Jump-robust volatility estimation using dynamic dual-domain integration method

In this paper, we propose a nonparametric procedure to estimate the volatility when the underlying price process is governed by Brownian semimartingale with jumps. The estimator combines the threshold technique and dynamic dual-domain integration approach for volatility when the price process is dri...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 50; no. 5; pp. 1250 - 1273
Main Authors Ye, Xu-Guo, Zhao, Yan-Yong
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 04.03.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a nonparametric procedure to estimate the volatility when the underlying price process is governed by Brownian semimartingale with jumps. The estimator combines the threshold technique and dynamic dual-domain integration approach for volatility when the price process is driven only by diffusions without jumps. The proposed estimator is consistent and asymptotically normal. A simulation study shows that the proposed estimator exhibits excellent performance over a wide range of jump sizes and for different finite sampling frequencies. A real data application is given to illustrate the potential applications of the proposed method.
AbstractList In this paper, we propose a nonparametric procedure to estimate the volatility when the underlying price process is governed by Brownian semimartingale with jumps. The estimator combines the threshold technique and dynamic dual-domain integration approach for volatility when the price process is driven only by diffusions without jumps. The proposed estimator is consistent and asymptotically normal. A simulation study shows that the proposed estimator exhibits excellent performance over a wide range of jump sizes and for different finite sampling frequencies. A real data application is given to illustrate the potential applications of the proposed method.
Author Ye, Xu-Guo
Zhao, Yan-Yong
Author_xml – sequence: 1
  givenname: Xu-Guo
  surname: Ye
  fullname: Ye, Xu-Guo
  email: yexuguo522@126.com
  organization: School of Science, Kaili University
– sequence: 2
  givenname: Yan-Yong
  surname: Zhao
  fullname: Zhao, Yan-Yong
  organization: Department of Statistics, Nanjing Audit University
BookMark eNp9kF1LwzAUhoNMcJv-BKHgdWdO87HkThl-MvRGwbuQpu3MaJOZtEr_vS2dt14dDjzv-XgWaOa8KxG6BLwCLPA1JhywzPgqwyBXwBkGQU7QHBjJUgrsY4bmI5OO0BlaxLjHGNhakDl6ee6aQxp83sU2-fa1bm1t2z4pY2ubofEu6aJ1u6TonW6sSYpO12nhG21dYl1b7sJENWX76YtzdFrpOpYXx7pE7_d3b5vHdPv68LS53aYmE7xN8wpLzTUAg4xxmq91nlHgppCsMrwELoUQkjJpeEa50IAJxSXJmciNplVOluhqmnsI_qsbjlV73wU3rFQZFQIzKSUMFJsoE3yMoazUIQxfhV4BVqM69adOjerUUd2Qu5ly1lU-NPrHh7pQre5rH6qgnbFRkf9H_AKzNXdl
Cites_doi 10.1080/10485252.2013.844805
10.1093/jjfinec/nbi022
10.1111/jtsa.12082
10.1016/S0304-405X(03)00207-1
10.1016/S0304-4076(03)00110-6
10.1017/S026646660808047X
10.1093/jjfinec/nbh001
10.1093/rfs/hhh006
10.2307/2171860
10.1111/j.1540-6321.2004.00632.x
10.1017/S0266466609090616
10.2307/2329471
10.1111/1468-0262.00395
10.1214/088342305000000412
10.1198/016214503388619157
10.1007/s00780-015-0255-1
10.1017/S0266466603195035
10.1093/biomet/ass034
10.1371/journal.pone.0139041
10.1007/s10203-013-0150-1
10.1007/978-3-540-74448-1
10.2307/3214513
10.1016/j.ecosta.2016.07.002
10.1111/j.1467-9469.2008.00622.x
10.1007/978-0-387-69395-8
10.1016/j.jeconom.2010.03.019
10.1080/02331888.2013.828058
10.1007/s11203-012-9072-8
10.1016/j.jeconom.2010.07.008
10.1111/1467-9469.00180
10.1198/016214507000000176
10.1007/s40953-018-0129-4
10.1093/jjfinec/nbj007
10.1016/j.csda.2011.10.004
10.1016/j.jempfin.2015.05.001
10.1016/j.jeconom.2018.09.011
10.1016/j.spa.2013.09.012
10.2307/1911242
ContentType Journal Article
Copyright 2019 Taylor & Francis Group, LLC 2019
2019 Taylor & Francis Group, LLC
Copyright_xml – notice: 2019 Taylor & Francis Group, LLC 2019
– notice: 2019 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610926.2019.1650183
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 1273
ExternalDocumentID 10_1080_03610926_2019_1650183
1650183
Genre Original Articles
GrantInformation_xml – fundername: Cultivating Project of National Natural Science Foundation
  grantid: 5723
– fundername: Key Project of Kaili University of China
  grantid: Z1505
– fundername: Guizhou Provincial Science and Technology Foundation
  grantid: 1286
– fundername: QianKeHe talent-development platform
  grantid: 5723-02
– fundername: Science and Technology Cooperation Plan Foundation of Guizhou Province of China
  grantid: 7167
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
3YN
4.4
5GY
5VS
8VB
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABEHJ
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
FUNRP
FVPDL
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TN5
TTHFI
TWF
TWZ
UPT
UT5
UU3
V1K
WH7
ZGOLN
ZL0
~02
~S~
AAYXX
ABJNI
ABPAQ
ABXYU
CITATION
H13
K1G
TBQAZ
TDBHL
TUROJ
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-bf09a6a11512564b7ab2416cd95fc6e1698889459c62468a10340e3b58bca4fb3
ISSN 0361-0926
IngestDate Thu Oct 10 21:56:47 EDT 2024
Fri Aug 23 03:43:02 EDT 2024
Tue Jun 13 19:50:19 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-bf09a6a11512564b7ab2416cd95fc6e1698889459c62468a10340e3b58bca4fb3
PQID 2488059991
PQPubID 186202
PageCount 24
ParticipantIDs crossref_primary_10_1080_03610926_2019_1650183
informaworld_taylorfrancis_310_1080_03610926_2019_1650183
proquest_journals_2488059991
PublicationCentury 2000
PublicationDate 2021-03-04
PublicationDateYYYYMMDD 2021-03-04
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-04
  day: 04
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
Mancini C. (CIT0027) 2001; 64
CIT0037
CIT0018
CIT0039
CIT0019
CIT0040
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Fan J. (CIT0017) 2003; 13
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0011
  doi: 10.1080/10485252.2013.844805
– ident: CIT0006
  doi: 10.1093/jjfinec/nbi022
– ident: CIT0040
  doi: 10.1111/jtsa.12082
– ident: CIT0012
  doi: 10.1016/S0304-405X(03)00207-1
– ident: CIT0004
  doi: 10.1016/S0304-4076(03)00110-6
– ident: CIT0034
  doi: 10.1017/S026646660808047X
– ident: CIT0005
  doi: 10.1093/jjfinec/nbh001
– ident: CIT0021
  doi: 10.1093/rfs/hhh006
– ident: CIT0001
  doi: 10.2307/2171860
– ident: CIT0024
  doi: 10.1111/j.1540-6321.2004.00632.x
– ident: CIT0026
  doi: 10.1017/S0266466609090616
– ident: CIT0038
  doi: 10.2307/2329471
– ident: CIT0003
  doi: 10.1111/1468-0262.00395
– ident: CIT0013
  doi: 10.1214/088342305000000412
– ident: CIT0016
  doi: 10.1198/016214503388619157
– ident: CIT0029
  doi: 10.1007/s00780-015-0255-1
– ident: CIT0032
  doi: 10.1017/S0266466603195035
– ident: CIT0033
  doi: 10.1093/biomet/ass034
– ident: CIT0030
  doi: 10.1371/journal.pone.0139041
– ident: CIT0025
  doi: 10.1007/s10203-013-0150-1
– ident: CIT0007
  doi: 10.1007/978-3-540-74448-1
– ident: CIT0019
  doi: 10.2307/3214513
– ident: CIT0010
  doi: 10.1016/j.ecosta.2016.07.002
– ident: CIT0028
  doi: 10.1111/j.1467-9469.2008.00622.x
– ident: CIT0015
  doi: 10.1007/978-0-387-69395-8
– ident: CIT0031
  doi: 10.1016/j.jeconom.2010.03.019
– ident: CIT0018
  doi: 10.1080/02331888.2013.828058
– ident: CIT0035
  doi: 10.1007/s11203-012-9072-8
– volume: 64
  start-page: 44
  issue: 19
  year: 2001
  ident: CIT0027
  publication-title: Giornale dellIstituto Italiano Degli Attuari
  contributor:
    fullname: Mancini C.
– ident: CIT0008
  doi: 10.1016/j.jeconom.2010.07.008
– ident: CIT0023
  doi: 10.1111/1467-9469.00180
– ident: CIT0014
  doi: 10.1198/016214507000000176
– ident: CIT0037
  doi: 10.1007/s40953-018-0129-4
– ident: CIT0002
  doi: 10.1093/jjfinec/nbj007
– ident: CIT0022
  doi: 10.1016/j.csda.2011.10.004
– ident: CIT0039
  doi: 10.1016/j.jempfin.2015.05.001
– ident: CIT0020
  doi: 10.1016/j.jeconom.2018.09.011
– ident: CIT0036
  doi: 10.1016/j.spa.2013.09.012
– volume: 13
  start-page: 965
  issue: 4
  year: 2003
  ident: CIT0017
  publication-title: Statistica Sinica
  contributor:
    fullname: Fan J.
– ident: CIT0009
  doi: 10.2307/1911242
SSID ssj0015783
Score 2.281309
Snippet In this paper, we propose a nonparametric procedure to estimate the volatility when the underlying price process is governed by Brownian semimartingale with...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 1250
SubjectTerms Domains
dynamic integration
short interest rate
state domain
time domain
Volatility
Volatility estimation
Title Jump-robust volatility estimation using dynamic dual-domain integration method
URI https://www.tandfonline.com/doi/abs/10.1080/03610926.2019.1650183
https://www.proquest.com/docview/2488059991
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagXMoBQQFRWlAO3FZexc_ExwoBVaXuha20e4psbyJxIEHd5MKvZ_xI4tVW4nWJIuexK8_nmfFk5huEPjRMs8buLC50ITAnRmADZhKL2nLNitw0Pg55u5LXd_xmIzZzKq-vLunN0v58sK7kX6QKYyBXVyX7F5KdXgoDcA7yhSNIGI5_JOMbkAW-78yw7xegZmDUO9WOOCNUJC4GHwrYhbbzC1d3hXfdd_2tnXgi3F2hjXTqpx7UjfiUWVd5FEidl7Gg3393CI9OjvnWx0c3A_4ydElM2sdjt7rF2y5ayhhooCHTag40ro96fiSqikm4XdFIaj2qUgrCF5tU1waS2YgpkShO8LPyxAgTGhqcHCn4mBHJHEs8dSkmRC2JdKyEbLZoU55hvPIYPaGgh5wCZPlq-sgEyip0z45_fizwctTrD_3AgetyQGx7ZMi9d7J-jp7FbUV2FTDyAj2q2zP09Hbi5N2fodOvkwRfolUCnWyGTjZDJ_PQySJ0sgQ6WQKdLMj_Fbr7_Gn98RrH1hrY0lL2GJag0lIT5-8JyU2hDbhy0u6UaKysiVRlWSoulJWUy1KTnPG8ZkaUxmreGPYanbRdW79BWcNhx6yMynnNubTEyAJshNa0lkLVhThHy3HWqh-BQaUiIzFtnObKTXMVp_kcqXRuq94DrwmYq9hvnr0cBVHFhbqvqDNSwu2E3v7Hqy_Q6bwqLtFJfz_U78Ah7c17D6tfFhOGNw
link.rule.ids 315,783,787,27936,27937,60214,61003
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7xGICBN6I8M7C6xInt1CNCoAJtJ5DYLNt1EEJNUZsO8OvxxQkqIMTAnMRKfOfzd8533wGc5alOczu0JNMZJ4waTozfJgl3luk0i01enUP2B6L7wG4f-eNcLQzSKjGHzoNQRBWrcXHjYXRDiTv3UZfGMkGGAZVtKlCULl2EZYECYFjGEQ8-_yR4jwwtkoVPm_0zTRXPb8N82Z--qJf-iNbVFnS9AbZ5-cA8eWnPStO27990Hf_3dZuwXiPU6CK41BYsuGIb1vqf8q7TbVhFiBoUnndgcOs9gkzGZjYtIx_s_BWE9hHKd4S6yAjJ9U_R8K3Qo2cbYfUXGY5H-rmIGrUKvCs0s96Fh-ur-8suqbs0EJt0REm8NaUWmiJ04IKZTBuPCoQdSp5b4aiQPsmWjEsrEiY6msYpi11qeMdYzXKT7sFSMS7cPkQ588mXNDJmzmeplhqR-XCjdeIEly7jLWg3tlGvQYxD0UbjtJ41hbOm6llrgZy3oCqrU5A8tCxR6R_PHjXmVvW6nqoE4x1HUH3wj6FPYaV73--p3s3g7hBWE6TJIK2NHcFSOZm5Y49zSnNSOfIHrVHvMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7RRaroobxadYG2OXD1EsePrI8VsKJQVhxA6s2yHRuhiixiswf49XjiBPEQ6oFrEluJZzz-xvn8DcBuYIYFVzlSmlIQTq0gNi6TRHjHDStzG9p9yNOpPLrgx39Fzyacd7RKzKFDEopoYzVO7psq9Iy4vRh0aa4KJBhQNaISNenYB1iOV3N0dZZPH38kRIdMFZJlzJpjm_4Qz1vdPFuenomXvgrW7Qo0WQXbv3sinvwbLRo7cvcvZB3f9XFr8LnDp9mv5FDrsOTrDfh0-ijuOt-AFQSoSd95E6bH0R_I7cwu5k0WQ128g8A-Q_GOdCoyQ2r9ZVbd1eb6ymV49otUs2tzVWe9VgU-lUpZf4GLyeH5_hHpajQQV4xlQ6ItlZGGInAQktvS2IgJpKuUCE56KlVMsRUXysmCy7GhOeO5Z1aMrTM8WPYVBvWs9t8gCzymXsqqnPuYozpqZRmDjTGFl0L5Ugxh1JtG3yQpDk17hdNu1DSOmu5GbQjqqQF10-6BhFSwRLP_tN3pra27WT3XBUY7gZB66x1d_4SPZwcT_ef39GQbVgrkyCCnje_AoLld-O8R5DT2R-vGD9oT7d8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jump-robust+volatility+estimation+using+dynamic+dual-domain+integration+method&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Ye%2C+Xu-Guo&rft.au=Zhao%2C+Yan-Yong&rft.date=2021-03-04&rft.pub=Taylor+%26+Francis&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=50&rft.issue=5&rft.spage=1250&rft.epage=1273&rft_id=info:doi/10.1080%2F03610926.2019.1650183&rft.externalDocID=1650183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon