Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles
Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg 2+ -substituted Mn–Zn ferrites with nominal composition Mn 0.5 Zn 0 . 5− x Mg x Fe 2 O 4 NPs ( x = 0, 0.125, 0.25, 0.375, and 0.5) are synthesized via...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 31; no. 3; pp. 2598 - 2616 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg
2+
-substituted Mn–Zn ferrites with nominal composition Mn
0.5
Zn
0
.
5−
x
Mg
x
Fe
2
O
4
NPs (
x
= 0, 0.125, 0.25, 0.375, and 0.5) are synthesized via a facile sol–gel method. The samples after sintered at 1173 K are characterized via the X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, the energy-dispersive X-ray spectra (EDX), high-resolution scanning electron microscopy (SEM), ultraviolet
-
diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM) technique. The XRD and FTIR patterns reveal that the formation of the cubic phase of Mn
0.5
Zn
0.5−
x
Mg
x
Fe
2
O
4
NPs. Also, small peaks associated with the phase of hematite (α-Fe
2
O
3
) are observed due to the heating of spinel ferrites. The optical band gap for Mg
2+
-substituted Mn–Zn ferrites ranges between 1.36 and 1.78 eV. The saturation magnetization is enhanced with increasing Mg
2+
concentration. Furthermore, the M–H curves show a typical S-shaped exhibiting superparamagnetic nature for the studied samples. Also, the anisotropy constant enhances as Mg
2+
content increases in Mn–Zn NPs. Overall, the results revealed that the Mn
0.5
Zn
0.5−
x
Mg
x
Fe
2
O
4
NPs presented a unique properties, and consequently, they can be candidate materials for transformer's cores, antenna, and switching applications. On other hands, antimicrobial potential of the produced ferrite NPs was estimated towards multidrug-resistant (MDR) yeast and bacteria creating urinary tract infection (UTI). All the prepared ferrite NPs showed a hopeful antimicrobial potential upon all UTI-causing pathogens. Between them, Mn
0.5
Mg
0.5
Fe
2
O
4
NPs at 20 µg/ml was the most promising ferrite NPs produced superior antimicrobial activity due to the narrow band gap. |
---|---|
AbstractList | Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg2+-substituted Mn–Zn ferrites with nominal composition Mn0.5Zn0.5−xMgxFe2O4 NPs (x = 0, 0.125, 0.25, 0.375, and 0.5) are synthesized via a facile sol–gel method. The samples after sintered at 1173 K are characterized via the X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, the energy-dispersive X-ray spectra (EDX), high-resolution scanning electron microscopy (SEM), ultraviolet-diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM) technique. The XRD and FTIR patterns reveal that the formation of the cubic phase of Mn0.5Zn0.5−xMgxFe2O4 NPs. Also, small peaks associated with the phase of hematite (α-Fe2O3) are observed due to the heating of spinel ferrites. The optical band gap for Mg2+-substituted Mn–Zn ferrites ranges between 1.36 and 1.78 eV. The saturation magnetization is enhanced with increasing Mg2+ concentration. Furthermore, the M–H curves show a typical S-shaped exhibiting superparamagnetic nature for the studied samples. Also, the anisotropy constant enhances as Mg2+ content increases in Mn–Zn NPs. Overall, the results revealed that the Mn0.5Zn0.5−xMgxFe2O4 NPs presented a unique properties, and consequently, they can be candidate materials for transformer's cores, antenna, and switching applications. On other hands, antimicrobial potential of the produced ferrite NPs was estimated towards multidrug-resistant (MDR) yeast and bacteria creating urinary tract infection (UTI). All the prepared ferrite NPs showed a hopeful antimicrobial potential upon all UTI-causing pathogens. Between them, Mn0.5Mg0.5 Fe2O4 NPs at 20 µg/ml was the most promising ferrite NPs produced superior antimicrobial activity due to the narrow band gap. Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg 2+ -substituted Mn–Zn ferrites with nominal composition Mn 0.5 Zn 0 . 5− x Mg x Fe 2 O 4 NPs ( x = 0, 0.125, 0.25, 0.375, and 0.5) are synthesized via a facile sol–gel method. The samples after sintered at 1173 K are characterized via the X-ray diffraction technique (XRD), Fourier transform infrared (FTIR) spectroscopy, the energy-dispersive X-ray spectra (EDX), high-resolution scanning electron microscopy (SEM), ultraviolet - diffuse reflectance spectroscopy (UV-DRS), and vibrating sample magnetometer (VSM) technique. The XRD and FTIR patterns reveal that the formation of the cubic phase of Mn 0.5 Zn 0.5− x Mg x Fe 2 O 4 NPs. Also, small peaks associated with the phase of hematite (α-Fe 2 O 3 ) are observed due to the heating of spinel ferrites. The optical band gap for Mg 2+ -substituted Mn–Zn ferrites ranges between 1.36 and 1.78 eV. The saturation magnetization is enhanced with increasing Mg 2+ concentration. Furthermore, the M–H curves show a typical S-shaped exhibiting superparamagnetic nature for the studied samples. Also, the anisotropy constant enhances as Mg 2+ content increases in Mn–Zn NPs. Overall, the results revealed that the Mn 0.5 Zn 0.5− x Mg x Fe 2 O 4 NPs presented a unique properties, and consequently, they can be candidate materials for transformer's cores, antenna, and switching applications. On other hands, antimicrobial potential of the produced ferrite NPs was estimated towards multidrug-resistant (MDR) yeast and bacteria creating urinary tract infection (UTI). All the prepared ferrite NPs showed a hopeful antimicrobial potential upon all UTI-causing pathogens. Between them, Mn 0.5 Mg 0.5 Fe 2 O 4 NPs at 20 µg/ml was the most promising ferrite NPs produced superior antimicrobial activity due to the narrow band gap. |
Author | El-Bahnasawy, H. H. El-Sayyad, Gharieb S. Ashour, A. H. Soliman, L. I. Abokhadra, A. Abdel Maksoud, M. I. A. |
Author_xml | – sequence: 1 givenname: M. I. A. orcidid: 0000-0001-7708-9646 surname: Abdel Maksoud fullname: Abdel Maksoud, M. I. A. email: muhamadmqsod@gmail.com, muhamad.mqsod@eaea.org.eg organization: Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority – sequence: 2 givenname: Gharieb S. orcidid: 0000-0001-5410-7936 surname: El-Sayyad fullname: El-Sayyad, Gharieb S. organization: Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Chemical Engineering Department, Military Technical College, Egyptian Armed Forces – sequence: 3 givenname: A. surname: Abokhadra fullname: Abokhadra, A. organization: Basic Science Department, Modern Academy of Engineering and Technology – sequence: 4 givenname: L. I. surname: Soliman fullname: Soliman, L. I. organization: Basic Science Department, Modern Academy of Engineering and Technology – sequence: 5 givenname: H. H. surname: El-Bahnasawy fullname: El-Bahnasawy, H. H. organization: Physics Department, Faculty of Science, Al-Azhar University – sequence: 6 givenname: A. H. surname: Ashour fullname: Ashour, A. H. organization: Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority |
BookMark | eNp9kM1qGzEUhUVJoI7TF-hK0GU9qX5npGUwSWpI6SaB0o2Q5TtGZqyZSppFNiHv0DfMk1RjBwJdGCR0hc459-q7QGehD4DQZ0quKCHNt0SJkqIiVFeENVpX4gOaUdnwSij26wzNiJZNJSRjH9FFSjtCSC24mqHnVWi7EYID3Lf4x5Z9xWlcp-zzmH0fcFkpx9HlMdpugfshezcVe7sNUOoFtmFTdvZ772K_9rbDQ-wHiNlDOmSG15e_vwNuIUafAQcb-sGWZ9dBukTnre0SfHo75-jx9uZh-b26_3m3Wl7fV46pOlfOMS7XTEtGuWNtS5sN15Lwdb1phWqIYmoDFISl01UTUEzWoJvGQS1rJvgcfTnmltn-jJCy2fVjDKWlYVwoWiI0Kyp1VJWfpBShNc5nO3HI0frOUGIm2uZI2xTa5kDbTA3Yf9Yh-r2NT6dN_GhKRRy2EN-nOuH6B7_IllA |
CitedBy_id | crossref_primary_10_1002_pssa_202300263 crossref_primary_10_1016_j_jhazmat_2020_123000 crossref_primary_10_1016_j_optmat_2021_111396 crossref_primary_10_1007_s10311_021_01351_3 crossref_primary_10_1016_j_surfin_2023_103525 crossref_primary_10_1016_j_mssp_2024_108950 crossref_primary_10_1007_s10854_024_13407_5 crossref_primary_10_1007_s00170_024_13207_5 crossref_primary_10_1515_ntrev_2022_0027 crossref_primary_10_1016_j_micpath_2022_105440 crossref_primary_10_1140_epjp_s13360_024_05469_5 crossref_primary_10_3390_w14030454 crossref_primary_10_1016_j_micpath_2022_105680 crossref_primary_10_1016_j_matchemphys_2023_127641 crossref_primary_10_1134_S1063782624602188 crossref_primary_10_1016_j_surfin_2024_104106 crossref_primary_10_1007_s10854_021_05913_7 crossref_primary_10_1016_j_envres_2022_114500 crossref_primary_10_1016_j_matchemphys_2021_125301 crossref_primary_10_1016_j_ceramint_2022_12_107 crossref_primary_10_1016_j_ijbiomac_2024_130010 crossref_primary_10_1016_j_inoche_2024_112309 crossref_primary_10_1016_j_jics_2024_101545 crossref_primary_10_1016_j_jpcs_2020_109687 crossref_primary_10_1007_s13201_021_01555_6 crossref_primary_10_1016_j_physb_2023_414835 crossref_primary_10_1016_j_mseb_2023_116879 crossref_primary_10_1007_s00339_022_06277_3 crossref_primary_10_1016_j_ceramint_2023_08_213 crossref_primary_10_1016_j_ceramint_2023_11_071 crossref_primary_10_1016_j_optmat_2021_111216 crossref_primary_10_1007_s00339_020_04194_x crossref_primary_10_1149_2162_8777_ac31d2 crossref_primary_10_1007_s43939_023_00056_4 crossref_primary_10_1007_s10854_020_04254_1 crossref_primary_10_1007_s10904_020_01523_8 crossref_primary_10_1039_C9RA10765G crossref_primary_10_1007_s10854_020_03982_8 crossref_primary_10_1007_s10854_024_12036_2 crossref_primary_10_1016_j_jallcom_2023_173145 crossref_primary_10_1590_1980_5373_mr_2022_0312 crossref_primary_10_3390_coatings13101766 crossref_primary_10_1007_s10854_020_05224_3 crossref_primary_10_1016_j_inoche_2024_112283 crossref_primary_10_1016_j_ijbiomac_2020_09_160 crossref_primary_10_1016_j_nanoso_2021_100792 crossref_primary_10_1016_j_matchemphys_2021_125648 crossref_primary_10_1016_j_chemosphere_2022_136983 crossref_primary_10_15407_fm28_03_437 crossref_primary_10_1007_s00339_021_05054_y crossref_primary_10_1016_j_ceramint_2022_07_291 crossref_primary_10_1016_j_ceramint_2023_03_170 crossref_primary_10_3103_S106138622201006X crossref_primary_10_1016_j_chemosphere_2020_128607 crossref_primary_10_1134_S1070363223030209 crossref_primary_10_1007_s10311_020_01075_w crossref_primary_10_1149_2162_8777_ad6503 |
Cites_doi | 10.1007/s12011-019-01842-z 10.1007/s10876-019-01707-4 10.1155/2016/2106756 10.1007/s12011-019-01894-1 10.1007/s10854-019-02678-y 10.1016/j.solidstatesciences.2010.11.024 10.1007/s11051-011-0595-5 10.1016/j.jallcom.2016.05.200 10.1155/2016/4709687 10.1016/j.ceramint.2018.02.129 10.1016/j.diagmicrobio.2018.11.005 10.1111/j.1875-595X.2011.00049.x 10.1016/j.radphyschem.2016.07.014 10.1016/j.cplett.2018.12.025 10.1016/j.jre.2017.06.011 10.1533/9780857096012.197 10.1016/j.msec.2018.07.007 10.1016/j.jmmm.2016.08.035 10.1007/s10876-018-1411-5 10.1016/j.matchemphys.2019.02.030 10.1016/j.jmmm.2014.12.069 10.1016/j.colsurfa.2019.123821 10.1128/AEM.02218-06 10.1016/j.jmmm.2018.07.084 10.1016/j.molstruc.2012.05.014 10.1002/adma.19960080216 10.1016/j.colsurfb.2019.05.008 10.1016/j.jmmm.2016.10.078 10.1016/j.matchemphys.2011.11.009 10.1002/jobm.201500503 10.1016/j.powtec.2011.02.008 10.1016/j.ceramint.2014.07.017 10.1007/s10876-019-01533-8 10.9734/BJPR/2014/9566 10.1039/C6RA03377F 10.1016/j.measurement.2019.03.046 10.1007/s10971-019-05048-6 10.1016/j.matchemphys.2011.10.030 10.1016/B978-0-08-101925-2.00007-3 10.1016/j.jallcom.2014.01.248 10.1021/ic502497a 10.1039/C3CP54257B 10.1016/j.jpcs.2013.02.013 10.1016/j.ssc.2006.05.026 10.1016/j.nantod.2017.02.006 10.1016/j.ceramint.2016.10.053 10.1016/j.pnsc.2015.02.001 10.1016/j.jallcom.2018.04.093 10.1007/s10832-016-0023-4 10.1016/j.jallcom.2019.04.059 10.1016/j.apsusc.2010.03.124 10.1016/j.jallcom.2018.09.394 10.1016/j.jallcom.2013.07.139 10.1016/j.jallcom.2016.08.199 10.1007/s10876-019-01553-4 10.1039/C5RA14351A 10.1038/s41429-018-0133-0 10.1016/j.ceramint.2012.02.065 10.1016/j.jallcom.2017.10.103 10.1590/0104-6632.20140313s00002813 10.1016/j.jmmm.2017.09.033 10.1016/j.jallcom.2018.11.390 10.1002/jbm.a.36657 10.1016/j.jmmm.2014.03.027 10.1007/s10876-016-1101-0 10.1016/j.ceramint.2017.07.076 10.1016/j.micpath.2018.11.045 10.1063/1.4761987 10.1590/S0365-05962010000300005 10.1186/2251-7235-6-6 10.1016/j.ceramint.2012.12.023 10.1039/C5RA04553C 10.1016/j.partic.2017.12.001 10.1002/pssb.19660150224 10.1016/j.jmmm.2014.01.035 10.1007/s10971-019-04964-x 10.1021/acsearthspacechem.8b00189 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2020). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Journal of Materials Science: Materials in Electronics is a copyright of Springer, (2020). All Rights Reserved. |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-019-02799-4 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 2616 |
ExternalDocumentID | 10_1007_s10854_019_02799_4 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c286t-cc235b295213c2ff17d39503b6df4870828de1e4a1f48790e8256e977ce656243 |
IEDL.DBID | U2A |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 12:14:50 EDT 2025 Thu Apr 24 23:13:22 EDT 2025 Tue Jul 01 02:34:41 EDT 2025 Fri Feb 21 02:39:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c286t-cc235b295213c2ff17d39503b6df4870828de1e4a1f48790e8256e977ce656243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7708-9646 0000-0001-5410-7936 |
PQID | 2348170892 |
PQPubID | 326250 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2348170892 crossref_citationtrail_10_1007_s10854_019_02799_4 crossref_primary_10_1007_s10854_019_02799_4 springer_journals_10_1007_s10854_019_02799_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Kumar, Jayaprakash, Seehra, Prakash, Kumar (CR34) 2013; 74 Rahman, Nadeem, Anis-ur-Rehman, Mumtaz, Naeem, Letofsky-Papst (CR64) 2013; 39 Khanna, Verma, Tripathi (CR9) 2018; 752 El-Batal, Mosallam, El-Sayyad (CR27) 2018; 29 Xavier, Cleetus, Nimila, Thankachan, Sebastian, Mohammed (CR83) 2014; 5 Smit, Wijn, Marton (CR72) 1954 Humbe, Nawle, Shinde, Jadhav (CR70) 2017; 691 El-Baz, El-Batal, Abomosalam, Tayel, Shetaia, Yang (CR13) 2016; 56 Maksoud, El-ghandour, El-Sayyad, Awed, Ashour, El-Batal, Gobara, Abdel-Khalek, El-Okr (CR23) 2019; 90 Yadav, Kuřitka, Havlica, Hnatko, Alexander, Masilko, Kalina, Hajdúchová, Rusnak, Enev (CR50) 2018; 447 Pal, Tak, Song (CR81) 2007; 73 El-Batal, Balabel, Attia, El-Sayyad (CR14) 2019 Maksoud, El-ghandour, El-Sayyad, Awed, Fahim, Atta, Ashour, El-Batal, Gobara, Abdel-Khalek, El-Okr (CR22) 2019; 30 Sharma, Thakur, Kumar, Thakur, Negi, Sharma, Sharma (CR39) 2016; 684 Zak, Majid, Abrishami, Yousefi (CR45) 2011; 13 Tiwari, Verma, Kane, Tatarchuk, Mazaleyrat (CR38) 2019; 229 Peulon, Lincot (CR80) 1996; 8 Hajarpour, Raouf, Gheisari (CR65) 2014; 363 Lynch (CR79) 2011; 61 CR2 Bohara, Thorat, Chaurasia, Pawar (CR8) 2015; 5 Gingasu, Mindru, Patron, Calderon-Moreno, Mocioiu, Preda, Stanica, Nita, Dobre, Popa (CR84) 2016 Kumar, Shah, Kotnala, Dhiman, Rani, Singh, Garg, Shirsath, Batoo, Singh (CR42) 2014; 40 Kumar, Kar (CR67) 2012; 38 Elkodous, El-Sayyad, Nasser, Elshamy, Morsi, Abdelrahman, Kodous, Mosallam, Gobara, El-Batal (CR73) 2019; 30 Ghazi, Chenari, Ghodsi (CR60) 2018; 468 Shirsath, Patange, Kadam, Mane, Jadhav (CR52) 2012; 1024 CR5 Bahhar, Lemziouka, Boutahar, Bioud, Lassri, Hlil (CR41) 2019; 716 Khot, Shinde, Ladgaonkar, Kale, Watawe (CR66) 2011; 2 Jin, He (CR74) 2011; 13 Ghasemi (CR1) 2014; 360 Blanco-Andujar, Teran, Ortega, Mahmoudi, Laurent (CR4) 2018 Reyes-Rodríguez, Cortés-Hernández, Escobedo-Bocardo, Almanza-Robles, Sánchez-Fuentes, Jasso-Terán, De León-Prado, Méndez-Nonell, Hurtado-López (CR18) 2017; 427 Ashok, Kennedy, Vijaya (CR61) 2019; 780 Goldman (CR62) 2006 El Moussaoui, Mounkachi, Masrour, Hamedoun, Hlil, Benyoussef (CR68) 2013; 581 Ghodake, Kambale, Suryavanshi (CR33) 2017; 43 Singha, Workman, Pant, Hopkins, Handa (CR77) 2019; 107 Ma, Tong, Yuan, Liu (CR86) 2019; 3 Zhang, Zhang, Xu, Ji (CR44) 2006; 139 Belavi, Chavan, Naik, Somashekar, Kotnala (CR25) 2012; 132 Satalkar, Kane, Ghosh, Ghodke, Barrera, Celegato, Coisson, Tiberto, Vinai (CR36) 2014; 615 Knaack, Idelevich, Schleimer, Molinaro, Kriegeskorte, Peters, Becker (CR31) 2019; 93 Murugesan, Chandrasekaran (CR47) 2015; 5 Dippong, Deac, Cadar, Levei, Diamandescu, Borodi (CR55) 2019; 792 Isaka, Yangchum, Supothina, Veeranondha, Komwijit, Phongpaichit (CR29) 2019; 72 Tatarchuk, Paliychuk, Bououdina, Al-Najar, Pacia, Macyk, Shyichuk (CR58) 2018; 731 Reheem, Atta, Maksoud (CR24) 2016; 127 Banerjee, Chakraborti, Saha (CR56) 2019; 140 El-Batal, El-Sayyad, Al-Hazmi, Gobara (CR28) 2019; 30 Abd, El-Sayyad, Abdel, Abdelrahman, Mosallam, Gobara, El-Batal (CR76) 2019 Srinivasamurthy, Angadi, Kubrin, Matteppanavar, Sarychev, Kumar, Azale, Rudraswamy (CR53) 2018; 44 Hassan, Maksoud, Attia (CR6) 2019 CR16 Tang, Lv (CR75) 2014; 31 Kakade, Kambale, Ramanna, Kolekar (CR40) 2016; 6 Modi, Raval, Shah, Kathad, Dulera, Popat, Zankat, Saija, Pathak, Vasoya, Lakhani, Chandra, Jha (CR48) 2015; 54 Angelakeris, Li, Hilgendorff, Simeonidis, Sakellari, Filippousi, Tian, Van Tendeloo, Spasova, Acet, Farle (CR7) 2015; 381 Brownlee (CR32) 1952 El-Sayyad, El-Bastawisy, Gobara, El-Batal (CR89) 2019 Seil, Webster (CR11) 2012; 7 El-Batal, El-Sayyad, El-Ghamery, Gobara (CR82) 2017; 28 Diogo, Melhem, Sarpieri, Pires (CR26) 2010; 85 Chen, Liang, Xiao, Wei (CR10) 2016; 36 Maksoud, El-Sayyad, Ashour, El-Batal, Elsayed, Gobara, El-Khawaga, Abdel-Khalek, El-Okr (CR20) 2019; 127 Clinical (CR30) 1999 Gutiérrez-López, Rodriguez-Senín, Pastor, Paris, Martín, Levenfeld, Várez (CR37) 2011; 210 Sharma, Thakur, Kumar, Barman, Sharma, Sharma (CR35) 2017; 43 Hezma, Rajeh, Mannaa (CR87) 2019; 581 Sanpo, Berndt, Wang (CR88) 2012; 112 Elkodous, El-Sayyad, Abdelrahman, El-Bastawisy, Mohamed, Mosallam, Nasser, Gobara, Baraka, Elsayed, El-Batal (CR15) 2019; 180 Shirsath, Mane, Yasukawa, Liu, Morisako (CR71) 2014; 16 Zipare, Bandgar, Shahane (CR54) 2018; 36 El-Batal, Haroun, Farrag, Baraka, El-Sayyad (CR12) 2014; 4 Ramakanth (CR43) 2007 Naik, Naik, Kottam, Vinuth, Nagaraju, Prabhakara (CR85) 2019; 91 Li, Wang, Low (CR51) 2012 Noh, Moon, Shin, Lim, Cheon (CR3) 2017; 13 Ashour, El-Batal, Maksoud, El-Sayyad, Labib, Abdeltwab, El-Okr (CR19) 2018; 40 Akhtar, Khan, Ahmad, Nazir, Imran, Ali, Sattar, Murtaza (CR69) 2017; 421 Maksoud, El-Sayyad, Ashour, El-Batal, Abd-Elmonem, Hendawy, Abdel-Khalek, Labib, Abdeltwab, El-Okr (CR21) 2018; 92 Tauc, Grigorovici, Vancu (CR59) 1966; 15 Stanić, Dimitrijević, Antić-Stanković, Mitrić, Jokić, Plećaš, Raičević (CR78) 2010; 256 da Silva, Valente (CR17) 2012; 132 Gao, Wang, Pei, Zhang (CR49) 2019; 774 Devmunde, Raut, Birajdar, Shukla, Shengule, Jadhav (CR57) 2016; 2016 Nadeem, Rahman, Mumtaz (CR63) 2015; 25 Mote, Purushotham, Dole (CR46) 2012; 6 ER Kumar (2799_CR34) 2013; 74 AI El-Batal (2799_CR82) 2017; 28 D Gingasu (2799_CR84) 2016 JT Seil (2799_CR11) 2012; 7 D Knaack (2799_CR31) 2019; 93 C Murugesan (2799_CR47) 2015; 5 2799_CR5 PY Reyes-Rodríguez (2799_CR18) 2017; 427 C Li (2799_CR51) 2012 B. H. Devmunde (2799_CR57) 2016; 2016 2799_CR2 2799_CR16 S. G. Kakade (2799_CR40) 2016; 6 J Gutiérrez-López (2799_CR37) 2011; 210 V Stanić (2799_CR78) 2010; 256 RJ Lynch (2799_CR79) 2011; 61 K Nadeem (2799_CR63) 2015; 25 AI El-Batal (2799_CR14) 2019 K Ramakanth (2799_CR43) 2007 RS Yadav (2799_CR50) 2018; 447 L Kumar (2799_CR67) 2012; 38 P Singha (2799_CR77) 2019; 107 P Tiwari (2799_CR38) 2019; 229 J Smit (2799_CR72) 1954 S Ma (2799_CR86) 2019; 3 C Blanco-Andujar (2799_CR4) 2018 A Ghasemi (2799_CR1) 2014; 360 MA Elkodous (2799_CR15) 2019; 180 S Khot (2799_CR66) 2011; 2 LS Clinical (2799_CR30) 1999 N Ghazi (2799_CR60) 2018; 468 L Khanna (2799_CR9) 2018; 752 D Chen (2799_CR10) 2016; 36 AI El-Batal (2799_CR27) 2018; 29 A Goldman (2799_CR62) 2006 S Hajarpour (2799_CR65) 2014; 363 MA Elkodous (2799_CR73) 2019; 30 RA Bohara (2799_CR8) 2015; 5 SE Shirsath (2799_CR52) 2012; 1024 T Tatarchuk (2799_CR58) 2018; 731 MM Naik (2799_CR85) 2019; 91 S Xavier (2799_CR83) 2014; 5 P Belavi (2799_CR25) 2012; 132 S Banerjee (2799_CR56) 2019; 140 KB Modi (2799_CR48) 2015; 54 Z-X Tang (2799_CR75) 2014; 31 R Sharma (2799_CR39) 2016; 684 AK Zak (2799_CR45) 2011; 13 A Ashok (2799_CR61) 2019; 780 S Peulon (2799_CR80) 1996; 8 HC Diogo (2799_CR26) 2010; 85 R Sharma (2799_CR35) 2017; 43 VD Mote (2799_CR46) 2012; 6 T Dippong (2799_CR55) 2019; 792 MIA Maksoud (2799_CR23) 2019; 90 HS Hassan (2799_CR6) 2019 U Ghodake (2799_CR33) 2017; 43 S Pal (2799_CR81) 2007; 73 M Isaka (2799_CR29) 2019; 72 S Bahhar (2799_CR41) 2019; 716 AV Humbe (2799_CR70) 2017; 691 A El-Batal (2799_CR12) 2014; 4 A Hezma (2799_CR87) 2019; 581 K Brownlee (2799_CR32) 1952 K Zipare (2799_CR54) 2018; 36 MIAA Maksoud (2799_CR22) 2019; 30 MIAA Maksoud (2799_CR20) 2019; 127 N Sanpo (2799_CR88) 2012; 112 S Rahman (2799_CR64) 2013; 39 MN Akhtar (2799_CR69) 2017; 421 SE Shirsath (2799_CR71) 2014; 16 GS El-Sayyad (2799_CR89) 2019 AH Ashour (2799_CR19) 2018; 40 T Jin (2799_CR74) 2011; 13 AA Reheem (2799_CR24) 2016; 127 AI El-Batal (2799_CR28) 2019; 30 ME Abd (2799_CR76) 2019 G Kumar (2799_CR42) 2014; 40 AF El-Baz (2799_CR13) 2016; 56 H El Moussaoui (2799_CR68) 2013; 581 MF da Silva (2799_CR17) 2012; 132 J Tauc (2799_CR59) 1966; 15 S-H Noh (2799_CR3) 2017; 13 J-M Zhang (2799_CR44) 2006; 139 KM Srinivasamurthy (2799_CR53) 2018; 44 M Angelakeris (2799_CR7) 2015; 381 Y Gao (2799_CR49) 2019; 774 MIA Maksoud (2799_CR21) 2018; 92 M Satalkar (2799_CR36) 2014; 615 |
References_xml | – volume: 581 start-page: 776 year: 2013 end-page: 781 ident: CR68 article-title: Synthesis and super-paramagnetic properties of neodymium ferrites nanorods publication-title: J. Alloys Compd. – volume: 381 start-page: 179 year: 2015 end-page: 187 ident: CR7 article-title: Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles publication-title: J. Magn. Magn. Mater. – start-page: 197 year: 2012 end-page: 222 ident: CR51 article-title: Computational modelling and ab initio calculations in MAX phases—I publication-title: Advances in Science and Technology of Mn+1AXn Phases – volume: 30 start-page: 4908 issue: 5 year: 2019 end-page: 4919 ident: CR22 article-title: Tunable structures of copper substituted cobalt nanoferrites with prospective electrical and magnetic applications publication-title: J. Mater. Sci. – volume: 180 start-page: 411 year: 2019 end-page: 428 ident: CR15 article-title: Therapeutic and diagnostic potential of nanomaterials for enhanced biomedical applications publication-title: Colloids Surf. B – volume: 6 start-page: 6 issue: 1 year: 2012 ident: CR46 article-title: Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles publication-title: J. Theor. Appl. Phys. – volume: 61 start-page: 46 year: 2011 end-page: 54 ident: CR79 article-title: Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature publication-title: Int. Dent. J. – volume: 73 start-page: 1712 issue: 6 year: 2007 end-page: 1720 ident: CR81 article-title: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli publication-title: Appl. Environ. Microbiol. – volume: 581 start-page: 123821 year: 2019 ident: CR87 article-title: An insight into the effect of zinc oxide nanoparticles on the structural, thermal, mechanical properties and antimicrobial activity of Cs/PVA composite publication-title: Colloids Surf. A – ident: CR16 – volume: 5 start-page: 47225 issue: 58 year: 2015 end-page: 47234 ident: CR8 article-title: Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles publication-title: RSC Adv. – volume: 731 start-page: 1256 year: 2018 end-page: 1266 ident: CR58 article-title: Effect of cobalt substitution on structural, elastic, magnetic and optical properties of zinc ferrite nanoparticles publication-title: J. Alloy Compd. – volume: 90 start-page: 631 issue: 3 year: 2019 end-page: 642 ident: CR23 article-title: Incorporation of Mn2+ into cobalt ferrite via sol–gel method: insights on induced changes in the structural, thermal, dielectric, and magnetic properties publication-title: J. Sol-Gel Sci. Technol. – volume: 15 start-page: 627 issue: 2 year: 1966 end-page: 637 ident: CR59 article-title: Optical properties and electronic structure of amorphous germanium publication-title: Physica Status Solidi (b) – volume: 615 start-page: S313 year: 2014 end-page: S316 ident: CR36 article-title: Synthesis and soft magnetic properties of Zn0.8−xNixMg0.1Cu0.1Fe2O4 (x=0.0−0.8) ferrites prepared by sol–gel auto-combustion method publication-title: J. Alloys Compd. – volume: 43 start-page: 1129 issue: 1 year: 2017 end-page: 1134 ident: CR33 article-title: Effect of Mn2+ substitution on structural, electrical transport and dielectric properties of Mg–Zn ferrites publication-title: Ceram. Int. – volume: 5 start-page: 364 issue: 5 year: 2014 end-page: 371 ident: CR83 article-title: Structural and antibacterial properties of silver substituted cobalt ferrite nanoparticles publication-title: Res. J. Pharm. Biol. Chem. Sci. – volume: 36 start-page: 158 issue: 1 year: 2016 end-page: 164 ident: CR10 article-title: Synthesis of Co-substituted Mn–Zn ferrite nanoparticles by mechanochemistry approach publication-title: J. Electroceram. – volume: 468 start-page: 132 year: 2018 end-page: 140 ident: CR60 article-title: Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers publication-title: J. Magn. Magn. Mater. – year: 2019 ident: CR89 article-title: Gentamicin-assisted mycogenic selenium nanoparticles synthesized under gamma irradiation for robust reluctance of resistant urinary tract infection-causing pathogens publication-title: Trace Elem. Res. Biol. doi: 10.1007/s12011-019-01842-z – volume: 36 start-page: 86 issue: 1 year: 2018 end-page: 94 ident: CR54 article-title: Effect of Dy-substitution on structural and magnetic properties of MnZn ferrite nanoparticles publication-title: J. Rare Earths – volume: 43 start-page: 13661 issue: 16 year: 2017 end-page: 13669 ident: CR35 article-title: Enhancement in A-B super-exchange interaction with Mn2+ substitution in Mg–Zn ferrites as a heating source in hyperthermia applications publication-title: Ceram. Int. – volume: 127 start-page: 269 year: 2016 end-page: 275 ident: CR24 article-title: Low energy ion beam induced changes in structural and thermal properties of polycarbonate publication-title: Radiat. Phys. Chem. – volume: 421 start-page: 260 year: 2017 end-page: 268 ident: CR69 article-title: Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0. 5− xNi0. 5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications publication-title: J. Magn. Magn. Mater. – volume: 13 start-page: 251 issue: 1 year: 2011 end-page: 256 ident: CR45 article-title: X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods publication-title: Solid State Sci. – volume: 4 start-page: 1341 issue: 11 year: 2014 ident: CR12 article-title: Synthesis of silver nanoparticles and incorporation with certain antibiotic using gamma irradiation publication-title: Brit. J. Pharm. Res. – volume: 139 start-page: 87 issue: 3 year: 2006 end-page: 91 ident: CR44 article-title: General compliance transformation relation and applications for anisotropic hexagonal metals publication-title: Solid State Commun. – year: 2019 ident: CR14 article-title: Antibacterial and antibiofilm potential of mono-dispersed stable copper oxide nanoparticles-streptomycin nano-drug: implications for some potato plant bacterial pathogen treatment publication-title: J. Clust. Sci. doi: 10.1007/s10876-019-01707-4 – year: 2016 ident: CR84 article-title: Green synthesis methods of CoFe2O4 and Ag-CoFe2O4 nanoparticles using hibiscus extracts and their antimicrobial potential publication-title: J. Nanomater. doi: 10.1155/2016/2106756 – start-page: 197 year: 2018 end-page: 245 ident: CR4 article-title: Chapter 8—Current outlook and perspectives on nanoparticle-mediated magnetic hyperthermia publication-title: Iron oxide nanoparticles for biomedical applications – volume: 72 start-page: 181 issue: 3 year: 2019 ident: CR29 article-title: Semisynthesis and antibacterial activities of nidulin derivatives publication-title: J. Antibiot. – volume: 92 start-page: 644 year: 2018 end-page: 656 ident: CR21 article-title: Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1–x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples publication-title: Mater. Sci. Eng. – volume: 112 start-page: 084333 issue: 8 year: 2012 ident: CR88 article-title: Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods publication-title: J. Appl. Phys. – volume: 25 start-page: 111 issue: 2 year: 2015 end-page: 116 ident: CR63 article-title: Effect of annealing on properties of Mg doped Zn-ferrite nanoparticles publication-title: Prog. Nat. Sci. – volume: 691 start-page: 343 year: 2017 end-page: 354 ident: CR70 article-title: Impact of Jahn Teller ion on magnetic and semiconducting behaviour of Ni-Zn spinel ferrite synthesized by nitrate-citrate route publication-title: J. Alloy Compd. – ident: CR5 – volume: 30 start-page: 947 issue: 4 year: 2019 end-page: 964 ident: CR28 article-title: Antibiofilm and antimicrobial activities of silver boron nanoparticles synthesized by PVP polymer and gamma rays against urinary tract pathogens publication-title: J. Clust. Sci. – volume: 93 start-page: 362 issue: 4 year: 2019 end-page: 368 ident: CR31 article-title: Bactericidal activity of bacteriophage endolysin HY-133 against Staphylococcus aureus in comparison to other antibiotics as determined by minimum bactericidal concentrations and time-kill analysis publication-title: Diagn. Microbiol. Infect. Dis. – year: 2019 ident: CR76 article-title: Fabrication of ultra-pure anisotropic zinc oxide nanoparticles via simple and cost-effective route: implications for UTI and EAC medications publication-title: Trace Elem. Res. Biol. doi: 10.1007/s12011-019-01894-1 – volume: 792 start-page: 432 year: 2019 end-page: 443 ident: CR55 article-title: Effect of Zn content on structural, morphological and magnetic behavior of ZnxCo1-xFe2O4/SiO2 nanocomposites publication-title: J. Alloys Compd. – volume: 427 start-page: 268 year: 2017 end-page: 271 ident: CR18 article-title: Structural and magnetic properties of Mg–Zn ferrites (Mg1−xZnxFe2O4) prepared by sol-gel method publication-title: J. Magn. Magn. Mater. – volume: 5 start-page: 73714 issue: 90 year: 2015 end-page: 73725 ident: CR47 article-title: Impact of Gd 3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles publication-title: RSC Adv. – volume: 140 start-page: 142 year: 2019 end-page: 150 ident: CR56 article-title: An automated methodology for grain segmentation and grain size measurement from optical micrographs publication-title: Measurement – volume: 38 start-page: 4771 issue: 6 year: 2012 end-page: 4782 ident: CR67 article-title: Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2−xLaxO4) publication-title: Ceram. Int. – volume: 2 start-page: 460 issue: 4 year: 2011 end-page: 471 ident: CR66 article-title: Magnetic and structural properties of magnesium zinc ferrites synthesized at different temperature publication-title: Adv. Appl. Sci. Res. – year: 1999 ident: CR30 publication-title: Institute, Methods for determining bactericidal activity of antimicrobial agents: approved guideline M26-A – volume: 91 start-page: 578 issue: 3 year: 2019 end-page: 595 ident: CR85 article-title: Multifunctional properties of microwave-assisted bioengineered nickel doped cobalt ferrite nanoparticles publication-title: J. Sol-Gel Sci. Technol. – volume: 30 start-page: 531 issue: 3 year: 2019 end-page: 540 ident: CR73 article-title: Engineered nanomaterials as potential candidates for HIV treatment: between opportunities and challenges publication-title: J. Clust. Sci. – volume: 256 start-page: 6083 issue: 20 year: 2010 end-page: 6089 ident: CR78 article-title: Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders publication-title: Appl. Surf. Sci. – volume: 210 start-page: 29 issue: 1 year: 2011 end-page: 35 ident: CR37 article-title: Microstructure, magnetic and mechanical properties of Ni–Zn ferrites prepared by powder injection moulding publication-title: Powd. Technol. – volume: 13 start-page: 6877 issue: 12 year: 2011 end-page: 6885 ident: CR74 article-title: Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens publication-title: J. Nanopart Res. – ident: CR2 – volume: 44 start-page: 9194 issue: 8 year: 2018 end-page: 9203 ident: CR53 article-title: Tuning of ferrimagnetic nature and hyperfine interaction of Ni2+ doped cobalt ferrite nanoparticles for power transformer applications publication-title: Ceram. Int. – volume: 752 start-page: 332 year: 2018 end-page: 353 ident: CR9 article-title: Burgeoning tool of biomedical applications—superparamagnetic nanoparticles publication-title: J. Alloy Compd. – volume: 29 start-page: 1003 issue: 6 year: 2018 end-page: 1015 ident: CR27 article-title: Synthesis of metallic silver nanoparticles by fluconazole drug and gamma rays to inhibit the growth of multidrug-resistant microbes publication-title: J. Clust. Sci. – volume: 447 start-page: 48 year: 2018 end-page: 57 ident: CR50 article-title: Structural, magnetic, elastic, dielectric and electrical properties of hot-press sintered Co1−xZnxFe2O4 (x=0.0, 0.5) spinel ferrite nanoparticles publication-title: J. Magn. Magn. Mater. – volume: 85 start-page: 324 issue: 3 year: 2010 end-page: 330 ident: CR26 article-title: Evaluation of the disk-diffusion method to determine the in vitro efficacy of terbinafine against subcutaneous and superficial mycoses agents publication-title: Anais Brasileiros de Dermatol. – volume: 127 start-page: 144 year: 2019 end-page: 158 ident: CR20 article-title: Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles publication-title: Microb. Pathog. – volume: 780 start-page: 816 year: 2019 end-page: 828 ident: CR61 article-title: Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0 ≤ x ≤ 0.5) spinel nano particles for transesterification of used cooking oil publication-title: J. Alloys Compd. – year: 2006 ident: CR62 publication-title: Modern ferrite technology – year: 2007 ident: CR43 publication-title: Basics of X-ray diffraction and its application – volume: 2016 start-page: 1 year: 2016 end-page: 8 ident: CR57 article-title: Structural, Electrical, Dielectric, and Magnetic Properties of Cd2+ Substituted Nickel Ferrite Nanoparticles publication-title: Journal of Nanoparticles – volume: 54 start-page: 1543 issue: 4 year: 2015 end-page: 1555 ident: CR48 article-title: Raman and mossbauer spectroscopy and X-ray diffractometry studies on quenched copper–ferri–aluminates publication-title: Inorg. Chem. – volume: 31 start-page: 591 issue: 3 year: 2014 end-page: 601 ident: CR75 article-title: MgO nanoparticles as antibacterial agent: preparation and activity publication-title: Braz. J. Chem. Eng. – volume: 363 start-page: 21 year: 2014 end-page: 25 ident: CR65 article-title: Structural evolution and magnetic properties of nanocrystalline magnesium–zinc soft ferrites synthesized by glycine–nitrate combustion process publication-title: J. Magn. Magn. Mater. – volume: 74 start-page: 943 issue: 7 year: 2013 end-page: 949 ident: CR34 article-title: Effect of α-Fe2O3 phase on structural, magnetic and dielectric properties of Mn–Zn ferrite nanoparticles publication-title: J. Phys. Chem. Solids – volume: 132 start-page: 264 issue: 2–3 year: 2012 end-page: 272 ident: CR17 article-title: Magnesium ferrite nanoparticles inserted in a glass matrix—microstructure and magnetic properties publication-title: Mater. Chem. Phys. – volume: 3 start-page: 738 issue: 5 year: 2019 end-page: 747 ident: CR86 article-title: Responses of the microbial community structure in Fe (II)-bearing sediments to oxygenation: the role of reactive oxygen species publication-title: ACS Earth Space Chem. – year: 1952 ident: CR32 publication-title: Probit analysis: a statistical treatment of the sigmoid response curve – volume: 107 start-page: 1425 issue: 7 year: 2019 end-page: 1433 ident: CR77 article-title: Zinc-oxide nanoparticles act catalytically and synergistically with nitric oxide donors to enhance antimicrobial efficacy publication-title: J. Biomed. Mater. Res. – volume: 229 start-page: 78 year: 2019 end-page: 86 ident: CR38 article-title: Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites publication-title: Mater. Chem. Phys. – volume: 40 start-page: 14509 issue: 9 year: 2014 end-page: 14516 ident: CR42 article-title: Self-ignited synthesis of Mg–Gd–Mn nanoferrites and impact of cation distribution on the dielectric properties publication-title: Ceram. Int. – volume: 7 start-page: 2767 year: 2012 ident: CR11 article-title: Antimicrobial applications of nanotechnology: methods and literature publication-title: Int. J. Nanomed. – volume: 16 start-page: 2347 issue: 6 year: 2014 end-page: 2357 ident: CR71 article-title: Self-ignited high temperature synthesis and enhanced super-exchange interactions of Ho 3+–Mn 2+–Fe 3+–O 2− ferromagnetic nanoparticles publication-title: Phys. Chem. Chem. Phys. – volume: 1024 start-page: 77 year: 2012 end-page: 83 ident: CR52 article-title: Structure refinement, cation site location, spectral and elastic properties of Zn2+ substituted NiFe2O4 publication-title: J. Mol. Struct. – start-page: 69 year: 1954 end-page: 136 ident: CR72 article-title: Physical properties of ferrites publication-title: Advances in Electronics and Electron Physics – volume: 39 start-page: 5235 issue: 5 year: 2013 end-page: 5239 ident: CR64 article-title: Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation method publication-title: Ceram. Int. – volume: 8 start-page: 166 issue: 2 year: 1996 end-page: 170 ident: CR80 article-title: Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films publication-title: Adv. Mater. – volume: 40 start-page: 141 year: 2018 end-page: 151 ident: CR19 article-title: Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique publication-title: Particuology – volume: 6 start-page: 33308 issue: 40 year: 2016 end-page: 33317 ident: CR40 article-title: Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er3+) ion substituted cobalt-rich ferrite (Co1.1Fe1.9−xErxO4) publication-title: RSC Advances – volume: 716 start-page: 186 year: 2019 end-page: 191 ident: CR41 article-title: Influence of La3+ site substitution on the structural, magnetic and magnetocaloric properties of ZnFe2− xLaxO4 (x= 0.00, 0.001, 0.005 and 0.01) spinel zinc ferrites publication-title: Chem. Phys. Lett. – year: 2019 ident: CR6 article-title: Assessment of zinc ferrite nanocrystals for removal of 134Cs and 152+154Eu radionuclides from nitric acid solution publication-title: J. Mater. Sci. doi: 10.1007/s10854-019-02678-y – volume: 28 start-page: 1083 issue: 3 year: 2017 end-page: 1112 ident: CR82 article-title: Response surface methodology optimization of melanin production by and synthesis of copper oxide nanoparticles using gamma radiation publication-title: J. Clust. Sci. – volume: 360 start-page: 41 year: 2014 end-page: 47 ident: CR1 article-title: Particle size dependence of magnetic features for Ni0.6−xCuxZn0.4Fe2O4 spinel nanoparticles publication-title: J. Magn. Magn. Mater. – volume: 56 start-page: 531 issue: 5 year: 2016 end-page: 540 ident: CR13 article-title: Extracellular biosynthesis of anti-Candida silver nanoparticles using publication-title: J. Basic Microbiol. – volume: 774 start-page: 1233 year: 2019 end-page: 1242 ident: CR49 article-title: Structural, elastic, thermal and soft magnetic properties of Ni–Zn–Li ferrites publication-title: J. Alloy Compd. – volume: 132 start-page: 138 issue: 1 year: 2012 end-page: 144 ident: CR25 article-title: Structural, electrical and magnetic properties of cadmium substituted nickel–copper ferrites publication-title: Mater. Chem. Phys. – volume: 13 start-page: 61 year: 2017 end-page: 76 ident: CR3 article-title: Recent advances of magneto-thermal capabilities of nanoparticles: from design principles to biomedical applications publication-title: Nano Today – volume: 684 start-page: 569 year: 2016 end-page: 581 ident: CR39 article-title: Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route publication-title: J. Alloy Compd. – volume: 13 start-page: 251 issue: 1 year: 2011 ident: 2799_CR45 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2010.11.024 – volume: 13 start-page: 6877 issue: 12 year: 2011 ident: 2799_CR74 publication-title: J. Nanopart Res. doi: 10.1007/s11051-011-0595-5 – volume: 684 start-page: 569 year: 2016 ident: 2799_CR39 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2016.05.200 – volume: 2016 start-page: 1 year: 2016 ident: 2799_CR57 publication-title: Journal of Nanoparticles doi: 10.1155/2016/4709687 – volume: 44 start-page: 9194 issue: 8 year: 2018 ident: 2799_CR53 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.02.129 – volume: 5 start-page: 364 issue: 5 year: 2014 ident: 2799_CR83 publication-title: Res. J. Pharm. Biol. Chem. Sci. – volume: 93 start-page: 362 issue: 4 year: 2019 ident: 2799_CR31 publication-title: Diagn. Microbiol. Infect. Dis. doi: 10.1016/j.diagmicrobio.2018.11.005 – volume: 61 start-page: 46 year: 2011 ident: 2799_CR79 publication-title: Int. Dent. J. doi: 10.1111/j.1875-595X.2011.00049.x – volume: 127 start-page: 269 year: 2016 ident: 2799_CR24 publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2016.07.014 – volume: 716 start-page: 186 year: 2019 ident: 2799_CR41 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2018.12.025 – volume: 36 start-page: 86 issue: 1 year: 2018 ident: 2799_CR54 publication-title: J. Rare Earths doi: 10.1016/j.jre.2017.06.011 – volume-title: Probit analysis: a statistical treatment of the sigmoid response curve year: 1952 ident: 2799_CR32 – start-page: 197 volume-title: Advances in Science and Technology of Mn+1AXn Phases year: 2012 ident: 2799_CR51 doi: 10.1533/9780857096012.197 – volume: 92 start-page: 644 year: 2018 ident: 2799_CR21 publication-title: Mater. Sci. Eng. doi: 10.1016/j.msec.2018.07.007 – volume: 421 start-page: 260 year: 2017 ident: 2799_CR69 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.08.035 – volume: 2 start-page: 460 issue: 4 year: 2011 ident: 2799_CR66 publication-title: Adv. Appl. Sci. Res. – volume: 29 start-page: 1003 issue: 6 year: 2018 ident: 2799_CR27 publication-title: J. Clust. Sci. doi: 10.1007/s10876-018-1411-5 – volume: 229 start-page: 78 year: 2019 ident: 2799_CR38 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.02.030 – volume: 381 start-page: 179 year: 2015 ident: 2799_CR7 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.12.069 – volume: 581 start-page: 123821 year: 2019 ident: 2799_CR87 publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2019.123821 – start-page: 69 volume-title: Advances in Electronics and Electron Physics year: 1954 ident: 2799_CR72 – volume: 73 start-page: 1712 issue: 6 year: 2007 ident: 2799_CR81 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02218-06 – volume: 468 start-page: 132 year: 2018 ident: 2799_CR60 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2018.07.084 – volume: 1024 start-page: 77 year: 2012 ident: 2799_CR52 publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2012.05.014 – volume: 8 start-page: 166 issue: 2 year: 1996 ident: 2799_CR80 publication-title: Adv. Mater. doi: 10.1002/adma.19960080216 – volume: 180 start-page: 411 year: 2019 ident: 2799_CR15 publication-title: Colloids Surf. B doi: 10.1016/j.colsurfb.2019.05.008 – volume: 427 start-page: 268 year: 2017 ident: 2799_CR18 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.10.078 – volume: 132 start-page: 138 issue: 1 year: 2012 ident: 2799_CR25 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.11.009 – volume: 56 start-page: 531 issue: 5 year: 2016 ident: 2799_CR13 publication-title: J. Basic Microbiol. doi: 10.1002/jobm.201500503 – volume: 210 start-page: 29 issue: 1 year: 2011 ident: 2799_CR37 publication-title: Powd. Technol. doi: 10.1016/j.powtec.2011.02.008 – volume: 40 start-page: 14509 issue: 9 year: 2014 ident: 2799_CR42 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2014.07.017 – volume: 30 start-page: 531 issue: 3 year: 2019 ident: 2799_CR73 publication-title: J. Clust. Sci. doi: 10.1007/s10876-019-01533-8 – volume: 4 start-page: 1341 issue: 11 year: 2014 ident: 2799_CR12 publication-title: Brit. J. Pharm. Res. doi: 10.9734/BJPR/2014/9566 – volume: 6 start-page: 33308 issue: 40 year: 2016 ident: 2799_CR40 publication-title: RSC Advances doi: 10.1039/C6RA03377F – volume: 140 start-page: 142 year: 2019 ident: 2799_CR56 publication-title: Measurement doi: 10.1016/j.measurement.2019.03.046 – volume: 91 start-page: 578 issue: 3 year: 2019 ident: 2799_CR85 publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-019-05048-6 – volume: 132 start-page: 264 issue: 2–3 year: 2012 ident: 2799_CR17 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2011.10.030 – start-page: 197 volume-title: Iron oxide nanoparticles for biomedical applications year: 2018 ident: 2799_CR4 doi: 10.1016/B978-0-08-101925-2.00007-3 – volume: 615 start-page: S313 year: 2014 ident: 2799_CR36 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2014.01.248 – volume: 54 start-page: 1543 issue: 4 year: 2015 ident: 2799_CR48 publication-title: Inorg. Chem. doi: 10.1021/ic502497a – volume: 16 start-page: 2347 issue: 6 year: 2014 ident: 2799_CR71 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP54257B – volume: 74 start-page: 943 issue: 7 year: 2013 ident: 2799_CR34 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2013.02.013 – volume: 139 start-page: 87 issue: 3 year: 2006 ident: 2799_CR44 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2006.05.026 – volume: 13 start-page: 61 year: 2017 ident: 2799_CR3 publication-title: Nano Today doi: 10.1016/j.nantod.2017.02.006 – volume: 43 start-page: 1129 issue: 1 year: 2017 ident: 2799_CR33 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2016.10.053 – volume: 25 start-page: 111 issue: 2 year: 2015 ident: 2799_CR63 publication-title: Prog. Nat. Sci. doi: 10.1016/j.pnsc.2015.02.001 – volume: 752 start-page: 332 year: 2018 ident: 2799_CR9 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2018.04.093 – volume: 36 start-page: 158 issue: 1 year: 2016 ident: 2799_CR10 publication-title: J. Electroceram. doi: 10.1007/s10832-016-0023-4 – volume: 792 start-page: 432 year: 2019 ident: 2799_CR55 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.04.059 – volume: 256 start-page: 6083 issue: 20 year: 2010 ident: 2799_CR78 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2010.03.124 – year: 2019 ident: 2799_CR6 publication-title: J. Mater. Sci. doi: 10.1007/s10854-019-02678-y – volume: 774 start-page: 1233 year: 2019 ident: 2799_CR49 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2018.09.394 – volume: 581 start-page: 776 year: 2013 ident: 2799_CR68 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2013.07.139 – volume-title: Institute, Methods for determining bactericidal activity of antimicrobial agents: approved guideline M26-A year: 1999 ident: 2799_CR30 – volume: 691 start-page: 343 year: 2017 ident: 2799_CR70 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2016.08.199 – volume: 7 start-page: 2767 year: 2012 ident: 2799_CR11 publication-title: Int. J. Nanomed. – volume: 30 start-page: 947 issue: 4 year: 2019 ident: 2799_CR28 publication-title: J. Clust. Sci. doi: 10.1007/s10876-019-01553-4 – volume: 5 start-page: 73714 issue: 90 year: 2015 ident: 2799_CR47 publication-title: RSC Adv. doi: 10.1039/C5RA14351A – volume-title: Modern ferrite technology year: 2006 ident: 2799_CR62 – ident: 2799_CR5 – volume: 72 start-page: 181 issue: 3 year: 2019 ident: 2799_CR29 publication-title: J. Antibiot. doi: 10.1038/s41429-018-0133-0 – volume: 38 start-page: 4771 issue: 6 year: 2012 ident: 2799_CR67 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.02.065 – volume: 731 start-page: 1256 year: 2018 ident: 2799_CR58 publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2017.10.103 – year: 2019 ident: 2799_CR76 publication-title: Trace Elem. Res. Biol. doi: 10.1007/s12011-019-01894-1 – volume: 31 start-page: 591 issue: 3 year: 2014 ident: 2799_CR75 publication-title: Braz. J. Chem. Eng. doi: 10.1590/0104-6632.20140313s00002813 – year: 2016 ident: 2799_CR84 publication-title: J. Nanomater. doi: 10.1155/2016/2106756 – year: 2019 ident: 2799_CR14 publication-title: J. Clust. Sci. doi: 10.1007/s10876-019-01707-4 – volume: 447 start-page: 48 year: 2018 ident: 2799_CR50 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2017.09.033 – volume: 780 start-page: 816 year: 2019 ident: 2799_CR61 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.11.390 – volume: 107 start-page: 1425 issue: 7 year: 2019 ident: 2799_CR77 publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.36657 – volume: 363 start-page: 21 year: 2014 ident: 2799_CR65 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.03.027 – volume: 28 start-page: 1083 issue: 3 year: 2017 ident: 2799_CR82 publication-title: J. Clust. Sci. doi: 10.1007/s10876-016-1101-0 – volume: 30 start-page: 4908 issue: 5 year: 2019 ident: 2799_CR22 publication-title: J. Mater. Sci. – volume: 43 start-page: 13661 issue: 16 year: 2017 ident: 2799_CR35 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.07.076 – volume: 127 start-page: 144 year: 2019 ident: 2799_CR20 publication-title: Microb. Pathog. doi: 10.1016/j.micpath.2018.11.045 – year: 2019 ident: 2799_CR89 publication-title: Trace Elem. Res. Biol. doi: 10.1007/s12011-019-01842-z – volume: 112 start-page: 084333 issue: 8 year: 2012 ident: 2799_CR88 publication-title: J. Appl. Phys. doi: 10.1063/1.4761987 – volume: 85 start-page: 324 issue: 3 year: 2010 ident: 2799_CR26 publication-title: Anais Brasileiros de Dermatol. doi: 10.1590/S0365-05962010000300005 – volume-title: Basics of X-ray diffraction and its application year: 2007 ident: 2799_CR43 – volume: 6 start-page: 6 issue: 1 year: 2012 ident: 2799_CR46 publication-title: J. Theor. Appl. Phys. doi: 10.1186/2251-7235-6-6 – volume: 39 start-page: 5235 issue: 5 year: 2013 ident: 2799_CR64 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2012.12.023 – volume: 5 start-page: 47225 issue: 58 year: 2015 ident: 2799_CR8 publication-title: RSC Adv. doi: 10.1039/C5RA04553C – volume: 40 start-page: 141 year: 2018 ident: 2799_CR19 publication-title: Particuology doi: 10.1016/j.partic.2017.12.001 – volume: 15 start-page: 627 issue: 2 year: 1966 ident: 2799_CR59 publication-title: Physica Status Solidi (b) doi: 10.1002/pssb.19660150224 – volume: 360 start-page: 41 year: 2014 ident: 2799_CR1 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2014.01.035 – ident: 2799_CR16 – volume: 90 start-page: 631 issue: 3 year: 2019 ident: 2799_CR23 publication-title: J. Sol-Gel Sci. Technol. doi: 10.1007/s10971-019-04964-x – ident: 2799_CR2 – volume: 3 start-page: 738 issue: 5 year: 2019 ident: 2799_CR86 publication-title: ACS Earth Space Chem. doi: 10.1021/acsearthspacechem.8b00189 |
SSID | ssj0006438 |
Score | 2.5222194 |
Snippet | Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein, Mg
2+... Superparamagnetic nanoparticles (NPs) have a prominent interest from researchers in the field of industrial and biomedical applications. Herein,... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2598 |
SubjectTerms | Anisotropy Antiinfectives and antibacterials Antimicrobial agents Biomedical materials Characterization and Evaluation of Materials Chemistry and Materials Science Energy gap Fourier transforms Hematite Infrared spectroscopy Magnetic properties Magnetic saturation Magnetometers Manganese zinc ferrites Materials Science Materials selection Nanoparticles Optical and Electronic Materials Optical properties Sol-gel processes Spectrum analysis Substitutes Ultraviolet reflection Urinary tract infections X ray spectra X-ray diffraction |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFA46X_RBvOK8kQfftuCatF3yJCrKFBwiCsOX0qbpGLhsuj2L_8F_6C_xnDS1Kii0D6VtCvnSc8s53yHkKBNaxnkhmYmKlKGHwLKu1gx8kQDsU3CbjUuQ7ce9h_B6EA18wG3m0yormegEdT7RGCM_5lgx2u1IxU-mzwy7RuHuqm-hsUiWQARLcL6Wzi76t3dfshj0rSzZ9pDdm3NfNuOL52SEGRgK9zGVYuFP1VTbm7-2SJ3muVwjq95kpKclxutkwdgNsvKNSHCTvF5VvUbopKA3Q96iM5AILg0AJp7CURLFIslGm06mLoLdpuN0aLGKsU1Tm8M5H41HjpkJvjfFMP0L8q26Me3H2_ujpQUyOc4NtakFd9tn1W2Rh8uL-_Me850VmOYynjOtuYgyrkB3C82LIujmQkUdkQFs4MEgrV1uAhOmAV6qjgE_MjZgKmoD9h8PxTZp2Ik1O4SKtKtipUWuwVJITaiEwuLdVGZcZjBukwTVpCba045j94unpCZMRiASACJxQCRhk7S-3pmWpBv_Pr1fYZX4H3CW1MulSdoVfvXtv0fb_X-0PbLM0eN2edv7pAHYmQMwS-bZoV97n2fg3q8 priority: 102 providerName: ProQuest |
Title | Influence of Mg2+ substitution on structural, optical, magnetic, and antimicrobial properties of Mn–Zn ferrite nanoparticles |
URI | https://link.springer.com/article/10.1007/s10854-019-02799-4 https://www.proquest.com/docview/2348170892 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NSsNAEB60vehB_MVqLXvw1gaa3STNHqu0_mERsVC9hGSzkYLdFtuz-A6-oU_izDZpVVQQEkJIMiH7bXZmdma-BThOhAqDNAsd7WexQx6Ck7SUctAXcdE-RbdZ2wTZXnDe9y4H_iAvCpsW2e5FSNKO1J-K3UKfMiYkxR2ldLxVKPvku2Mv7vP2YvxFHRvOGfaI0ZvzvFTmZxlf1dHSxvwWFrXaprsJG7mZyNpzXLdgRZttWP9EHrgDLxfF-iJsnLHrR15nUxwFbOgfG5vhNieHJWKNBhtP7Kx1g43iR0OViw0WmxT32XA0tGxM-L4JTc0_E8eqlWneX98eDMuIvXGmmYkNuth5Jt0u9Ludu9NzJ19NwVE8DGaOUlz4CZeor4XiWea2UiH9pkgQKvRaiMou1a72YpdOZVOj7xhoNA-VRpuPe2IPSmZs9D4wEbdkIJVIFVoHsfakkFSwG4cJDxOUWwG3aNRI5VTjtOLFU7QkSSYgIgQiskBEXgXqi2cmc6KNP--uFlhF-U83jTgVFeOHSF6BRoHf8vLv0g7-d_shrHHyum3udhVKiKU-QtNkltRgNeye1aDcPru_6uDxpNO7ua3Z_vkBedjeYA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7xc4AeEJQill8fyom12NhJ1j5UFQKW3fJzAgn1kiaOs0IC75ZdCXFBvEPfow_VJ-mMk7BQqdyQkkOUZBJ5xuMZz8w3AJ8zaVScF4rbqEg5eQg8axvD0RcJ0D5Ft9n6BNnzuHsZfruKrqbgd10LQ2mVtU70ijofGNoj3xNUMdpuKS2-Dn9y6hpF0dW6hUYpFif24R5dttGX3iHyd0eIztHFQZdXXQW4ESoec2OEjDKhcd2SRhRF0M6ljloyw19G650g3XIb2DAN6FK3LPpQsUUzyVi0fUQoke40zIZSappRqnP8rPlxdVclth9hiQtRFelUpXoqonwPTVFTrXn4eiGcWLf_BGT9OtdZhIXKQGX7pUQtwZR1H-HDC9jCZXjs1Z1N2KBgZ32xy0aof3zSAbKZ4VHC0hKkR5MNhn6_vMlu076jmskmS12O5_j69trjQOH3hhQUuCN0V0_T_Xn69d2xgnAjx5a51KFzX-XwfYLLdxnxFZhxA2dXgcm0rWNtZG7QLkltqKWmUuFUZUJlSLcBQT2oialAzqnXxk0ygWcmRiTIiMQzIgkbsPv8zrCE-Hjz6Y2aV0k13UfJRDgb0Kz5N7n9f2prb1Pbhrnuxdlpcto7P1mHeUG-vs8Y34AZ5KPdRINonG15KWTw473F_i_Brxha |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwEB7BIiE4VC0_YiltfaAn1mJj58-HqmoLKxboClVFQlxC4jgICbwLuxLiUvUd-jZ9nD5JZxyHbZHghpQcoiSTKDPxzGfPfAOwWUidxmWVchNVOSeEwItEa45YJMD4FGGzcQmyg3jvONw_iU5m4HdTC0Nplc2Y6AbqcqhpjnxbUMVo0k2V2K58WsTRTu_j6JpTBylaaW3aadQmcmDubhG-jT_0d1DX74Xo7X7_ssd9hwGuRRpPuNZCRoVQ6MOkFlUVJKVUUVcW-PoYyRO9W2kCE-YBHaquQTwVGwyZtME4SIQS5c7CXIKoqNuCuc-7g6Nv934AfX1aM_0Rs7gQvmTHF-6lEWV_KFpDVYqH_7vFaaz7YHnWeb3eS3jhw1X2qbavVzBj7BIs_kNiuAw_-k2fEzas2NdzscXGOBq5FARUOsOtJqklgo8OG47c7HmHXeXnliooOyy3Je6Ti6sLxwqFzxvREsENcb06mfbPz1-nllXEIjkxzOYWob7P6FuB42f55qvQskNr1oDJPFGx0rLUGKXkJlRSUeFwnhYiLVBuG4Lmo2baU55T543LbErWTIrIUBGZU0QWtmHr_p5RTfjx5NUbja4y__OPs6mptqHT6G96-nFp609LewfzaPLZYX9w8BoWBAF_lz6-AS1Uo3mD0dGkeOvNkMHZc1v-X6xnHew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+Mg2%2B+substitution+on+structural%2C+optical%2C+magnetic%2C+and+antimicrobial+properties+of+Mn%E2%80%93Zn+ferrite+nanoparticles&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Abdel+Maksoud%2C+M.+I.+A.&rft.au=El-Sayyad%2C+Gharieb+S.&rft.au=Abokhadra%2C+A.&rft.au=Soliman%2C+L.+I.&rft.date=2020-02-01&rft.pub=Springer+US&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=31&rft.issue=3&rft.spage=2598&rft.epage=2616&rft_id=info:doi/10.1007%2Fs10854-019-02799-4&rft.externalDocID=10_1007_s10854_019_02799_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |