T Cell-Mediated Antitumor Immunity Cooperatively Induced By TGFβR1 Antagonism and Gemcitabine Counteracts Reformation of the Stromal Barrier in Pancreatic Cancer
The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemother...
Saved in:
Published in | Molecular cancer therapeutics Vol. 20; no. 10; pp. 1926 - 1940 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemotherapeutic drugs were coadministered with antistromal therapies did not universally demonstrate increased genotoxicity despite increased intratumoral drug levels. In this study, we tested whether TGFβ antagonism can break the stromal barrier, enhance perfusion and tumoral drug delivery, and interrogated cellular and molecular mechanisms by which the tumor prevents synergism with coadministered gemcitabine. TGFβ inhibition in genetically engineered murine models (GEMM) of pancreas cancer enhanced tumoral perfusion and increased intratumoral gemcitabine levels. However, tumors rapidly adapted to TGFβ-dependent stromal modulation, and intratumoral perfusion returned to pre-treatment levels upon extended TGFβ inhibition. Perfusion was governed by the phenotypic identity and distribution of cancer-associated fibroblasts (CAF) with the myelofibroblastic phenotype (myCAFs), and myCAFs which harbored unique genomic signatures rapidly escaped the restricting effects of TGFβ inhibition. Despite the reformation of the stromal barrier and reversal of initially increased intratumoral exposure levels, TGFβ inhibition in cooperation with gemcitabine effectively suppressed tumor growth via cooperative reprogramming of T regulatory cells and stimulation of CD8 T cell-mediated antitumor activity. The antitumor activity was further improved by the addition of anti-PD-L1 immune checkpoint blockade to offset adaptive PD-L1 upregulation induced by TGFβ inhibition. These findings support the development of combined antistroma anticancer therapies capable of impacting the tumor beyond the disruption of the desmoplastic stroma as a physical barrier to improve drug delivery. |
---|---|
AbstractList | The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to increase delivery of administered chemotherapy have not shown positive clinical results thus far, and preclinical reports in which chemotherapeutic drugs were coadministered with antistromal therapies did not universally demonstrate increased genotoxicity despite increased intratumoral drug levels. In this study, we tested whether TGFβ antagonism can break the stromal barrier, enhance perfusion and tumoral drug delivery, and interrogated cellular and molecular mechanisms by which the tumor prevents synergism with coadministered gemcitabine. TGFβ inhibition in genetically engineered murine models (GEMM) of pancreas cancer enhanced tumoral perfusion and increased intratumoral gemcitabine levels. However, tumors rapidly adapted to TGFβ-dependent stromal modulation, and intratumoral perfusion returned to pre-treatment levels upon extended TGFβ inhibition. Perfusion was governed by the phenotypic identity and distribution of cancer-associated fibroblasts (CAF) with the myelofibroblastic phenotype (myCAFs), and myCAFs which harbored unique genomic signatures rapidly escaped the restricting effects of TGFβ inhibition. Despite the reformation of the stromal barrier and reversal of initially increased intratumoral exposure levels, TGFβ inhibition in cooperation with gemcitabine effectively suppressed tumor growth via cooperative reprogramming of T regulatory cells and stimulation of CD8 T cell-mediated antitumor activity. The antitumor activity was further improved by the addition of anti-PD-L1 immune checkpoint blockade to offset adaptive PD-L1 upregulation induced by TGFβ inhibition. These findings support the development of combined antistroma anticancer therapies capable of impacting the tumor beyond the disruption of the desmoplastic stroma as a physical barrier to improve drug delivery. |
