Improved estimation in a multivariate regression with measurement error

In this paper, we study the estimation problem about the regression coefficients of a multivariate regression model with measurement errors under some uncertain restrictions. Specifically, we propose the unrestricted estimator (UE) and three restricted estimators (REs), and prove that they are all c...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical computation and simulation Vol. 94; no. 8; pp. 1691 - 1714
Main Authors Nkurunziza, Sévérien, (Eric) Li, Yubin
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 23.05.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study the estimation problem about the regression coefficients of a multivariate regression model with measurement errors under some uncertain restrictions. Specifically, we propose the unrestricted estimator (UE) and three restricted estimators (REs), and prove that they are all consistent for the true coefficients. We derive the asymptotic distributions of the proposed estimators under the sequence of local alternative restrictions. We also propose shrinkage estimators (SEs) to address the problem of the uncertainty of the restrictions. In addition, we establish the asymptotic distributional risk (ADR) of the proposed estimators and compare the risk performance of these estimators. It is established that the REs perform better than the UE only near the restriction, while they perform poorly as one moves farther away from the restriction. We also prove that SEs dominate the UE. These theoretical results are confirmed by simulations.
AbstractList In this paper, we study the estimation problem about the regression coefficients of a multivariate regression model with measurement errors under some uncertain restrictions. Specifically, we propose the unrestricted estimator (UE) and three restricted estimators (REs), and prove that they are all consistent for the true coefficients. We derive the asymptotic distributions of the proposed estimators under the sequence of local alternative restrictions. We also propose shrinkage estimators (SEs) to address the problem of the uncertainty of the restrictions. In addition, we establish the asymptotic distributional risk (ADR) of the proposed estimators and compare the risk performance of these estimators. It is established that the REs perform better than the UE only near the restriction, while they perform poorly as one moves farther away from the restriction. We also prove that SEs dominate the UE. These theoretical results are confirmed by simulations.
Author (Eric) Li, Yubin
Nkurunziza, Sévérien
Author_xml – sequence: 1
  givenname: Sévérien
  surname: Nkurunziza
  fullname: Nkurunziza, Sévérien
  email: severien@uwindsor.ca
  organization: University of Windsor
– sequence: 2
  givenname: Yubin
  surname: (Eric) Li
  fullname: (Eric) Li, Yubin
  organization: University of Windsor
BookMark eNp9kE9LAzEQxYNUsK1-BGHB89b82exubkrRtlDwoucQdxNN2U3qJNvSb2-W1qunGZjfvDfzZmjivNMI3RO8ILjGjxiLQpScLyimbEGpEKwor9CU8JLlnJRsgqYjk4_QDZqFsMMYE8LpFK02_R78QbeZDtH2KlrvMusylfVDF-1BgVVRZ6C_QIcwDo82fme9VmEA3WsXMw3g4RZdG9UFfXepc_Tx-vK-XOfbt9Vm-bzNG1qXMVeqMFToRrS8FZWhmFXUYFE3SjXGCEVxUQtGPrmgBdOkMoks2rFVoijbks3Rw1k3Xf0zpJvlzg_gkqVkuKKC8ZrTRPEz1YAPAbSRe0jPwUkSLMfM5F9mcsxMXjJLe0_nPeuMh14dPXStjOrUeTCgXGOTzf8Svz85dYM
Cites_doi 10.1214/aos/1176347276
10.1080/02331888.2010.508561
10.3150/14-BEJ642
10.1007/s13171-017-0122-6
10.1002/0471773751
10.1016/S0024-3795(98)10209-4
10.1111/sjos.v43.1
10.1007/978-0-387-78189-1
10.1111/stan.2011.65.issue-4
10.1214/aos/1176350611
10.1214/aos/1176344552
10.11329/jjss1970.21.61
10.1007/978-1-4612-5098-2
ContentType Journal Article
Copyright 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
2024 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2024 Informa UK Limited, trading as Taylor & Francis Group 2024
– notice: 2024 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2023.2299346
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 1714
ExternalDocumentID 10_1080_00949655_2023_2299346
2299346
Genre Research Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  grantid: RGPIN-2019-04464
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
AFRVT
AIYEW
AMVHM
CITATION
TASJS
7SC
8FD
ADYSH
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-aa4f29ec9d5d97f20372f098caacff9a2048931b59243e17fc9d4d43e1a946d63
ISSN 0094-9655
IngestDate Fri Jul 25 05:57:51 EDT 2025
Sun Aug 03 02:37:25 EDT 2025
Wed Dec 25 09:06:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-aa4f29ec9d5d97f20372f098caacff9a2048931b59243e17fc9d4d43e1a946d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3072935852
PQPubID 53118
PageCount 24
ParticipantIDs crossref_primary_10_1080_00949655_2023_2299346
informaworld_taylorfrancis_310_1080_00949655_2023_2299346
proquest_journals_3072935852
PublicationCentury 2000
PublicationDate 2024-05-23
PublicationDateYYYYMMDD 2024-05-23
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-23
  day: 23
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Saleh EAK Md (e_1_3_3_12_1) 1985; 47
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_14_1
e_1_3_3_13_1
Sen PK. (e_1_3_3_5_1) 1986; 48
e_1_3_3_16_1
e_1_3_3_15_1
e_1_3_3_3_1
e_1_3_3_10_1
e_1_3_3_2_1
e_1_3_3_4_1
e_1_3_3_11_1
References_xml – ident: e_1_3_3_6_1
  doi: 10.1214/aos/1176347276
– ident: e_1_3_3_2_1
– ident: e_1_3_3_4_1
  doi: 10.1080/02331888.2010.508561
– ident: e_1_3_3_7_1
  doi: 10.3150/14-BEJ642
– ident: e_1_3_3_13_1
  doi: 10.1007/s13171-017-0122-6
– ident: e_1_3_3_9_1
  doi: 10.1002/0471773751
– ident: e_1_3_3_18_1
  doi: 10.1016/S0024-3795(98)10209-4
– volume: 47
  start-page: 156
  issue: 2
  year: 1985
  ident: e_1_3_3_12_1
  article-title: Nonparametric shrinkage estimation in a parallelism problem
  publication-title: Sankhyā: Indian J. Stat. Series A
– ident: e_1_3_3_8_1
  doi: 10.1111/sjos.v43.1
– ident: e_1_3_3_16_1
  doi: 10.1007/978-0-387-78189-1
– volume: 48
  start-page: 354
  issue: 3
  year: 1986
  ident: e_1_3_3_5_1
  article-title: On the asymptotic distributional risks of shrinkage and preliminary test versions of maximum likelihood estimators
  publication-title: Sankhyā: Indian J. Stat. Series A
– ident: e_1_3_3_3_1
  doi: 10.1111/stan.2011.65.issue-4
– ident: e_1_3_3_14_1
– ident: e_1_3_3_11_1
  doi: 10.1214/aos/1176350611
– ident: e_1_3_3_17_1
  doi: 10.1214/aos/1176344552
– ident: e_1_3_3_10_1
  doi: 10.11329/jjss1970.21.61
– ident: e_1_3_3_15_1
  doi: 10.1007/978-1-4612-5098-2
SSID ssj0001152
Score 2.336858
Snippet In this paper, we study the estimation problem about the regression coefficients of a multivariate regression model with measurement errors under some...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1691
SubjectTerms ADR
asymptotic normality
Asymptotic properties
Constrictions
Error analysis
Estimators
measurement error
Multivariate analysis
multivariate regression model
Regression coefficients
Regression models
restricted estimator
shrinkage estimators
Stein rules
unrestricted estimator
Title Improved estimation in a multivariate regression with measurement error
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2023.2299346
https://www.proquest.com/docview/3072935852
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7aUcCiwgWgrygdsqUeI4Dx8rWlghyqWtKFwix7HRCjWt0qSHvfaPMxM72RSWR7kkUZQ4j_kyM57MfEPIGzDCopSp8OKg1B4vQA8WigmP6SLTKkvApcc45PGnZHHGP5zH55PJ7ShrqW0KX6021pX8j1RhH8gVq2TvIdlhUNgB2yBfWIKEYflPMrYRAXAZkSrD1iBi_ELaNMEbmAaDJzmv9Teb7GortucX67DgXNf1Zf0bBxVrjToa545CBJs_2Ct0ofblhev7NUSTv7d1W62Wq84bPbE_4G_sCrmU--PAo0Xdi9GIj10mwZe2cOzfLvjAOP43t_XBvUIV3BOJZdr1tdOhSeTFodNbTsnaTsYOTNlIYyJZz8j6Yj_2jZq9T4UUSHAf-9j13WdgSyO-gUn7Jws35B2GAyGqHSbHYXI3zAOyxWCuwaZk62Bx-PXzYNBD27hpeNa-EAwp2jfdzx0X5w4B7i8Gv_NiTh-THSddemCx9IRMdDUjj_rWHtRp-hl5eDzQ-V7PyPZJD4Xrp-R9jzq6Rh1dVlTSMeroGnUUUUdHqKMd6p6Rs3dHp28XnmvH4SmWJY0nJTdMaCXKuBSpYUGUMhOITEmpjBESKaBFFBYxTOkjHaYGjuQlbkrBkzKJnpNpdVnpF4RqzAaOA8N0ybnKAqk5jxJuYPosApWaXeL3bzC_sqwr-R9lt0vE-D3nTRfuMrY3TR795dz9Xii5-7jhFGTUj2Auzfbuey8vyfb6U9kn06Zu9SvwXJvitUPWDyI4kOI
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25TsQwEB1xFEDBsYC4cUGbkLUdJy4RApZjtwKJLnIcGyFEFoVAwdfjiZPlEqKgi-SMlXjsufT8BuDAOWFZqEQGcVSYgOfODuaayoCaPDU6FS6kxzrkcCQGN_ziNr79dBcGYZWYQ1tPFNHYajzcWIzuIHGHCIeTIo5D7P0dUmdRGRfTMBtLkWAXAxaNJta477vuoEiAMt0tnt-m-eKfvrCX_rDWjQs6XQLdfbxHnjyEL3Ue6rdvvI7_-7tlWGwjVHLkt9QKTJmyB0td9wfSGoMeLAwnjK_PPZjHqNWTPq_CmS9VmIIgh4e_HEnuS6JIg198dfm5C3FJZe48CrckWA4mjx_1SmKqalytwc3pyfXxIGg7NgSapqIOlOKWSqNlERcysTRiCbWRTLVS2lqpkCVYsn4eu6yPmX5i3Zu8wEcluSgEW4eZclyaDSAGAaNxZKkpONdppAznTHDrMiwZ6cRuQtjpKXvyxBxZf8J36lcwwxXM2hXcBPlZm1ndVESsb1-SsT9kdzrVZ-0ZdyJIus5cukW3_jH1PswNrodX2dX56HIb5t0QR3ACZTswU1cvZtfFPHW-12zqd07O86I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH8anYS6A2Ud0woMfOCakNqOEx8RrOtgrTisErfI8cc0TQsohB32188vTsrYhHboLZLzrMTPfl_6-fcATrwTlkZlMkoTYyNeejtYaiojasvc6lz4kB7rkIulmK_45U3aownvO1gl5tAuEEW0thoP951xPSLuFNFwUqRpjK2_Y-oNKuNiC14KJA_HWxzJcm2Mp6HpDopEKNNf4nlumifu6Ql56T_GuvVAsxGU_bcH4Mn3-KEpY_3rL1rHjX5uF3a6-JSchQ31Gl7YagyjvvcD6UzBGF4t1nyv92MYYswaKJ_fwMdQqLCGIINHuBpJvlVEkRa9-NNn5z7AJbX9GjC4FcFiMPnxWK0ktq5v6z1YzT58OZ9HXb-GSNNcNJFS3FFptTSpkZmjCcuoS2SuldLOSYUcwZJNy9TnfMxOM-ff5AYfleTCCPYWBtVtZd8BsQgXTRNHreFc54mynDPBnc-vZKIzN4G4V1NxF2g5iuma7TSsYIErWHQrOAH5pzKLpq2HuNC8pGD_kT3sNV90J9yLIOU688kW3d9g6mPYvr6YFZ8_La8OYOhHOCITKDuEQVM_2Pc-4GnKo3ZL_wZSpPJG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+estimation+in+a+multivariate+regression+with+measurement+error&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Nkurunziza%2C+S%C3%A9v%C3%A9rien&rft.au=%28Eric%29+Li%2C+Yubin&rft.date=2024-05-23&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=94&rft.issue=8&rft.spage=1691&rft.epage=1714&rft_id=info:doi/10.1080%2F00949655.2023.2299346&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00949655_2023_2299346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon