermia
  publication-title: Iron oxide nanoparticles for biomedical applications
– volume: 72
  start-page: 181
  issue: 3
  year: 2019
  ident: CR29
  article-title: Semisynthesis and antibacterial activities of nidulin derivatives
  publication-title: J. Antibiot.
– volume: 92
  start-page: 644
  year: 2018
  end-page: 656
  ident: CR21
  article-title: Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1–x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples
  publication-title: Mater. Sci. Eng.
– volume: 112
  start-page: 084333
  issue: 8
  year: 2012
  ident: CR88
  article-title: Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods
  publication-title: J. Appl. Phys.
– volume: 25
  start-page: 111
  issue: 2
  year: 2015
  end-page: 116
  ident: CR63
  article-title: Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles
  publication-title: Prog. Nat. Sci.
– volume: 691
  start-page: 343
  year: 2017
  end-page: 354
  ident: CR70
  article-title: Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route
  publication-title: J. Alloy Compd.
– ident: CR5
– volume: 30
  start-page: 947
  issue: 4
  year: 2019
  end-page: 964
  ident: CR28
  article-title: Antibiofilm and antimicrobial activities of silver boron nanoparticles synthesized by PVP polymer and gamma rays against urinary tract pathogens
  publication-title: J. Clust. Sci.
– volume: 93
  start-page: 362
  issue: 4
  year: 2019
  end-page: 368
  ident: CR31
  article-title: Bactericidal activity of bacteriophage endolysin HY-133 against Staphylococcus aureus in comparison to other antibiotics as determined by minimum bactericidal concentrations and time-kill analysis
  publication-title: Diagn. Microbiol. Infect. Dis.
– year: 2019
  ident: CR76
  article-title: Fabrication of ultra-pure anisotropic zinc oxide nanoparticles via simple and cost-effective route: implications for UTI and EAC medications
  publication-title: Trace Elem. Res. Biol.
  doi: 10.1007/s12011-019-01894-1
– volume: 792
  start-page: 432
  year: 2019
  end-page: 443
  ident: CR55
  article-title: Effect of Zn content on structural, morphological and magnetic behavior of ZnxCo1-xFe2O4/SiO2 nanocomposites
  publication-title: J. Alloys Compd.
– volume: 427
  start-page: 268
  year: 2017
  end-page: 271
  ident: CR18
  article-title: Structural and magnetic properties of Mg–Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method
  publication-title: J. Magn. Magn. Mater.
– volume: 5
  start-page: 73714
  issue: 90
  year: 2015
  end-page: 73725
  ident: CR47
  article-title: Impact of Gd 3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles
  publication-title: RSC Adv.
– volume: 140
  start-page: 142
  year: 2019
  end-page: 150
  ident: CR56
  article-title: An automated methodology for grain segmentation and grain size measurement from optical micrographs
  publication-title: Measurement
– volume: 38
  start-page: 4771
  issue: 6
  year: 2012
  end-page: 4782
  ident: CR67
  article-title: Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−xLaxO4)
  publication-title: Ceram. Int.
– volume: 2
  start-page: 460
  issue: 4
  year: 2011
  end-page: 471
  ident: CR66
  article-title: Magnetic and structural properties of magnesium zinc ferrites synthesized at different temperature
  publication-title: Adv. Appl. Sci. Res.
– year: 1999
  ident: CR30
  publication-title: Institute, Methods for determining bactericidal activity of antimicrobial agents: approved guideline M26-A
– volume: 91
  start-page: 578
  issue: 3
  year: 2019
  end-page: 595
  ident: CR85
  article-title: Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles
  publication-title: J. Sol-Gel Sci. Technol.
– volume: 30
  start-page: 531
  issue: 3
  year: 2019
  end-page: 540
  ident: CR73
  article-title: Engineered nanomaterials as potential candidates for HIV treatment: between opportunities and challenges
  publication-title: J. Clust. Sci.
– volume: 256
  start-page: 6083
  issue: 20
  year: 2010
  end-page: 6089
  ident: CR78
  article-title: Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders
  publication-title: Appl. Surf. Sci.
– volume: 210
  start-page: 29
  issue: 1
  year: 2011
  end-page: 35
  ident: CR37
  article-title: Microstructure, magnetic and mechanical properties of Ni–Zn ferrites prepared by powder injection moulding
  publication-title: Powd. Technol.
– volume: 13
  start-page: 6877
  issue: 12
  year: 2011
  end-page: 6885
  ident: CR74
  article-title: Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens
  publication-title: J. Nanopart Res.
– ident: CR2
– volume: 44
  start-page: 9194
  issue: 8
  year: 2018
  end-page: 9203
  ident: CR53
  article-title: Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications
  publication-title: Ceram. Int.
– volume: 752
  start-page: 332
  year: 2018
  end-page: 353
  ident: CR9
  article-title: Burgeoning tool of biomedical applications—superparamagnetic nanoparticles
  publication-title: J. Alloy Compd.
– volume: 29
  start-page: 1003
  issue: 6
  year: 2018
  end-page: 1015
  ident: CR27
  article-title: Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes
  publication-title: J. Clust. Sci.
– volume: 447
  start-page: 48
  year: 2018
  end-page: 57
  ident: CR50
  article-title: Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1−xZnxFe2O4 (x=0.0, 0.5) spinel ferrite nanoparticles
  publication-title: J. Magn. Magn. Mater.
– volume: 85
  start-page: 324
  issue: 3
  year: 2010
  end-page: 330
  ident: CR26
  article-title: Evaluation of the disk-diffusion method to determine the in vitro efficacy of terbinafine against subcutaneous and superficial mycoses agents
  publication-title: Anais Brasileiros de Dermatol.
– volume: 127
  start-page: 144
  year: 2019
  end-page: 158
  ident: CR20
  article-title: Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles
  publication-title: Microb. Pathog.
– volume: 780
  start-page: 816
  year: 2019
  end-page: 828
  ident: CR61
  article-title: Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0 ≤ x ≤ 0.5) spinel nano particles for transesterification of used cooking oil
  publication-title: J. Alloys Compd.
– year: 2006
  ident: CR62
  publication-title: Modern ferrite technology
– year: 2007
  ident: CR43
  publication-title: Basics of X-ray diffraction and its application
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 8
  ident: CR57
  article-title: Structural, Electrical, Dielectric, and Magnetic Properties of Cd2+ Substituted Nickel Ferrite Nanoparticles
  publication-title: Journal of Nanoparticles
– volume: 54
  start-page: 1543
  issue: 4
  year: 2015
  end-page: 1555
  ident: CR48
  article-title: Raman and mossbauer spectroscopy and X-ray diffractometry studies on quenched copper–ferri–aluminates
  publication-title: Inorg. Chem.
– volume: 31
  start-page: 591
  issue: 3
  year: 2014
  end-page: 601
  ident: CR75
  article-title: MgO nanoparticles as antibacterial agent: preparation and activity
  publication-title: Braz. J. Chem. Eng.
– volume: 363
  start-page: 21
  year: 2014
  end-page: 25
  ident: CR65
  article-title: Structural evolution and magnetic properties of nanocrystalline magnesium–zinc soft ferrites synthesized by glycine–nitrate combustion process
  publication-title: J. Magn. Magn. Mater.
– volume: 74
  start-page: 943
  issue: 7
  year: 2013
  end-page: 949
  ident: CR34
  article-title: Effect of α-Fe2O3 phase on structural, magnetic and dielectric properties of Mn–Zn ferrite nanoparticles
  publication-title: J. Phys. Chem. Solids
– volume: 132
  start-page: 264
  issue: 2–3
  year: 2012
  end-page: 272
  ident: CR17
  article-title: Magnesium ferrite nanoparticles inserted in a glass matrix—microstructure and magnetic properties
  publication-title: Mater. Chem. Phys.
– volume: 3
  start-page: 738
  issue: 5
  year: 2019
  end-page: 747
  ident: CR86
  article-title: Responses of the microbial community structure in Fe (II)-bearing sediments to oxygenation: the role of reactive oxygen species
  publication-title: ACS Earth Space Chem.
– year: 1952
  ident: CR32
  publication-title: Probit analysis: a statistical treatment of the sigmoid response curve
– volume: 107
  start-page: 1425
  issue: 7
  year: 2019
  end-page: 1433
  ident: CR77
  article-title: Zinc-oxide nanoparticles act catalytically and synergistically with nitric oxide donors to enhance antimicrobial efficacy
  publication-title: J. Biomed. Mater. Res.
– volume: 229
  start-page: 78
  year: 2019
  end-page: 86
  ident: CR38
  article-title: Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites
  publication-title: Mater. Chem. Phys.
– volume: 40
  start-page: 14509
  issue: 9
  year: 2014
  end-page: 14516
  ident: CR42
  article-title: Self-ignited synthesis of Mg–Gd–Mn nanoferrites and impact of cation distribution on the dielectric properties
  publication-title: Ceram. Int.
– volume: 7
  start-page: 2767
  year: 2012
  ident: CR11
  article-title: Antimicrobial applications of nanotechnology: methods and literature
  publication-title: Int. J. Nanomed.
– volume: 16
  start-page: 2347
  issue: 6
  year: 2014
  end-page: 2357
  ident: CR71
  article-title: Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho 3+–Mn 2+–Fe 3+–O 2− ferromagnetic nanoparticles
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1024
  start-page: 77
  year: 2012
  end-page: 83
  ident: CR52
  article-title: Structure refinement, cation site location, spectral and elastic properties of Zn2+ substituted NiFe2O4
  publication-title: J. Mol. Struct.
– start-page: 69
  year: 1954
  end-page: 136
  ident: CR72
  article-title: Physical properties of ferrites
  publication-title: Advances in Electronics and Electron Physics
– volume: 39
  start-page: 5235
  issue: 5
  year: 2013
  end-page: 5239
  ident: CR64
  article-title: Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method
  publication-title: Ceram. Int.
– volume: 8
  start-page: 166
  issue: 2
  year: 1996
  end-page: 170
  ident: CR80
  article-title: Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films
  publication-title: Adv. Mater.
– volume: 40
  start-page: 141
  year: 2018
  end-page: 151
  ident: CR19
  article-title: Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique
  publication-title: Particuology
– volume: 6
  start-page: 33308
  issue: 40
  year: 2016
  end-page: 33317
  ident: CR40
  article-title: Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er3+) ion substituted cobalt-rich ferrite (Co1.1Fe1.9−xErxO4)
  publication-title: RSC Advances
– volume: 716
  start-page: 186
  year: 2019
  end-page: 191
  ident: CR41
  article-title: Influence of La3+ site substitution on the structural, magnetic and magnetocaloric properties of ZnFe2− xLaxO4 (x= 0.00, 0.001, 0.005 and 0.01) spinel zinc ferrites
  publication-title: Chem. Phys. Lett.
– year: 2019
  ident: CR6
  article-title: Assessment of zinc ferrite nanocrystals for removal of 134Cs and 152+154Eu radionuclides from nitric acid solution
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10854-019-02678-y
– volume: 28
  start-page: 1083
  issue: 3
  year: 2017
  end-page: 1112
  ident: CR82
  article-title: Response surface methodology optimization of melanin production by and synthesis of copper oxide nanoparticles using gamma radiation
  publication-title: J. Clust. Sci.
– volume: 360
  start-page: 41
  year: 2014
  end-page: 47
  ident: CR1
  article-title: Particle size dependence of magnetic features for Ni0.6−xCuxZn0.4Fe2O4 spinel nanoparticles
  publication-title: J. Magn. Magn. Mater.
– volume: 56
  start-page: 531
  issue: 5
  year: 2016
  end-page: 540
  ident: CR13
  article-title: Extracellular biosynthesis of anti-Candida silver nanoparticles using
  publication-title: J. Basic Microbiol.
– volume: 774
  start-page: 1233
  year: 2019
  end-page: 1242
  ident: CR49
  article-title: Structural, elastic, thermal and soft magnetic properties of Ni–Zn–Li ferrites
  publication-title: J. Alloy Compd.
– volume: 132
  start-page: 138
  issue: 1
  year: 2012
  end-page: 144
  ident: CR25
  article-title: Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites
  publication-title: Mater. Chem. Phys.
– volume: 13
  start-page: 61
  year: 2017
  end-page: 76
  ident: CR3
  article-title: Recent advances of magneto-thermal capabilities of nanoparticles: from design principles to biomedical applications
  publication-title: Nano Today
– volume: 684
  start-page: 569
  year: 2016
  end-page: 581
  ident: CR39
  article-title: Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route
  publication-title: J. Alloy Compd.
– volume: 13
  start-page: 251
  issue: 1
  year: 2011
  ident: 2799_CR45
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2010.11.024
– volume: 13
  start-page: 6877
  issue: 12
  year: 2011
  ident: 2799_CR74
  publication-title: J. Nanopart Res.
  doi: 10.1007/s11051-011-0595-5
– volume: 684
  start-page: 569
  year: 2016
  ident: 2799_CR39
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2016.05.200
– volume: 2016
  start-page: 1
  year: 2016
  ident: 2799_CR57
  publication-title: Journal of Nanoparticles
  doi: 10.1155/2016/4709687
– volume: 44
  start-page: 9194
  issue: 8
  year: 2018
  ident: 2799_CR53
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.02.129
– volume: 5
  start-page: 364
  issue: 5
  year: 2014
  ident: 2799_CR83
  publication-title: Res. J. Pharm. Biol. Chem. Sci.
– volume: 93
  start-page: 362
  issue: 4
  year: 2019
  ident: 2799_CR31
  publication-title: Diagn. Microbiol. Infect. Dis.
  doi: 10.1016/j.diagmicrobio.2018.11.005
– volume: 61
  start-page: 46
  year: 2011
  ident: 2799_CR79
  publication-title: Int. Dent. J.
  doi: 10.1111/j.1875-595X.2011.00049.x
– volume: 127
  start-page: 269
  year: 2016
  ident: 2799_CR24
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2016.07.014
– volume: 716
  start-page: 186
  year: 2019
  ident: 2799_CR41
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2018.12.025
– volume: 36
  start-page: 86
  issue: 1
  year: 2018
  ident: 2799_CR54
  publication-title: J. Rare Earths
  doi: 10.1016/j.jre.2017.06.011
– volume-title: Probit analysis: a statistical treatment of the sigmoid response curve
  year: 1952
  ident: 2799_CR32
– start-page: 197
  volume-title: Advances in Science and Technology of Mn+1AXn Phases
  year: 2012
  ident: 2799_CR51
  doi: 10.1533/9780857096012.197
– volume: 92
  start-page: 644
  year: 2018
  ident: 2799_CR21
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msec.2018.07.007
– volume: 421
  start-page: 260
  year: 2017
  ident: 2799_CR69
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.08.035
– volume: 2
  start-page: 460
  issue: 4
  year: 2011
  ident: 2799_CR66
  publication-title: Adv. Appl. Sci. Res.
– volume: 29
  start-page: 1003
  issue: 6
  year: 2018
  ident: 2799_CR27
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-018-1411-5
– volume: 229
  start-page: 78
  year: 2019
  ident: 2799_CR38
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2019.02.030
– volume: 381
  start-page: 179
  year: 2015
  ident: 2799_CR7
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.12.069
– volume: 581
  start-page: 123821
  year: 2019
  ident: 2799_CR87
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2019.123821
– start-page: 69
  volume-title: Advances in Electronics and Electron Physics
  year: 1954
  ident: 2799_CR72
– volume: 73
  start-page: 1712
  issue: 6
  year: 2007
  ident: 2799_CR81
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02218-06
– volume: 468
  start-page: 132
  year: 2018
  ident: 2799_CR60
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2018.07.084
– volume: 1024
  start-page: 77
  year: 2012
  ident: 2799_CR52
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2012.05.014
– volume: 8
  start-page: 166
  issue: 2
  year: 1996
  ident: 2799_CR80
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19960080216
– volume: 180
  start-page: 411
  year: 2019
  ident: 2799_CR15
  publication-title: Colloids Surf. B
  doi: 10.1016/j.colsurfb.2019.05.008
– volume: 427
  start-page: 268
  year: 2017
  ident: 2799_CR18
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.10.078
– volume: 132
  start-page: 138
  issue: 1
  year: 2012
  ident: 2799_CR25
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.11.009
– volume: 56
  start-page: 531
  issue: 5
  year: 2016
  ident: 2799_CR13
  publication-title: J. Basic Microbiol.
  doi: 10.1002/jobm.201500503
– volume: 210
  start-page: 29
  issue: 1
  year: 2011
  ident: 2799_CR37
  publication-title: Powd. Technol.
  doi: 10.1016/j.powtec.2011.02.008
– volume: 40
  start-page: 14509
  issue: 9
  year: 2014
  ident: 2799_CR42
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2014.07.017
– volume: 30
  start-page: 531
  issue: 3
  year: 2019
  ident: 2799_CR73
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-019-01533-8
– volume: 4
  start-page: 1341
  issue: 11
  year: 2014
  ident: 2799_CR12
  publication-title: Brit. J. Pharm. Res.
  doi: 10.9734/BJPR/2014/9566
– volume: 6
  start-page: 33308
  issue: 40
  year: 2016
  ident: 2799_CR40
  publication-title: RSC Advances
  doi: 10.1039/C6RA03377F
– volume: 140
  start-page: 142
  year: 2019
  ident: 2799_CR56
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.03.046
– volume: 91
  start-page: 578
  issue: 3
  year: 2019
  ident: 2799_CR85
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-019-05048-6
– volume: 132
  start-page: 264
  issue: 2–3
  year: 2012
  ident: 2799_CR17
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2011.10.030
– start-page: 197
  volume-title: Iron oxide nanoparticles for biomedical applications
  year: 2018
  ident: 2799_CR4
  doi: 10.1016/B978-0-08-101925-2.00007-3
– volume: 615
  start-page: S313
  year: 2014
  ident: 2799_CR36
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2014.01.248
– volume: 54
  start-page: 1543
  issue: 4
  year: 2015
  ident: 2799_CR48
  publication-title: Inorg. Chem.
  doi: 10.1021/ic502497a
– volume: 16
  start-page: 2347
  issue: 6
  year: 2014
  ident: 2799_CR71
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP54257B
– volume: 74
  start-page: 943
  issue: 7
  year: 2013
  ident: 2799_CR34
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2013.02.013
– volume: 139
  start-page: 87
  issue: 3
  year: 2006
  ident: 2799_CR44
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2006.05.026
– volume: 13
  start-page: 61
  year: 2017
  ident: 2799_CR3
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2017.02.006
– volume: 43
  start-page: 1129
  issue: 1
  year: 2017
  ident: 2799_CR33
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2016.10.053
– volume: 25
  start-page: 111
  issue: 2
  year: 2015
  ident: 2799_CR63
  publication-title: Prog. Nat. Sci.
  doi: 10.1016/j.pnsc.2015.02.001
– volume: 752
  start-page: 332
  year: 2018
  ident: 2799_CR9
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2018.04.093
– volume: 36
  start-page: 158
  issue: 1
  year: 2016
  ident: 2799_CR10
  publication-title: J. Electroceram.
  doi: 10.1007/s10832-016-0023-4
– volume: 792
  start-page: 432
  year: 2019
  ident: 2799_CR55
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.04.059
– volume: 256
  start-page: 6083
  issue: 20
  year: 2010
  ident: 2799_CR78
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2010.03.124
– year: 2019
  ident: 2799_CR6
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10854-019-02678-y
– volume: 774
  start-page: 1233
  year: 2019
  ident: 2799_CR49
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2018.09.394
– volume: 581
  start-page: 776
  year: 2013
  ident: 2799_CR68
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2013.07.139
– volume-title: Institute, Methods for determining bactericidal activity of antimicrobial agents: approved guideline M26-A
  year: 1999
  ident: 2799_CR30
– volume: 691
  start-page: 343
  year: 2017
  ident: 2799_CR70
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2016.08.199
– volume: 7
  start-page: 2767
  year: 2012
  ident: 2799_CR11
  publication-title: Int. J. Nanomed.
– volume: 30
  start-page: 947
  issue: 4
  year: 2019
  ident: 2799_CR28
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-019-01553-4
– volume: 5
  start-page: 73714
  issue: 90
  year: 2015
  ident: 2799_CR47
  publication-title: RSC Adv.
  doi: 10.1039/C5RA14351A
– volume-title: Modern ferrite technology
  year: 2006
  ident: 2799_CR62
– ident: 2799_CR5
– volume: 72
  start-page: 181
  issue: 3
  year: 2019
  ident: 2799_CR29
  publication-title: J. Antibiot.
  doi: 10.1038/s41429-018-0133-0
– volume: 38
  start-page: 4771
  issue: 6
  year: 2012
  ident: 2799_CR67
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.02.065
– volume: 731
  start-page: 1256
  year: 2018
  ident: 2799_CR58
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2017.10.103
– year: 2019
  ident: 2799_CR76
  publication-title: Trace Elem. Res. Biol.
  doi: 10.1007/s12011-019-01894-1
– volume: 31
  start-page: 591
  issue: 3
  year: 2014
  ident: 2799_CR75
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1590/0104-6632.20140313s00002813
– year: 2016
  ident: 2799_CR84
  publication-title: J. Nanomater.
  doi: 10.1155/2016/2106756
– year: 2019
  ident: 2799_CR14
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-019-01707-4
– volume: 447
  start-page: 48
  year: 2018
  ident: 2799_CR50
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2017.09.033
– volume: 780
  start-page: 816
  year: 2019
  ident: 2799_CR61
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.11.390
– volume: 107
  start-page: 1425
  issue: 7
  year: 2019
  ident: 2799_CR77
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.36657
– volume: 363
  start-page: 21
  year: 2014
  ident: 2799_CR65
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.03.027
– volume: 28
  start-page: 1083
  issue: 3
  year: 2017
  ident: 2799_CR82
  publication-title: J. Clust. Sci.
  doi: 10.1007/s10876-016-1101-0
– volume: 30
  start-page: 4908
  issue: 5
  year: 2019
  ident: 2799_CR22
  publication-title: J. Mater. Sci.
– volume: 43
  start-page: 13661
  issue: 16
  year: 2017
  ident: 2799_CR35
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.07.076
– volume: 127
  start-page: 144
  year: 2019
  ident: 2799_CR20
  publication-title: Microb. Pathog.
  doi: 10.1016/j.micpath.2018.11.045
– year: 2019
  ident: 2799_CR89
  publication-title: Trace Elem. Res. Biol.
  doi: 10.1007/s12011-019-01842-z
– volume: 112
  start-page: 084333
  issue: 8
  year: 2012
  ident: 2799_CR88
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4761987
– volume: 85
  start-page: 324
  issue: 3
  year: 2010
  ident: 2799_CR26
  publication-title: Anais Brasileiros de Dermatol.
  doi: 10.1590/S0365-05962010000300005
– volume-title: Basics of X-ray diffraction and its application
  year: 2007
  ident: 2799_CR43
– volume: 6
  start-page: 6
  issue: 1
  year: 2012
  ident: 2799_CR46
  publication-title: J. Theor. Appl. Phys.
  doi: 10.1186/2251-7235-6-6
– volume: 39
  start-page: 5235
  issue: 5
  year: 2013
  ident: 2799_CR64
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2012.12.023
– volume: 5
  start-page: 47225
  issue: 58
  year: 2015
  ident: 2799_CR8
  publication-title: RSC Adv.
  doi: 10.1039/C5RA04553C
– volume: 40
  start-page: 141
  year: 2018
  ident: 2799_CR19
  publication-title: Particuology
  doi: 10.1016/j.partic.2017.12.001
– volume: 15
  start-page: 627
  issue: 2
  year: 1966
  ident: 2799_CR59
  publication-title: Physica Status Solidi (b)
  doi: 10.1002/pssb.19660150224
– volume: 360
  start-page: 41
  year: 2014
  ident: 2799_CR1
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2014.01.035
– ident: 2799_CR16
– volume: 90
  start-page: 631
  issue: 3
  year: 2019
  ident: 2799_CR23
  publication-title: J. Sol-Gel Sci. Technol.
  doi: 10.1007/s10971-019-04964-x
– ident: 2799_CR2
– volume: 3
  start-page: 738
  issue: 5
  year: 2019
  ident: 2799_CR86
  publication-title: ACS Earth Space Chem.
  doi: 10.1021/acsearthspacechem.8b00189
SSID ssj0006438
Score 2.5222194
Snippet Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg 2+...
Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2598
SubjectTerms Anisotropy
Antiinfectives and antibacterials
Antimicrobial agents
Biomedical materials
Characterization and Evaluation of Materials
Chemistry and Materials Science
Energy gap
Fourier transforms
Hematite
Infrared spectroscopy
Magnetic properties
Magnetic saturation
Magnetometers
Manganese zinc ferrites
Materials Science
Materials selection
Nanoparticles
Optical and Electronic Materials
Optical properties
Sol-gel processes
Spectrum analysis
Substitutes
Ultraviolet reflection
Urinary tract infections
X ray spectra
X-ray diffraction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46X_RBvOK8kQfftuCatF3yJCrKFBwiCsOX0qbpGLhsuj2L_8F_6C_xnDS1Kii0D6VtCvnSc8s53yHkKBNaxnkhmYmKlKGHwLKu1gx8kQDsU3CbjUuQ7ce9h_B6EA18wG3m0yormegEdT7RGCM_5lgx2u1IxU-mzwy7RuHuqm-hsUiWQARLcL6Wzi76t3dfshj0rSzZ9pDdm3NfNuOL52SEGRgK9zGVYuFP1VTbm7-2SJ3muVwjq95kpKclxutkwdgNsvKNSHCTvF5VvUbopKA3Q96iM5AILg0AJp7CURLFIslGm06mLoLdpuN0aLGKsU1Tm8M5H41HjpkJvjfFMP0L8q26Me3H2_ujpQUyOc4NtakFd9tn1W2Rh8uL-_Me850VmOYynjOtuYgyrkB3C82LIujmQkUdkQFs4MEgrV1uAhOmAV6qjgE_MjZgKmoD9h8PxTZp2Ik1O4SKtKtipUWuwVJITaiEwuLdVGZcZjBukwTVpCba045j94unpCZMRiASACJxQCRhk7S-3pmWpBv_Pr1fYZX4H3CW1MulSdoVfvXtv0fb_X-0PbLM0eN2edv7pAHYmQMwS-bZoV97n2fg3q8
  priority: 102
  providerName: ProQuest
Title Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles
URI https://link.springer.com/article/10.1007/s10854-019-02799-4
https://www.proquest.com/docview/2348170892
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEB60vehB_MVqLXvw1gaa3STNHqu0_mERsVC9hGSzkYLdFtuz-A6-oU_izDZpVVQQEkJIMiH7bXZmdma-BThOhAqDNAsd7WexQx6Ck7SUctAXcdE-RbdZ2wTZXnDe9y4H_iAvCpsW2e5FSNKO1J-K3UKfMiYkxR2ldLxVKPvku2Mv7vP2YvxFHRvOGfaI0ZvzvFTmZxlf1dHSxvwWFrXaprsJG7mZyNpzXLdgRZttWP9EHrgDLxfF-iJsnLHrR15nUxwFbOgfG5vhNieHJWKNBhtP7Kx1g43iR0OViw0WmxT32XA0tGxM-L4JTc0_E8eqlWneX98eDMuIvXGmmYkNuth5Jt0u9Ludu9NzJ19NwVE8DGaOUlz4CZeor4XiWea2UiH9pkgQKvRaiMou1a72YpdOZVOj7xhoNA-VRpuPe2IPSmZs9D4wEbdkIJVIFVoHsfakkFSwG4cJDxOUWwG3aNRI5VTjtOLFU7QkSSYgIgQiskBEXgXqi2cmc6KNP--uFlhF-U83jTgVFeOHSF6BRoHf8vLv0g7-d_shrHHyum3udhVKiKU-QtNkltRgNeye1aDcPru_6uDxpNO7ua3Z_vkBedjeYA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7xc4AeEJQill8fyom12NhJ1j5UFQKW3fJzAgn1kiaOs0IC75ZdCXFBvEPfow_VJ-mMk7BQqdyQkkOUZBJ5xuMZz8w3AJ8zaVScF4rbqEg5eQg8axvD0RcJ0D5Ft9n6BNnzuHsZfruKrqbgd10LQ2mVtU70ijofGNoj3xNUMdpuKS2-Dn9y6hpF0dW6hUYpFif24R5dttGX3iHyd0eIztHFQZdXXQW4ESoec2OEjDKhcd2SRhRF0M6ljloyw19G650g3XIb2DAN6FK3LPpQsUUzyVi0fUQoke40zIZSappRqnP8rPlxdVclth9hiQtRFelUpXoqonwPTVFTrXn4eiGcWLf_BGT9OtdZhIXKQGX7pUQtwZR1H-HDC9jCZXjs1Z1N2KBgZ32xy0aof3zSAbKZ4VHC0hKkR5MNhn6_vMlu076jmskmS12O5_j69trjQOH3hhQUuCN0V0_T_Xn69d2xgnAjx5a51KFzX-XwfYLLdxnxFZhxA2dXgcm0rWNtZG7QLkltqKWmUuFUZUJlSLcBQT2oialAzqnXxk0ygWcmRiTIiMQzIgkbsPv8zrCE-Hjz6Y2aV0k13UfJRDgb0Kz5N7n9f2prb1Pbhrnuxdlpcto7P1mHeUG-vs8Y34AZ5KPdRINonG15KWTw473F_i_Brxha
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7BIiE4VC0_YiltfaAn1mJj58-HqmoLKxboClVFQlxC4jgICbwLuxLiUvUd-jZ9nD5JZxyHbZHghpQcoiSTKDPxzGfPfAOwWUidxmWVchNVOSeEwItEa45YJMD4FGGzcQmyg3jvONw_iU5m4HdTC0Nplc2Y6AbqcqhpjnxbUMVo0k2V2K58WsTRTu_j6JpTBylaaW3aadQmcmDubhG-jT_0d1DX74Xo7X7_ssd9hwGuRRpPuNZCRoVQ6MOkFlUVJKVUUVcW-PoYyRO9W2kCE-YBHaquQTwVGwyZtME4SIQS5c7CXIKoqNuCuc-7g6Nv934AfX1aM_0Rs7gQvmTHF-6lEWV_KFpDVYqH_7vFaaz7YHnWeb3eS3jhw1X2qbavVzBj7BIs_kNiuAw_-k2fEzas2NdzscXGOBq5FARUOsOtJqklgo8OG47c7HmHXeXnliooOyy3Je6Ti6sLxwqFzxvREsENcb06mfbPz1-nllXEIjkxzOYWob7P6FuB42f55qvQskNr1oDJPFGx0rLUGKXkJlRSUeFwnhYiLVBuG4Lmo2baU55T543LbErWTIrIUBGZU0QWtmHr_p5RTfjx5NUbja4y__OPs6mptqHT6G96-nFp609LewfzaPLZYX9w8BoWBAF_lz6-AS1Uo3mD0dGkeOvNkMHZc1v-X6xnHew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Mg2%2B+substitution+on+structural%2C+optical%2C+magnetic%2C+and+antimicrobial+properties+of+Mn%E2%80%93Zn+ferrite+nanoparticles&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Abdel+Maksoud%2C+M.+I.+A.&rft.au=El-Sayyad%2C+Gharieb+S.&rft.au=Abokhadra%2C+A.&rft.au=Soliman%2C+L.+I.&rft.date=2020-02-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=3&rft.spage=2598&rft.epage=2616&rft_id=info:doi/10.1007%2Fs10854-019-02799-4&rft.externalDocID=10_1007_s10854_019_02799_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon