Capacity Expansion Optimization of Determined Charging Stations Based on Accessibility Analysis and Improved Discrete Choice Model

Reasonable capacity expansion optimization of determined charging stations is important for the popularization of electric vehicles (EVs). In this article, Gaussian two-step floating catchment area method and temporal clustering are adopted to study the unbalanced spatial and temporal distribution o...

Full description

Saved in:
Bibliographic Details
Published inElectric power components and systems Vol. 51; no. 12; pp. 1125 - 1141
Main Authors Xu, Xianfeng, Zhao, Weifeng, Lu, Yong, Huang, Xinrong, Liu, Zhuangzhuang
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 21.07.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reasonable capacity expansion optimization of determined charging stations is important for the popularization of electric vehicles (EVs). In this article, Gaussian two-step floating catchment area method and temporal clustering are adopted to study the unbalanced spatial and temporal distribution of charging station accessibility, as well as to determine candidate sites for capacity expansion optimization. Then, a two-level optimization model for capacity expansion of determined charging stations is proposed to reduce the computational complexity caused by the non-linearity and non-convexity of choice probability formulas when the discrete choice model is applied to statistically describe and analyze discrete behaviors such as users' EV purchase preferences and charging station heterogeneity. In the proposed method, the lower-level model is described as a maximal coverage location problem by expressing the error term of the utility function as a linear combination of the random vectors from IID normal distribution and IID Gumbel distribution, which effectively simplifies the computing process. Finally, the two-level model can be transformed into an integer linear programming problem to optimize the capacity of determined charging stations. Experimental results show that the purchase rate of EVs is significantly improved, and the accessibility of charging stations during rush hours is more balanced than before.
AbstractList Reasonable capacity expansion optimization of determined charging stations is important for the popularization of electric vehicles (EVs). In this article, Gaussian two-step floating catchment area method and temporal clustering are adopted to study the unbalanced spatial and temporal distribution of charging station accessibility, as well as to determine candidate sites for capacity expansion optimization. Then, a two-level optimization model for capacity expansion of determined charging stations is proposed to reduce the computational complexity caused by the non-linearity and non-convexity of choice probability formulas when the discrete choice model is applied to statistically describe and analyze discrete behaviors such as users’ EV purchase preferences and charging station heterogeneity. In the proposed method, the lower-level model is described as a maximal coverage location problem by expressing the error term of the utility function as a linear combination of the random vectors from IID normal distribution and IID Gumbel distribution, which effectively simplifies the computing process. Finally, the two-level model can be transformed into an integer linear programming problem to optimize the capacity of determined charging stations. Experimental results show that the purchase rate of EVs is significantly improved, and the accessibility of charging stations during rush hours is more balanced than before.
Author Zhao, Weifeng
Lu, Yong
Xu, Xianfeng
Huang, Xinrong
Liu, Zhuangzhuang
Author_xml – sequence: 1
  givenname: Xianfeng
  surname: Xu
  fullname: Xu, Xianfeng
  organization: School of Energy & Electrical Engineering, Chang'an University
– sequence: 2
  givenname: Weifeng
  surname: Zhao
  fullname: Zhao, Weifeng
  organization: School of Energy & Electrical Engineering, Chang'an University
– sequence: 3
  givenname: Yong
  surname: Lu
  fullname: Lu, Yong
  organization: School of Energy & Electrical Engineering, Chang'an University
– sequence: 4
  givenname: Xinrong
  surname: Huang
  fullname: Huang, Xinrong
  organization: School of Energy & Electrical Engineering, Chang'an University
– sequence: 5
  givenname: Zhuangzhuang
  surname: Liu
  fullname: Liu, Zhuangzhuang
  organization: School of Highway, Chang'an University
BookMark eNp9kE1PxCAQhonRxF31J5iQeO4KtLT05lo_E80e1DOhFBTTQoX6UY_-cqm7evQ0M--882TyzsG2dVYBcIjRAiOGjjFNCUWILQgi6YLgEpOs2AKzSU8owvn2X4_YLpiH8IwQJmVJZuCrEr2QZhjh-UcvbDDOwlU_mM58imEanIZnalC-M1Y1sHoS_tHYR3g3_KwDPBUh6tG4lFKFYGrTTrSlFe0YTIDCNvC66717i7YzE6SPtMhxRip46xrV7oMdLdqgDjZ1DzxcnN9XV8nN6vK6Wt4kkrB8SGSe60IRKhESOq9JKYlkDWJZSUldFBlVus4wwaRJaVbrTLOyFg2umWrSshAq3QNHa2585uVVhYE_u1cf_wycMESLjFGWRxddu6R3IXilee9NJ_zIMeJT3Pw3bj7FzTdxx7uT9Z2x2vlOvDvfNnwQY-u89sJKE3j6P-IbtbKKSA
Cites_doi 10.1109/TITS.2021.3103419
10.1109/TITS.2021.3056146
10.1109/TITS.2016.2563166
10.1109/TTE.2020.2974179
10.1109/TII.2021.3114276
10.1016/j.jenvman.2020.110924
10.1109/TITS.2019.2919934
10.1016/j.energy.2022.125504
10.1080/13658816.2021.1978450
10.1016/j.tra.2021.07.009
10.1016/j.tra.2020.12.007
10.1016/j.energy.2021.120106
10.1109/TSTE.2016.2547891
10.1109/TVT.2020.2993509
10.1016/j.iedeen.2020.100138
10.1109/TPWRD.2020.3008924
10.1016/j.enbuild.2022.112417
10.1016/j.trb.2021.06.003
10.1016/j.apenergy.2021.117866
10.1109/TITS.2021.3125833
10.1109/TITS.2020.3001086
10.1016/j.energy.2021.121948
10.1016/j.scs.2019.101752
10.1287/trsc.2019.0970
10.1080/15389588.2020.1733539
10.1016/j.apenergy.2018.06.014
10.1016/j.trd.2020.102682
10.1016/j.jtrangeo.2021.103179
10.1016/j.trb.2021.02.003
10.1016/j.energy.2021.122261
10.1016/j.energy.2022.123724
10.13335/j.1000-3673.pst.2022.0427
10.1177/0160017615600222
10.1109/TITS.2020.3031965
10.1016/j.jocm.2021.100283
10.1109/TIA.2020.3024268
10.1016/j.epsr.2021.107391
10.1016/j.apenergy.2021.116515
10.1016/j.energy.2021.122136
10.1016/j.tranpol.2021.03.006
10.1016/j.tra.2021.06.017
10.1016/j.tra.2021.03.006
10.17775/CSEEJPES.2020.00850
10.1016/j.tele.2021.101646
10.1007/s10260-011-0183-y
10.1016/j.energy.2020.118375
10.1016/j.est.2020.101351
10.1016/j.ijepes.2021.106963
10.1017/CBO9780511805271
10.1016/j.scs.2021.103181
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1080/15325008.2023.2191247
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-5016
EndPage 1141
ExternalDocumentID 10_1080_15325008_2023_2191247
2191247
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
FYQZC
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NX~
O9-
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
TASJS
ID FETCH-LOGICAL-c286t-c66f7e25c00af6b29c2c8d084952b7745efb41212d354bf4f89bad1b8ed397ae3
ISSN 1532-5008
IngestDate Wed Aug 13 09:47:51 EDT 2025
Tue Jul 01 03:31:38 EDT 2025
Wed Dec 25 09:04:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-c66f7e25c00af6b29c2c8d084952b7745efb41212d354bf4f89bad1b8ed397ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2805748586
PQPubID 52905
PageCount 17
ParticipantIDs informaworld_taylorfrancis_310_1080_15325008_2023_2191247
proquest_journals_2805748586
crossref_primary_10_1080_15325008_2023_2191247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-21
PublicationDateYYYYMMDD 2023-07-21
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-21
  day: 21
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Electric power components and systems
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0012
CIT0011
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0017
  doi: 10.1109/TITS.2021.3103419
– ident: CIT0026
  doi: 10.1109/TITS.2021.3056146
– ident: CIT0044
  doi: 10.1109/TITS.2016.2563166
– ident: CIT0050
– ident: CIT0018
  doi: 10.1109/TTE.2020.2974179
– ident: CIT0010
  doi: 10.1109/TII.2021.3114276
– ident: CIT0023
  doi: 10.1016/j.jenvman.2020.110924
– ident: CIT0009
  doi: 10.1109/TITS.2019.2919934
– ident: CIT0019
  doi: 10.1016/j.energy.2022.125504
– ident: CIT0038
  doi: 10.1080/13658816.2021.1978450
– ident: CIT0035
  doi: 10.1016/j.tra.2021.07.009
– ident: CIT0030
  doi: 10.1016/j.tra.2020.12.007
– ident: CIT0011
  doi: 10.1016/j.energy.2021.120106
– ident: CIT0006
  doi: 10.1109/TSTE.2016.2547891
– ident: CIT0016
  doi: 10.1109/TVT.2020.2993509
– ident: CIT0025
  doi: 10.1016/j.iedeen.2020.100138
– ident: CIT0045
  doi: 10.1109/TPWRD.2020.3008924
– ident: CIT0029
  doi: 10.1016/j.enbuild.2022.112417
– ident: CIT0031
  doi: 10.1016/j.trb.2021.06.003
– ident: CIT0003
  doi: 10.1016/j.apenergy.2021.117866
– ident: CIT0015
  doi: 10.1109/TITS.2021.3125833
– ident: CIT0013
  doi: 10.1109/TITS.2020.3001086
– ident: CIT0001
  doi: 10.1016/j.energy.2021.121948
– ident: CIT0040
  doi: 10.1016/j.scs.2019.101752
– ident: CIT0036
  doi: 10.1287/trsc.2019.0970
– ident: CIT0024
  doi: 10.1080/15389588.2020.1733539
– ident: CIT0005
  doi: 10.1016/j.apenergy.2018.06.014
– ident: CIT0004
  doi: 10.1016/j.trd.2020.102682
– ident: CIT0039
  doi: 10.1016/j.jtrangeo.2021.103179
– ident: CIT0047
  doi: 10.1016/j.trb.2021.02.003
– ident: CIT0002
  doi: 10.1016/j.energy.2021.122261
– ident: CIT0012
  doi: 10.1016/j.energy.2022.123724
– ident: CIT0007
  doi: 10.13335/j.1000-3673.pst.2022.0427
– ident: CIT0042
  doi: 10.1177/0160017615600222
– ident: CIT0048
  doi: 10.1109/TITS.2020.3031965
– ident: CIT0046
  doi: 10.1016/j.jocm.2021.100283
– ident: CIT0052
  doi: 10.1109/TIA.2020.3024268
– ident: CIT0041
  doi: 10.1016/j.epsr.2021.107391
– ident: CIT0014
  doi: 10.1016/j.apenergy.2021.116515
– ident: CIT0020
  doi: 10.1016/j.energy.2021.122136
– ident: CIT0037
  doi: 10.1016/j.tranpol.2021.03.006
– ident: CIT0028
  doi: 10.1016/j.tra.2021.06.017
– ident: CIT0034
  doi: 10.1016/j.tra.2021.03.006
– ident: CIT0032
  doi: 10.17775/CSEEJPES.2020.00850
– ident: CIT0027
  doi: 10.1016/j.tele.2021.101646
– ident: CIT0043
  doi: 10.1007/s10260-011-0183-y
– ident: CIT0051
– ident: CIT0022
  doi: 10.1016/j.energy.2020.118375
– ident: CIT0021
  doi: 10.1016/j.est.2020.101351
– ident: CIT0033
  doi: 10.1016/j.ijepes.2021.106963
– ident: CIT0049
  doi: 10.1017/CBO9780511805271
– ident: CIT0008
  doi: 10.1016/j.scs.2021.103181
SSID ssj0012992
Score 2.306655
Snippet Reasonable capacity expansion optimization of determined charging stations is important for the popularization of electric vehicles (EVs). In this article,...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1125
SubjectTerms Accessibility
capacity expansion
charging station accessibility
Clustering
Convexity
electric vehicle
Electric vehicle charging
Heterogeneity
improved discrete choice model
Integer programming
Linear programming
maximal coverage location problem
Normal distribution
Optimization
Optimization models
Statistical analysis
Temporal distribution
Title Capacity Expansion Optimization of Determined Charging Stations Based on Accessibility Analysis and Improved Discrete Choice Model
URI https://www.tandfonline.com/doi/abs/10.1080/15325008.2023.2191247
https://www.proquest.com/docview/2805748586
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHVF6itEV74FYl2Otdd30MTVGEeFxa1XCxdu1dyQeSqjhSy5Hf1h_G7MveQASUixWNNpN15vO8PDOL0KuG5VIXAiJVCSEKJamaFMyMu-NJVutUUC5NvuPDx3xxTt-VrByNbqOqpXUnp_X3rX0l_yNVoIFcTZfsHSTbMwUCfAb5whUkDNd_kvEJWLrauNGn1_BQm7zX0SdQAV99b6VxBOe-3MUkcs1QJDeA29e_vQET1pjXBTN7bKIrlL0ZBpXYWmGbdYBl8xY0DHADPqvWaoPGl9uHxL49Uaetjy7NyWu2WH21tA10NjkfjUYHAZdrI9wSwKmVN54ufW1Ttxeqjcnv7eLPq4GyWPs8d9kurwLdJy9IZrKiriO617cQCyeJU8EqprkWzKCkWRqDkUQqFxxGFplviO_SrabB1VIa5ub3pmY3U1DX4N8cD7YwvP__xUT2hYupn6ga2FSGTeXZ3EM7BIIVMkY7s8X8y0X_NgtMPnFze93Nhk4ynrzeup8NH2ljgu5vHoN1g8520UMfv-CZA-MjNFLLx-hBNNXyCfoRYIl7WOIYlnil8QBLHGCJAyyxhSWGhRuwxAGWGOCEAyxxgCV2sMQWlk_R-dvTs5PFxB_1MakJz7tJnef6WBFWJ4nQuSRFTWreJBzCdyIhQmFKS5qCm9VkjEpNNS-kaFLJVQMOtVDZMzReAqafIywEJVJyTQotaKZgSUGzTDCIhChnUuyhafhzq0s30aX6o1j3UBGLoOpsKk27c2-q7C_fPQjyqrzi-FYRDkES7IXnL-66l310f3iMDtC4u1qrQ_CKO_nSg-4nZUqzeA
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLY4BmDgRhQKeGBtSXykzgiFqlxloEhslu3YEgJaRFMJGPnlPMcJKiDEwBz7ybH97ufvIbSf8US7VIGnqsFFYSS2jZR7uDsRUeNixYT28Y7LXtK9YWe3_HbiLYwvq_Q-tAtAEYWs9sztg9FVSdwBcClo7shXZhHaBJ4DJdWaRrM8TVq-iwGNep-ZBBC3JGCmgtMFc6pXPL-R-aKfvqCX_pDWhQrqLCFTLT5Untw3x7lumrdvuI7_-7tltFhaqPgwXKkVNGUHq2hhArdwDb23QcUasN_xyQtIEx9ww1cgex7LR5146PBxWWdjM-xT-r4XEr4Oef8RPgLdmWEYeFj0awwVuq-4QkjBsHgcwh0w7PgORBtQAzpDEGvYt297WEc3nZN-u9somzk0DBFJ3jBJ4lqWcBNFyiWapIYYkUUCHDSiwQbl1mkWgyLNKGfaMSdSrbJYC5uByaQs3UAzg-HAbiKsFCNaC0dSpxi1MCRllCoOti4TXKsaalZHKJ8CZoeMSyjUanOl31xZbm4NpZMHLfMiWOJCZxNJ_5hbr26FLNl_JIkAMxjWIpKtf5DeQ3Pd_uWFvDjtnW-jef_JR5VJXEcz-fPY7oA5lOvd4r5_AG9s_f4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86QfTgtzidmoPX1jZNu_Q498H8moIOvIWkTUDUbbgO1KN_uS9NK5siHnZu8kiTvO-X30PoJA0jqWMBnqoEF4USXzlxaODumBck2heUSRPvuO5F3T69eAjLasJxUVZpfGhtgSJyWW2Ye5TqsiLuFJgUFLdnCrNI4ALLgY6qL6KlyICHm1ccXu87kQDSlljIVPC5YE75iOcvMjPqaQa89JewzjVQZx3Jcu228OTJnWTSTT5-wDrO9XMbaK2wT3HDXqhNtKAGW2h1CrVwG302QcEmYL3j9hvIEhNuwzcgeV6KJ514qHGrqLJRKTYJfdMJCd_ZrP8Yn4HmTDEMbOTdGm197jsu8VEwrB3bYAcMaz2CYANqQGcIQg2b5m3PO6jfad83u07RysFJCIsyJ4kiXVckTDxP6EiSOCEJSz0G7hmRYIGGSkvqgxpNg5BKTTWLpUh9yVQKBpNQwS6qDIYDtYewEJRIyTSJtaCBgiExDQIRgqVLWShFFbnlCfKRRezgfgGEWm4uN5vLi82tonj6nHmWh0q07WvCg3_m1spLwQvmH3PCwAiGtbBofw7Sx2j5ttXhV-e9ywO0Yr6YkDLxa6iSvU7UIdhCmTzKb_sXTmv8og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacity+Expansion+Optimization+of+Determined+Charging+Stations+Based+on+Accessibility+Analysis+and+Improved+Discrete+Choice+Model&rft.jtitle=Electric+power+components+and+systems&rft.au=Xu%2C+Xianfeng&rft.au=Zhao%2C+Weifeng&rft.au=Lu%2C+Yong&rft.au=Huang%2C+Xinrong&rft.date=2023-07-21&rft.issn=1532-5008&rft.eissn=1532-5016&rft.volume=51&rft.issue=12&rft.spage=1125&rft.epage=1141&rft_id=info:doi/10.1080%2F15325008.2023.2191247&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15325008_2023_2191247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-5008&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-5008&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-5008&client=summon