Author | Zhao, Yongmei Mehta, Monika Rudloff, Udo Bautista, Wendy Schlomer, Jerome J Ock, Chan-Young Schaub, Nicholas Chen, Vicky Bapiro, Tashinga E Gilbert, Debra J Sorber, Rebecca Kozlov, Serguei Guerin, Theresa M Richards, Frances M Talsania, Keyur Kumar, Parimal Kim, Seong-Jin Palena, Claudia Teper, Yaroslav Pate, Nathan Li, Dandan Jodrell, Duncan I |
Author_xml | – sequence: 1 givenname: Dandan surname: Li fullname: Li, Dandan organization: Thoracic & GI Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland – sequence: 2 givenname: Nicholas surname: Schaub fullname: Schaub, Nicholas organization: Leonard Lawson Cancer Center, Pikeville Medical Center, Pikeville, Kentucky – sequence: 3 givenname: Theresa M surname: Guerin fullname: Guerin, Theresa M organization: Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland – sequence: 4 givenname: Tashinga E surname: Bapiro fullname: Bapiro, Tashinga E organization: DMPK, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom – sequence: 5 givenname: Frances M orcidid: 0000-0001-7947-7853 surname: Richards fullname: Richards, Frances M organization: Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom – sequence: 6 givenname: Vicky orcidid: 0000-0003-4595-154X surname: Chen fullname: Chen, Vicky organization: CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland – sequence: 7 givenname: Keyur surname: Talsania fullname: Talsania, Keyur organization: CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland – sequence: 8 givenname: Parimal surname: Kumar fullname: Kumar, Parimal organization: Sequencing Facility & Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland – sequence: 9 givenname: Debra J orcidid: 0000-0001-5296-7377 surname: Gilbert fullname: Gilbert, Debra J organization: Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland – sequence: 10 givenname: Jerome J surname: Schlomer fullname: Schlomer, Jerome J organization: Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland – sequence: 11 givenname: Seong-Jin surname: Kim fullname: Kim, Seong-Jin organization: GILO Institute, GILO Foundation, Seoul, Korea – sequence: 12 givenname: Rebecca surname: Sorber fullname: Sorber, Rebecca organization: Department of Surgery, The Johns Hopkins Hospital, Johns Hopkins University, Baltimore, Maryland – sequence: 13 givenname: Yaroslav surname: Teper fullname: Teper, Yaroslav organization: Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California – sequence: 14 givenname: Wendy surname: Bautista fullname: Bautista, Wendy organization: Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland – sequence: 15 givenname: Claudia surname: Palena fullname: Palena, Claudia organization: Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland – sequence: 16 givenname: Chan-Young surname: Ock fullname: Ock, Chan-Young organization: Department of Hematology & Oncology, Seoul National University Hospital, Seoul, Korea – sequence: 17 givenname: Duncan I orcidid: 0000-0001-9360-1670 surname: Jodrell fullname: Jodrell, Duncan I organization: Department of Oncology, University of Cambridge, Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Cambridge, United Kingdom – sequence: 18 givenname: Nathan orcidid: 0000-0003-0409-4190 surname: Pate fullname: Pate, Nathan organization: Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland – sequence: 19 givenname: Monika surname: Mehta fullname: Mehta, Monika organization: Sequencing Facility & Single Cell Analysis Facility, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland – sequence: 20 givenname: Yongmei orcidid: 0000-0003-0800-4658 surname: Zhao fullname: Zhao, Yongmei organization: CCR-SF Bioinformatics Group, Advanced Biomedical and Computational Sciences, Biomedical Informatics and Data Science, Advanced Technology Research Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland – sequence: 21 givenname: Serguei surname: Kozlov fullname: Kozlov, Serguei email: kozlovse@mail.nih.gov, rudloffu@mail.nih.gov organization: Center for Advanced Preclinical Research, Frederick National Laboratories for Cancer Research, NCI, Frederick, Maryland. kozlovse@mail.nih.gov rudloffu@mail.nih.gov – sequence: 22 givenname: Udo orcidid: 0000-0003-2137-9040 surname: Rudloff fullname: Rudloff, Udo email: kozlovse@mail.nih.gov, rudloffu@mail.nih.gov organization: Surgery Branch, Center for Cancer Research, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34376576$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kF1O3DAUha2Kqvy0SwB5AwH_xBnPI0QwjARqBcNz5NjX1FVsjxyn0mynS2AhrAmHgT7do6vznYfvGB2EGAChU0rOKRXyggouqgVt-Pl9u6kYqUjDyBd0VP6ykoLWB-953zlEx-P4hxAql4x-Q4e85otGLJoj9G-DWxiG6h6MUxkMvgzZ5cnHhNfeT8HlHW5j3EJS2f2FYYfXwUy6FK92eLO6eX15oDOjnmNwo8cqGLwCr11WvQtQ2CnkAus84gewMfmyEwOOFuffgB9zil4N-Eql5CBhF_AvFXSC0tK4LRHSd_TVqmGEHx_3BD3dXG_a2-ru52rdXt5VmskmV5qzWoilEVwxzYyuAYysm97Uamk1aYQB1hhleyukFkAUWFFLsLyXC9CU8BMk9rs6xXFMYLttcl6lXUdJNzvvZp_d7LMrzjtGutl54c723HbqPZj_1Kdk_gbCfoO9 |
CitedBy_id | crossref_primary_10_1016_j_biopha_2024_117045 crossref_primary_10_3389_fgene_2023_1029758 crossref_primary_10_1080_14728214_2022_2134346 crossref_primary_10_1016_j_pharmthera_2022_108111 crossref_primary_10_1038_s41419_022_05351_1 crossref_primary_10_1053_j_gastro_2023_05_038 crossref_primary_10_1016_j_ebiom_2022_104380 crossref_primary_10_1016_j_cyto_2022_156008 crossref_primary_10_3389_fphar_2022_1035954 crossref_primary_10_3389_fimmu_2022_887380 |
Cites_doi | 10.1101/gad.1475506 10.1158/0008-5472.CAN-17-3841 10.17140/POJ-3-e010 10.1111/imm.13067 10.1158/2159-8290.CD-19-0094 10.1016/j.celrep.2019.07.092 10.1158/0008-5472.CAN-12-0634 10.1158/2159-8290.CD-12-0558 10.1021/acs.analchem.6b01167 10.1158/1535-7163.MCT-18-0850 10.1200/JCO.2015.62.8719 10.1073/pnas.1300415110 10.1056/NEJMoa1304369 10.1007/s00441-016-2467-x 10.1038/s41467-020-18919-2 10.4049/jimmunol.1200266 10.1073/pnas.0611660104 10.1101/gad.1158703 10.1111/imr.12519 10.1016/j.ccr.2014.04.021 10.1084/jem.20131916 10.1126/science.1171362 10.1080/2162402X.2017.1349589 10.1038/s41467-019-13100-w 10.1101/cshperspect.a028480 10.1097/CJI.0b013e318189f13c 10.1158/2159-8290.CD-18-0710 10.1038/nature19364 10.1158/2159-8290.CD-19-1353 10.1056/NEJMoa1011923 10.1038/ng1001-117 10.1016/j.ccr.2012.01.007 10.1038/s41586-019-1130-6 10.15252/emmm.201910515 10.1172/JCI125890 10.1097/MPA.0000000000000458 10.1101/gad.1478706 10.2217/fon.13.76 10.3892/ol.2016.5451 10.1158/2159-8290.CD-19-0644 10.1158/2159-8290.CD-19-0958 10.3322/caac.21590 10.1136/gutjnl-2018-316451 10.1038/nrc.2017.93 10.1073/pnas.1919764117 10.1158/0008-5472.CAN-14-0155 10.1016/j.ccr.2005.04.023 10.1158/1078-0432.CCR-11-3114 10.1073/pnas.0609635104 10.4049/jimmunol.0803829 10.1016/j.jmb.2019.12.001 10.1038/s41467-017-01018-0 |
ContentType | Journal Article |
Copyright | 2021 The Authors; Published by the American Association for Cancer Research. |
Copyright_xml | – notice: 2021 The Authors; Published by the American Association for Cancer Research. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1158/1535-7163.MCT-20-0620 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-8514 |
EndPage | 1940 |
ExternalDocumentID | 10_1158_1535_7163_MCT_20_0620 34376576 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 CA999999 – fundername: Cancer Research UK grantid: C14303/A17197 – fundername: Intramural NIH HHS grantid: ZIA BC011267 – fundername: Cancer Research UK grantid: 15678 |
GroupedDBID | --- .55 123 18M 2FS 2WC 34G 39C 3O- 53G 5RE 5VS AAJMC ABOCM ACGFO ACIWK ACPRK ADBBV ADCOW AENEX AFHIN AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BR6 BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P GX1 H13 H~9 IH2 KQ8 L7B MVM NPM OK1 P2P QTD RCR RHF RHI TR2 W8F WHG WOQ X7M YBU ZGI ZXP AAYXX CITATION |
ID | FETCH-LOGICAL-c286t-c324559d53a2c2dc4eed846bd4a9fc065de26dafbf58c5e0aef548ef3b87ec103 |
ISSN | 1535-7163 |
IngestDate | Thu Nov 21 23:37:43 EST 2024 Sat Nov 02 12:28:56 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2021 The Authors; Published by the American Association for Cancer Research. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-c324559d53a2c2dc4eed846bd4a9fc065de26dafbf58c5e0aef548ef3b87ec103 |
ORCID | 0000-0003-4595-154X 0000-0001-7947-7853 0000-0001-5296-7377 0000-0003-0800-4658 0000-0003-2137-9040 0000-0001-9360-1670 0000-0003-0409-4190 |
OpenAccessLink | https://aacrjournals.org/mct/article-pdf/20/10/1926/3083652/1926.pdf |
PMID | 34376576 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1158_1535_7163_MCT_20_0620 pubmed_primary_34376576 |
PublicationCentury | 2000 |
PublicationDate | 2021-10-00 2021-10-01 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cancer therapeutics |
PublicationTitleAlternate | Mol Cancer Ther |
PublicationYear | 2021 |
References | Noman (2022082317323006200_bib19) 2014; 211 Siegel (2022082317323006200_bib3) 2020; 70 Biffi (2022082317323006200_bib29) 2019; 9 Zhang (2022082317323006200_bib50) 2020; 10 Shi (2022082317323006200_bib15) 2019; 569 Ock (2022082317323006200_bib27) 2017; 8 Hingorani (2022082317323006200_bib21) 2005; 7 Eil (2022082317323006200_bib17) 2016; 537 Neesse (2022082317323006200_bib7) 2019; 68 Olive (2022082317323006200_bib8) 2009; 324 Mehvar (2022082317323006200_bib28) 1997; 25 David (2022082317323006200_bib54) 2017; 6 Ijichi (2022082317323006200_bib45) 2006; 20 Hezel (2022082317323006200_bib47) 2012; 72 Pelham (2022082317323006200_bib31) 2006; 103 Wang (2022082317323006200_bib18) 2018; 78 Du (2022082317323006200_bib33) 2017; 13 Bordignon (2022082317323006200_bib37) 2019; 28 Helms (2022082317323006200_bib43) 2020; 10 Chang (2022082317323006200_bib53) 2012; 189 Aguirre (2022082317323006200_bib20) 2003; 17 Derynck (2022082317323006200_bib44) 2001; 29 Bardelli (2022082317323006200_bib34) 2013; 3 Gowrisankaran (2022082317323006200_bib38) 2020; 432 Elyada (2022082317323006200_bib25) 2019; 9 Primac (2022082317323006200_bib36) 2019; 129 Bardeesy (2022082317323006200_bib46) 2006; 20 Rahib (2022082317323006200_bib2) 2014; 74 Von Hoff (2022082317323006200_bib5) 2013; 369 Neesse (2022082317323006200_bib14) 2013; 110 Feig (2022082317323006200_bib6) 2012; 18 Rhim (2022082317323006200_bib12) 2014; 25 Ko (2022082317323006200_bib11) 2016; 45 Yano (2022082317323006200_bib51) 2019; 157 Moo-Young (2022082317323006200_bib49) 2009; 32 Mpekris (2022082317323006200_bib16) 2020; 117 Katarkar (2022082317323006200_bib32) 2020; 11 Provenzano (2022082317323006200_bib9) 2012; 21 Kuzet (2022082317323006200_bib35) 2016; 365 Huang (2022082317323006200_bib48) 2019; 11 Becht (2022082317323006200_bib24) 2018 Niknafs (2022082317323006200_bib26) 2019; 10 Kano (2022082317323006200_bib22) 2007; 104 Bapiro (2022082317323006200_bib23) 2016; 88 Principe (2022082317323006200_bib41) 2019; 18 Dewhirst (2022082317323006200_bib42) 2017; 17 Ma (2022082317323006200_bib1) 2013; 9 Hakim (2022082317323006200_bib13) 2019; 3 Dominguez (2022082317323006200_bib30) 2020; 10 Alspach (2022082317323006200_bib40) 2019; 11 Andrews (2022082317323006200_bib52) 2017; 276 Catenacci (2022082317323006200_bib10) 2015; 33 Lin (2022082317323006200_bib39) 2009; 182 Conroy (2022082317323006200_bib4) 2011; 364 |
References_xml | – volume: 20 start-page: 3147 year: 2006 ident: 2022082317323006200_bib45 article-title: Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression publication-title: Genes Dev doi: 10.1101/gad.1475506 contributor: fullname: Ijichi – volume: 78 start-page: 4586 year: 2018 ident: 2022082317323006200_bib18 article-title: Hypoxic tumor-derived exosomal miR-301a mediates M2 macrophage polarization via PTEN/PI3Kgamma to promote pancreatic cancer metastasis publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-3841 contributor: fullname: Wang – volume: 3 start-page: e1 year: 2019 ident: 2022082317323006200_bib13 article-title: Why HALO 301 failed and implications for treatment of pancreatic cancer publication-title: Pancreas doi: 10.17140/POJ-3-e010 contributor: fullname: Hakim – volume: 157 start-page: 232 year: 2019 ident: 2022082317323006200_bib51 article-title: Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity publication-title: Immunology doi: 10.1111/imm.13067 contributor: fullname: Yano – volume: 9 start-page: 1102 year: 2019 ident: 2022082317323006200_bib25 article-title: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-0094 contributor: fullname: Elyada – volume: 28 start-page: 2358 year: 2019 ident: 2022082317323006200_bib37 article-title: Dualism of FGF and TGF-beta signaling in heterogeneous cancer-associated fibroblast activation with ETV1 as a critical determinant publication-title: Cell Rep doi: 10.1016/j.celrep.2019.07.092 contributor: fullname: Bordignon – volume: 72 start-page: 4840 year: 2012 ident: 2022082317323006200_bib47 article-title: TGF-beta and alphavbeta6 integrin act in a common pathway to suppress pancreatic cancer progression publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-0634 contributor: fullname: Hezel – volume: 3 start-page: 658 year: 2013 ident: 2022082317323006200_bib34 article-title: Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0558 contributor: fullname: Bardelli – volume: 88 start-page: 6190 year: 2016 ident: 2022082317323006200_bib23 article-title: Understanding the complexity of porous graphitic carbon (PGC) chromatography: modulation of mobile-stationary phase interactions overcomes loss of retention and reduces variability publication-title: Anal Chem doi: 10.1021/acs.analchem.6b01167 contributor: fullname: Bapiro – volume: 18 start-page: 613 year: 2019 ident: 2022082317323006200_bib41 article-title: TGFbeta blockade augments PD-1 inhibition to promote T-cell-mediated regression of pancreatic cancer publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-18-0850 contributor: fullname: Principe – volume: 33 start-page: 4284 year: 2015 ident: 2022082317323006200_bib10 article-title: Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer publication-title: J Clin Oncol doi: 10.1200/JCO.2015.62.8719 contributor: fullname: Catenacci – volume: 110 start-page: 12325 year: 2013 ident: 2022082317323006200_bib14 article-title: CTGF antagonism with mAb FG-3019 enhances chemotherapy response without increasing drug delivery in murine ductal pancreas cancer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1300415110 contributor: fullname: Neesse – volume: 369 start-page: 1691 year: 2013 ident: 2022082317323006200_bib5 article-title: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine publication-title: N Engl J Med doi: 10.1056/NEJMoa1304369 contributor: fullname: Von Hoff – volume: 365 start-page: 607 year: 2016 ident: 2022082317323006200_bib35 article-title: Fibroblast activation in cancer: when seed fertilizes soil publication-title: Cell Tissue Res doi: 10.1007/s00441-016-2467-x contributor: fullname: Kuzet – volume: 11 start-page: 5126 year: 2020 ident: 2022082317323006200_bib32 article-title: NOTCH1 gene amplification promotes expansion of cancer associated fibroblast populations in human skin publication-title: Nat Commun doi: 10.1038/s41467-020-18919-2 contributor: fullname: Katarkar – volume: 189 start-page: 567 year: 2012 ident: 2022082317323006200_bib53 article-title: The indispensable role of CCR5 for in vivo suppressor function of tumor-derived CD103+ effector/memory regulatory T cells publication-title: J Immunol doi: 10.4049/jimmunol.1200266 contributor: fullname: Chang – volume: 104 start-page: 3460 year: 2007 ident: 2022082317323006200_bib22 article-title: Improvement of cancer-targeting therapy, using nanocarriers for intracSupplementary table solid tumors by inhibition of TGF-beta signaling publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0611660104 contributor: fullname: Kano – volume: 17 start-page: 3112 year: 2003 ident: 2022082317323006200_bib20 article-title: Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma publication-title: Genes Dev doi: 10.1101/gad.1158703 contributor: fullname: Aguirre – volume: 276 start-page: 80 year: 2017 ident: 2022082317323006200_bib52 article-title: LAG3 (CD223) as a cancer immunotherapy target publication-title: Immunol Rev doi: 10.1111/imr.12519 contributor: fullname: Andrews – volume: 25 start-page: 735 year: 2014 ident: 2022082317323006200_bib12 article-title: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.04.021 contributor: fullname: Rhim – volume: 211 start-page: 781 year: 2014 ident: 2022082317323006200_bib19 article-title: PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation publication-title: J Exp Med doi: 10.1084/jem.20131916 contributor: fullname: Noman – volume: 324 start-page: 1457 year: 2009 ident: 2022082317323006200_bib8 article-title: Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer publication-title: Science doi: 10.1126/science.1171362 contributor: fullname: Olive – volume: 6 start-page: e1349589 year: 2017 ident: 2022082317323006200_bib54 article-title: A novel bifunctional anti-PD-L1/TGF-beta Trap fusion protein (M7824) efficiently reverts mesenchymalization of human lung cancer cells publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1349589 contributor: fullname: David – volume: 10 start-page: 5435 year: 2019 ident: 2022082317323006200_bib26 article-title: Characterization of genetic subclonal evolution in pancreatic cancer mouse models publication-title: Nat Commun doi: 10.1038/s41467-019-13100-w contributor: fullname: Niknafs – volume: 11 start-page: a028480 year: 2019 ident: 2022082317323006200_bib40 article-title: Interferon gamma and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a028480 contributor: fullname: Alspach – volume: 32 start-page: 12 year: 2009 ident: 2022082317323006200_bib49 article-title: Tumor-derived TGF-beta mediates conversion of CD4+Foxp3+ regulatory T cells in a murine model of pancreas cancer publication-title: J Immunother doi: 10.1097/CJI.0b013e318189f13c contributor: fullname: Moo-Young – volume: 9 start-page: 282 year: 2019 ident: 2022082317323006200_bib29 article-title: IL1-induced JAK/STAT signaling is antagonized by TGFbeta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-18-0710 contributor: fullname: Biffi – volume: 537 start-page: 539 year: 2016 ident: 2022082317323006200_bib17 article-title: Ionic immune suppression within the tumour microenvironment limits T cell effector function publication-title: Nature doi: 10.1038/nature19364 contributor: fullname: Eil – year: 2018 ident: 2022082317323006200_bib24 article-title: Dimensionality reduction for visualizing single-cell data using UMAP publication-title: Nat Biotechnol contributor: fullname: Becht – volume: 10 start-page: 648 year: 2020 ident: 2022082317323006200_bib43 article-title: Fibroblast heterogeneity in the pancreatic tumor microenvironment publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-1353 contributor: fullname: Helms – volume: 364 start-page: 1817 year: 2011 ident: 2022082317323006200_bib4 article-title: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer publication-title: N Engl J Med doi: 10.1056/NEJMoa1011923 contributor: fullname: Conroy – volume: 29 start-page: 117 year: 2001 ident: 2022082317323006200_bib44 article-title: TGF-beta signaling in tumor suppression and cancer progression publication-title: Nat Genet doi: 10.1038/ng1001-117 contributor: fullname: Derynck – volume: 21 start-page: 418 year: 2012 ident: 2022082317323006200_bib9 article-title: Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.01.007 contributor: fullname: Provenzano – volume: 569 start-page: 131 year: 2019 ident: 2022082317323006200_bib15 article-title: Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring publication-title: Nature doi: 10.1038/s41586-019-1130-6 contributor: fullname: Shi – volume: 11 start-page: e10515 year: 2019 ident: 2022082317323006200_bib48 article-title: Targeting TGFbetaR2-mutant tumors exposes vulnerabilities to stromal TGFbeta blockade in pancreatic cancer publication-title: EMBO Mol Med doi: 10.15252/emmm.201910515 contributor: fullname: Huang – volume: 129 start-page: 4609 year: 2019 ident: 2022082317323006200_bib36 article-title: Stromal integrin alpha11 regulates PDGFR-beta signaling and promotes breast cancer progression publication-title: J Clin Invest doi: 10.1172/JCI125890 contributor: fullname: Primac – volume: 45 start-page: 370 year: 2016 ident: 2022082317323006200_bib11 article-title: A phase I study of FOLFIRINOX plus IPI-926, a hedgehog pathway inhibitor, for advanced pancreatic adenocarcinoma publication-title: Pancreas doi: 10.1097/MPA.0000000000000458 contributor: fullname: Ko – volume: 20 start-page: 3130 year: 2006 ident: 2022082317323006200_bib46 article-title: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer publication-title: Genes Dev doi: 10.1101/gad.1478706 contributor: fullname: Bardeesy – volume: 9 start-page: 917 year: 2013 ident: 2022082317323006200_bib1 article-title: The rise and fall of cancer mortality in the USA: why does pancreatic cancer not follow the trend? publication-title: Future Oncol doi: 10.2217/fon.13.76 contributor: fullname: Ma – volume: 13 start-page: 3 year: 2017 ident: 2022082317323006200_bib33 article-title: Genetic alterations and epigenetic alterations of cancer-associated fibroblasts publication-title: Oncol Lett doi: 10.3892/ol.2016.5451 contributor: fullname: Du – volume: 10 start-page: 232 year: 2020 ident: 2022082317323006200_bib30 article-title: Single-cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts as a determinant of patient response to cancer immunotherapy publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-0644 contributor: fullname: Dominguez – volume: 10 start-page: 422 year: 2020 ident: 2022082317323006200_bib50 article-title: Regulatory T-cell depletion alters the tumor microenvironment and accelerates pancreatic carcinogenesis publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-19-0958 contributor: fullname: Zhang – volume: 70 start-page: 7 year: 2020 ident: 2022082317323006200_bib3 article-title: Cancer statistics, 2020 publication-title: CA Cancer J Clin doi: 10.3322/caac.21590 contributor: fullname: Siegel – volume: 68 start-page: 159 year: 2019 ident: 2022082317323006200_bib7 article-title: Stromal biology and therapy in pancreatic cancer: ready for clinical translation? publication-title: Gut doi: 10.1136/gutjnl-2018-316451 contributor: fullname: Neesse – volume: 17 start-page: 738 year: 2017 ident: 2022082317323006200_bib42 article-title: Transport of drugs from blood vessels to tumour tissue publication-title: Nat Rev Cancer doi: 10.1038/nrc.2017.93 contributor: fullname: Dewhirst – volume: 117 start-page: 3728 year: 2020 ident: 2022082317323006200_bib16 article-title: Combining microenvironment normalization strategies to improve cancer immunotherapy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1919764117 contributor: fullname: Mpekris – volume: 74 start-page: 2913 year: 2014 ident: 2022082317323006200_bib2 article-title: Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0155 contributor: fullname: Rahib – volume: 7 start-page: 469 year: 2005 ident: 2022082317323006200_bib21 article-title: Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2005.04.023 contributor: fullname: Hingorani – volume: 18 start-page: 4266 year: 2012 ident: 2022082317323006200_bib6 article-title: The pancreas cancer microenvironment publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-3114 contributor: fullname: Feig – volume: 25 start-page: 552 year: 1997 ident: 2022082317323006200_bib28 article-title: Kinetics of hepatic accumulation of dextrans in isolated perfused rat livers publication-title: Drug Metab Dispos contributor: fullname: Mehvar – volume: 103 start-page: 19848 year: 2006 ident: 2022082317323006200_bib31 article-title: Identification of alterations in DNA copy number in host stromal cells during tumor progression publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0609635104 contributor: fullname: Pelham – volume: 182 start-page: 6095 year: 2009 ident: 2022082317323006200_bib39 article-title: Effector/memory but not naive regulatory T cells are responsible for the loss of concomitant tumor immunity publication-title: J Immunol doi: 10.4049/jimmunol.0803829 contributor: fullname: Lin – volume: 432 start-page: 1235 year: 2020 ident: 2022082317323006200_bib38 article-title: Cells control BIN1-mediated membrane tubulation by altering the membrane charge publication-title: J Mol Biol doi: 10.1016/j.jmb.2019.12.001 contributor: fullname: Gowrisankaran – volume: 8 start-page: 1050 year: 2017 ident: 2022082317323006200_bib27 article-title: Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers publication-title: Nat Commun doi: 10.1038/s41467-017-01018-0 contributor: fullname: Ock |
SSID | ssj0018921 |
Score | 2.4798012 |
Snippet | The desmoplastic stroma of pancreatic cancers forms a physical barrier that impedes intratumoral drug delivery. Attempts to modulate the desmoplastic stroma to... |
SourceID | crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 1926 |
SubjectTerms | Animals Antimetabolites, Antineoplastic - pharmacology Apoptosis Carcinoma, Pancreatic Ductal - drug therapy Carcinoma, Pancreatic Ductal - immunology Carcinoma, Pancreatic Ductal - metabolism Carcinoma, Pancreatic Ductal - pathology CD8-Positive T-Lymphocytes - drug effects CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - metabolism Cell Proliferation Combined Modality Therapy Deoxycytidine - analogs & derivatives Deoxycytidine - pharmacology Gemcitabine Humans Mice Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - immunology Pancreatic Neoplasms - metabolism Pancreatic Neoplasms - pathology Receptor, Transforming Growth Factor-beta Type I - antagonists & inhibitors Stromal Cells - drug effects Stromal Cells - immunology Stromal Cells - metabolism Tumor Cells, Cultured Tumor Microenvironment Xenograft Model Antitumor Assays |
Title | T Cell-Mediated Antitumor Immunity Cooperatively Induced By TGFβR1 Antagonism and Gemcitabine Counteracts Reformation of the Stromal Barrier in Pancreatic Cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34376576 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LbptAFIZHbipF2VS9N71pFs0K4cIwg2EZ08RJW3fhECk7NMwMqSXbWBQv3MfpI_QB-gh9pp6B4eLKldpuLAvwIPn_GP4D58xB6E0WKOoKmdlu4CibCkltcAkjm3twf_AYKJ5W2Raf_Itr-v6G3QwGP3pZS5syHYqve-tK_kdV2Aa66irZf1C2HRQ2wHfQFz5BYfj8O42tSC0W9rRqtwHO8VTX3G6WeWFdVmUfpb7e87WqV_debC3dqEO_8B9vrXhyfhKdnYzJzNW_47dwcZt-GRO1FPOSp9qA6pp1XaSscz5mqi11bFILrsoiX4LKY15Ure_mMKUCR5UTFVakkSr6_nfadOPV2Wawz-rVf7Xu_mNT_C47dK_EZ75JDbs6Hm-Pnmx0BWOd7KQK9YV3D3jHfD2v63jiumcUN4UX5jEHcduEObhLdVMz-EPan7uJ02fU6c3E4Fz9_bcIpsseYDRmQ6zoDadRDFDZjl-P1cNmvay48ShMwmz024LdxgLUu-6gu3ohRt274d3lh_YtVhAS11SNwVnf7j3nETpsRtmxRjtBTmV24vvonolS8GmN3AM0UKuH6HBq8jAeoW8x3iEPt-Thhjy8Qx425OHxFgN5P7_PXNxRh0Fq3KMO96jDPepwnmEABhvqsKEOz1e4ow7X1D1G1-dncXRhm24ftiCBX9oCrD2Et5J5nAgiBQX3BuY4lZSHmQCnLBXxJc_SjAWCKYerDKJtlXlpMFLCdbwn6GCVr9QzhBmVMuSMKi-jlJMwJcwLnTCl1JdOIINjNGz-6GRdL-qSVMEwCxItUqJFSkCkhDiJFukYPa3laA9vNHv-xz0v0FHH8Ut0UBYb9QoMbJm-rij5BWppnXA |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=T+Cell-Mediated+Antitumor+Immunity+Cooperatively+Induced+By+TGF%CE%B2R1+Antagonism+and+Gemcitabine+Counteracts+Reformation+of+the+Stromal+Barrier+in+Pancreatic+Cancer&rft.jtitle=Molecular+cancer+therapeutics&rft.au=Li%2C+Dandan&rft.au=Schaub%2C+Nicholas&rft.au=Guerin%2C+Theresa+M&rft.au=Bapiro%2C+Tashinga+E&rft.date=2021-10-01&rft.eissn=1538-8514&rft.volume=20&rft.issue=10&rft.spage=1926&rft_id=info:doi/10.1158%2F1535-7163.MCT-20-0620&rft_id=info%3Apmid%2F34376576&rft.externalDocID=34376576 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-7163&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-7163&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-7163&client=summon |