Capacity Expansion Optimization of Determined Charging Stations Based on Accessibility Analysis and Improved Discrete Choice Model
Reasonable capacity expansion optimization of determined charging stations is important for the popularization of electric vehicles (EVs). In this article, Gaussian two-step floating catchment area method and temporal clustering are adopted to study the unbalanced spatial and temporal distribution o...
Saved in:
Published in | Electric power components and systems Vol. 51; no. 12; pp. 1125 - 1141 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
21.07.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reasonable capacity expansion optimization of determined charging stations is important for the popularization of electric vehicles (EVs). In this article, Gaussian two-step floating catchment area method and temporal clustering are adopted to study the unbalanced spatial and temporal distribution of charging station accessibility, as well as to determine candidate sites for capacity expansion optimization. Then, a two-level optimization model for capacity expansion of determined charging stations is proposed to reduce the computational complexity caused by the non-linearity and non-convexity of choice probability formulas when the discrete choice model is applied to statistically describe and analyze discrete behaviors such as users' EV purchase preferences and charging station heterogeneity. In the proposed method, the lower-level model is described as a maximal coverage location problem by expressing the error term of the utility function as a linear combination of the random vectors from IID normal distribution and IID Gumbel distribution, which effectively simplifies the computing process. Finally, the two-level model can be transformed into an integer linear programming problem to optimize the capacity of determined charging stations. Experimental results show that the purchase rate of EVs is significantly improved, and the accessibility of charging stations during rush hours is more balanced than before. |
---|---|
AbstractList | Reasonable capacity expansion optimization of determined charging stations is important for the popularization of electric vehicles (EVs). In this article, Gaussian two-step floating catchment area method and temporal clustering are adopted to study the unbalanced spatial and temporal distribution of charging station accessibility, as well as to determine candidate sites for capacity expansion optimization. Then, a two-level optimization model for capacity expansion of determined charging stations is proposed to reduce the computational complexity caused by the non-linearity and non-convexity of choice probability formulas when the discrete choice model is applied to statistically describe and analyze discrete behaviors such as users’ EV purchase preferences and charging station heterogeneity. In the proposed method, the lower-level model is described as a maximal coverage location problem by expressing the error term of the utility function as a linear combination of the random vectors from IID normal distribution and IID Gumbel distribution, which effectively simplifies the computing process. Finally, the two-level model can be transformed into an integer linear programming problem to optimize the capacity of determined charging stations. Experimental results show that the purchase rate of EVs is significantly improved, and the accessibility of charging stations during rush hours is more balanced than before. |
Author | Zhao, Weifeng Lu, Yong Xu, Xianfeng Huang, Xinrong Liu, Zhuangzhuang |
Author_xml | – sequence: 1 givenname: Xianfeng surname: Xu fullname: Xu, Xianfeng organization: School of Energy & Electrical Engineering, Chang'an University – sequence: 2 givenname: Weifeng surname: Zhao fullname: Zhao, Weifeng organization: School of Energy & Electrical Engineering, Chang'an University – sequence: 3 givenname: Yong surname: Lu fullname: Lu, Yong organization: School of Energy & Electrical Engineering, Chang'an University – sequence: 4 givenname: Xinrong surname: Huang fullname: Huang, Xinrong organization: School of Energy & Electrical Engineering, Chang'an University – sequence: 5 givenname: Zhuangzhuang surname: Liu fullname: Liu, Zhuangzhuang organization: School of Highway, Chang'an University |
BookMark | eNp9kE1PxCAQhonRxF31J5iQeO4KtLT05lo_E80e1DOhFBTTQoX6UY_-cqm7evQ0M--882TyzsG2dVYBcIjRAiOGjjFNCUWILQgi6YLgEpOs2AKzSU8owvn2X4_YLpiH8IwQJmVJZuCrEr2QZhjh-UcvbDDOwlU_mM58imEanIZnalC-M1Y1sHoS_tHYR3g3_KwDPBUh6tG4lFKFYGrTTrSlFe0YTIDCNvC66717i7YzE6SPtMhxRip46xrV7oMdLdqgDjZ1DzxcnN9XV8nN6vK6Wt4kkrB8SGSe60IRKhESOq9JKYlkDWJZSUldFBlVus4wwaRJaVbrTLOyFg2umWrSshAq3QNHa2585uVVhYE_u1cf_wycMESLjFGWRxddu6R3IXilee9NJ_zIMeJT3Pw3bj7FzTdxx7uT9Z2x2vlOvDvfNnwQY-u89sJKE3j6P-IbtbKKSA |
Cites_doi | 10.1109/TITS.2021.3103419 10.1109/TITS.2021.3056146 10.1109/TITS.2016.2563166 10.1109/TTE.2020.2974179 10.1109/TII.2021.3114276 10.1016/j.jenvman.2020.110924 10.1109/TITS.2019.2919934 10.1016/j.energy.2022.125504 10.1080/13658816.2021.1978450 10.1016/j.tra.2021.07.009 10.1016/j.tra.2020.12.007 10.1016/j.energy.2021.120106 10.1109/TSTE.2016.2547891 10.1109/TVT.2020.2993509 10.1016/j.iedeen.2020.100138 10.1109/TPWRD.2020.3008924 10.1016/j.enbuild.2022.112417 10.1016/j.trb.2021.06.003 10.1016/j.apenergy.2021.117866 10.1109/TITS.2021.3125833 10.1109/TITS.2020.3001086 10.1016/j.energy.2021.121948 10.1016/j.scs.2019.101752 10.1287/trsc.2019.0970 10.1080/15389588.2020.1733539 10.1016/j.apenergy.2018.06.014 10.1016/j.trd.2020.102682 10.1016/j.jtrangeo.2021.103179 10.1016/j.trb.2021.02.003 10.1016/j.energy.2021.122261 10.1016/j.energy.2022.123724 10.13335/j.1000-3673.pst.2022.0427 10.1177/0160017615600222 10.1109/TITS.2020.3031965 10.1016/j.jocm.2021.100283 10.1109/TIA.2020.3024268 10.1016/j.epsr.2021.107391 10.1016/j.apenergy.2021.116515 10.1016/j.energy.2021.122136 10.1016/j.tranpol.2021.03.006 10.1016/j.tra.2021.06.017 10.1016/j.tra.2021.03.006 10.17775/CSEEJPES.2020.00850 10.1016/j.tele.2021.101646 10.1007/s10260-011-0183-y 10.1016/j.energy.2020.118375 10.1016/j.est.2020.101351 10.1016/j.ijepes.2021.106963 10.1017/CBO9780511805271 10.1016/j.scs.2021.103181 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
DOI | 10.1080/15325008.2023.2191247 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1532-5016 |
EndPage | 1141 |
ExternalDocumentID | 10_1080_15325008_2023_2191247 2191247 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 29G 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B FYQZC GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NX~ O9- PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SP 7TB 8FD FR3 KR7 L7M TASJS |
ID | FETCH-LOGICAL-c286t-c66f7e25c00af6b29c2c8d084952b7745efb41212d354bf4f89bad1b8ed397ae3 |
ISSN | 1532-5008 |
IngestDate | Wed Aug 13 09:47:51 EDT 2025 Tue Jul 01 03:31:38 EDT 2025 Wed Dec 25 09:04:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-c66f7e25c00af6b29c2c8d084952b7745efb41212d354bf4f89bad1b8ed397ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2805748586 |
PQPubID | 52905 |
PageCount | 17 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_15325008_2023_2191247 proquest_journals_2805748586 crossref_primary_10_1080_15325008_2023_2191247 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-21 |
PublicationDateYYYYMMDD | 2023-07-21 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Electric power components and systems |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0012 CIT0011 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0017 doi: 10.1109/TITS.2021.3103419 – ident: CIT0026 doi: 10.1109/TITS.2021.3056146 – ident: CIT0044 doi: 10.1109/TITS.2016.2563166 – ident: CIT0050 – ident: CIT0018 doi: 10.1109/TTE.2020.2974179 – ident: CIT0010 doi: 10.1109/TII.2021.3114276 – ident: CIT0023 doi: 10.1016/j.jenvman.2020.110924 – ident: CIT0009 doi: 10.1109/TITS.2019.2919934 – ident: CIT0019 doi: 10.1016/j.energy.2022.125504 – ident: CIT0038 doi: 10.1080/13658816.2021.1978450 – ident: CIT0035 doi: 10.1016/j.tra.2021.07.009 – ident: CIT0030 doi: 10.1016/j.tra.2020.12.007 – ident: CIT0011 doi: 10.1016/j.energy.2021.120106 – ident: CIT0006 doi: 10.1109/TSTE.2016.2547891 – ident: CIT0016 doi: 10.1109/TVT.2020.2993509 – ident: CIT0025 doi: 10.1016/j.iedeen.2020.100138 – ident: CIT0045 doi: 10.1109/TPWRD.2020.3008924 – ident: CIT0029 doi: 10.1016/j.enbuild.2022.112417 – ident: CIT0031 doi: 10.1016/j.trb.2021.06.003 – ident: CIT0003 doi: 10.1016/j.apenergy.2021.117866 – ident: CIT0015 doi: 10.1109/TITS.2021.3125833 – ident: CIT0013 doi: 10.1109/TITS.2020.3001086 – ident: CIT0001 doi: 10.1016/j.energy.2021.121948 – ident: CIT0040 doi: 10.1016/j.scs.2019.101752 – ident: CIT0036 doi: 10.1287/trsc.2019.0970 – ident: CIT0024 doi: 10.1080/15389588.2020.1733539 – ident: CIT0005 doi: 10.1016/j.apenergy.2018.06.014 – ident: CIT0004 doi: 10.1016/j.trd.2020.102682 – ident: CIT0039 doi: 10.1016/j.jtrangeo.2021.103179 – ident: CIT0047 doi: 10.1016/j.trb.2021.02.003 – ident: CIT0002 doi: 10.1016/j.energy.2021.122261 – ident: CIT0012 doi: 10.1016/j.energy.2022.123724 – ident: CIT0007 doi: 10.13335/j.1000-3673.pst.2022.0427 – ident: CIT0042 doi: 10.1177/0160017615600222 – ident: CIT0048 doi: 10.1109/TITS.2020.3031965 – ident: CIT0046 doi: 10.1016/j.jocm.2021.100283 – ident: CIT0052 doi: 10.1109/TIA.2020.3024268 – ident: CIT0041 doi: 10.1016/j.epsr.2021.107391 – ident: CIT0014 doi: 10.1016/j.apenergy.2021.116515 – ident: CIT0020 doi: 10.1016/j.energy.2021.122136 – ident: CIT0037 doi: 10.1016/j.tranpol.2021.03.006 – ident: CIT0028 doi: 10.1016/j.tra.2021.06.017 – ident: CIT0034 doi: 10.1016/j.tra.2021.03.006 – ident: CIT0032 doi: 10.17775/CSEEJPES.2020.00850 – ident: CIT0027 doi: 10.1016/j.tele.2021.101646 – ident: CIT0043 doi: 10.1007/s10260-011-0183-y – ident: CIT0051 – ident: CIT0022 doi: 10.1016/j.energy.2020.118375 – ident: CIT0021 doi: 10.1016/j.est.2020.101351 – ident: CIT0033 doi: 10.1016/j.ijepes.2021.106963 – ident: CIT0049 doi: 10.1017/CBO9780511805271 – ident: CIT0008 doi: 10.1016/j.scs.2021.103181 |
SSID | ssj0012992 |
Score | 2.306655 |
Snippet | Reasonable capacity expansion optimization of determined charging stations is important for the popularization of electric vehicles (EVs). In this article,... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1125 |
SubjectTerms | Accessibility capacity expansion charging station accessibility Clustering Convexity electric vehicle Electric vehicle charging Heterogeneity improved discrete choice model Integer programming Linear programming maximal coverage location problem Normal distribution Optimization Optimization models Statistical analysis Temporal distribution |
Title | Capacity Expansion Optimization of Determined Charging Stations Based on Accessibility Analysis and Improved Discrete Choice Model |
URI | https://www.tandfonline.com/doi/abs/10.1080/15325008.2023.2191247 https://www.proquest.com/docview/2805748586 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHVF6itEV74FYl2Otdd30MTVGEeFxa1XCxdu1dyQeSqjhSy5Hf1h_G7MveQASUixWNNpN15vO8PDOL0KuG5VIXAiJVCSEKJamaFMyMu-NJVutUUC5NvuPDx3xxTt-VrByNbqOqpXUnp_X3rX0l_yNVoIFcTZfsHSTbMwUCfAb5whUkDNd_kvEJWLrauNGn1_BQm7zX0SdQAV99b6VxBOe-3MUkcs1QJDeA29e_vQET1pjXBTN7bKIrlL0ZBpXYWmGbdYBl8xY0DHADPqvWaoPGl9uHxL49Uaetjy7NyWu2WH21tA10NjkfjUYHAZdrI9wSwKmVN54ufW1Ttxeqjcnv7eLPq4GyWPs8d9kurwLdJy9IZrKiriO617cQCyeJU8EqprkWzKCkWRqDkUQqFxxGFplviO_SrabB1VIa5ub3pmY3U1DX4N8cD7YwvP__xUT2hYupn6ga2FSGTeXZ3EM7BIIVMkY7s8X8y0X_NgtMPnFze93Nhk4ynrzeup8NH2ljgu5vHoN1g8520UMfv-CZA-MjNFLLx-hBNNXyCfoRYIl7WOIYlnil8QBLHGCJAyyxhSWGhRuwxAGWGOCEAyxxgCV2sMQWlk_R-dvTs5PFxB_1MakJz7tJnef6WBFWJ4nQuSRFTWreJBzCdyIhQmFKS5qCm9VkjEpNNS-kaFLJVQMOtVDZMzReAqafIywEJVJyTQotaKZgSUGzTDCIhChnUuyhafhzq0s30aX6o1j3UBGLoOpsKk27c2-q7C_fPQjyqrzi-FYRDkES7IXnL-66l310f3iMDtC4u1qrQ_CKO_nSg-4nZUqzeA |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLY4BmDgRhQKeGBtSXykzgiFqlxloEhslu3YEgJaRFMJGPnlPMcJKiDEwBz7ybH97ufvIbSf8US7VIGnqsFFYSS2jZR7uDsRUeNixYT28Y7LXtK9YWe3_HbiLYwvq_Q-tAtAEYWs9sztg9FVSdwBcClo7shXZhHaBJ4DJdWaRrM8TVq-iwGNep-ZBBC3JGCmgtMFc6pXPL-R-aKfvqCX_pDWhQrqLCFTLT5Untw3x7lumrdvuI7_-7tltFhaqPgwXKkVNGUHq2hhArdwDb23QcUasN_xyQtIEx9ww1cgex7LR5146PBxWWdjM-xT-r4XEr4Oef8RPgLdmWEYeFj0awwVuq-4QkjBsHgcwh0w7PgORBtQAzpDEGvYt297WEc3nZN-u9somzk0DBFJ3jBJ4lqWcBNFyiWapIYYkUUCHDSiwQbl1mkWgyLNKGfaMSdSrbJYC5uByaQs3UAzg-HAbiKsFCNaC0dSpxi1MCRllCoOti4TXKsaalZHKJ8CZoeMSyjUanOl31xZbm4NpZMHLfMiWOJCZxNJ_5hbr26FLNl_JIkAMxjWIpKtf5DeQ3Pd_uWFvDjtnW-jef_JR5VJXEcz-fPY7oA5lOvd4r5_AG9s_f4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86QfTgtzidmoPX1jZNu_Q498H8moIOvIWkTUDUbbgO1KN_uS9NK5siHnZu8kiTvO-X30PoJA0jqWMBnqoEF4USXzlxaODumBck2heUSRPvuO5F3T69eAjLasJxUVZpfGhtgSJyWW2Ye5TqsiLuFJgUFLdnCrNI4ALLgY6qL6KlyICHm1ccXu87kQDSlljIVPC5YE75iOcvMjPqaQa89JewzjVQZx3Jcu228OTJnWTSTT5-wDrO9XMbaK2wT3HDXqhNtKAGW2h1CrVwG302QcEmYL3j9hvIEhNuwzcgeV6KJ514qHGrqLJRKTYJfdMJCd_ZrP8Yn4HmTDEMbOTdGm197jsu8VEwrB3bYAcMaz2CYANqQGcIQg2b5m3PO6jfad83u07RysFJCIsyJ4kiXVckTDxP6EiSOCEJSz0G7hmRYIGGSkvqgxpNg5BKTTWLpUh9yVQKBpNQwS6qDIYDtYewEJRIyTSJtaCBgiExDQIRgqVLWShFFbnlCfKRRezgfgGEWm4uN5vLi82tonj6nHmWh0q07WvCg3_m1spLwQvmH3PCwAiGtbBofw7Sx2j5ttXhV-e9ywO0Yr6YkDLxa6iSvU7UIdhCmTzKb_sXTmv8og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Capacity+Expansion+Optimization+of+Determined+Charging+Stations+Based+on+Accessibility+Analysis+and+Improved+Discrete+Choice+Model&rft.jtitle=Electric+power+components+and+systems&rft.au=Xu%2C+Xianfeng&rft.au=Zhao%2C+Weifeng&rft.au=Lu%2C+Yong&rft.au=Huang%2C+Xinrong&rft.date=2023-07-21&rft.issn=1532-5008&rft.eissn=1532-5016&rft.volume=51&rft.issue=12&rft.spage=1125&rft.epage=1141&rft_id=info:doi/10.1080%2F15325008.2023.2191247&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_15325008_2023_2191247 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-5008&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-5008&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-5008&client=summon |