Tailoring in vitro biological and mechanical properties of polyvinyl alcohol reinforced with threshold carbon nanotube concentration for improved cellular response

The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone tissue engineering. To overcome these challenges, polyvinyl alcohol-carbon nanotubes (PVA-CNT) nanocomposite scaffolds were developed by varying t...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 6; no. 46; pp. 39982 - 39992
Main Authors Kaur, Tejinder, Thirugnanam, Arunachalam
Format Journal Article
LanguageEnglish
Published 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone tissue engineering. To overcome these challenges, polyvinyl alcohol-carbon nanotubes (PVA-CNT) nanocomposite scaffolds were developed by varying the CNT concentrations (0, 0.5, 1 and 1.5 wt%) using freeze drying method. The developed scaffolds were characterized for their physicochemical, mechanical and in vitro biological properties. The attachment, proliferation and differentiation of the MG 63 osteoblast cells on the scaffolds were analyzed by scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, alizarin red stain-based (ARS) assay and collagen quantification. The reinforcement of varying concentrations of CNT from 0 to 1 wt% enhanced the mechanical properties of the nanocomposite scaffolds many folds. Amongst all, the scaffold with 1 wt% of CNT provided the most favorable microenvironment for osteoblast cell proliferation and differentiation. The higher CNT concentration (1.5 wt%) had a reduced effect on mechanical properties and in vitro cell growth. From the above studies, it can be concluded that PVA-CNT nanocomposite scaffolds with the relatively low concentration of CNT (1 wt%) are promising biomaterials for acceleration of bone tissue regeneration. The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone tissue engineering.
AbstractList The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone tissue engineering. To overcome these challenges, polyvinyl alcohol-carbon nanotubes (PVA-CNT) nanocomposite scaffolds were developed by varying the CNT concentrations (0, 0.5, 1 and 1.5 wt%) using freeze drying method. The developed scaffolds were characterized for their physicochemical, mechanical and in vitro biological properties. The attachment, proliferation and differentiation of the MG 63 osteoblast cells on the scaffolds were analyzed by scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, alizarin red stain-based (ARS) assay and collagen quantification. The reinforcement of varying concentrations of CNT from 0 to 1 wt% enhanced the mechanical properties of the nanocomposite scaffolds many folds. Amongst all, the scaffold with 1 wt% of CNT provided the most favorable microenvironment for osteoblast cell proliferation and differentiation. The higher CNT concentration (1.5 wt%) had a reduced effect on mechanical properties and in vitro cell growth. From the above studies, it can be concluded that PVA-CNT nanocomposite scaffolds with the relatively low concentration of CNT (1 wt%) are promising biomaterials for acceleration of bone tissue regeneration.
The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone tissue engineering. To overcome these challenges, polyvinyl alcohol–carbon nanotubes (PVA–CNT) nanocomposite scaffolds were developed by varying the CNT concentrations (0, 0.5, 1 and 1.5 wt%) using freeze drying method. The developed scaffolds were characterized for their physicochemical, mechanical and in vitro biological properties. The attachment, proliferation and differentiation of the MG 63 osteoblast cells on the scaffolds were analyzed by scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, alizarin red stain-based (ARS) assay and collagen quantification. The reinforcement of varying concentrations of CNT from 0 to 1 wt% enhanced the mechanical properties of the nanocomposite scaffolds many folds. Amongst all, the scaffold with 1 wt% of CNT provided the most favorable microenvironment for osteoblast cell proliferation and differentiation. The higher CNT concentration (1.5 wt%) had a reduced effect on mechanical properties and in vitro cell growth. From the above studies, it can be concluded that PVA–CNT nanocomposite scaffolds with the relatively low concentration of CNT (1 wt%) are promising biomaterials for acceleration of bone tissue regeneration.
The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone tissue engineering. To overcome these challenges, polyvinyl alcohol-carbon nanotubes (PVA-CNT) nanocomposite scaffolds were developed by varying the CNT concentrations (0, 0.5, 1 and 1.5 wt%) using freeze drying method. The developed scaffolds were characterized for their physicochemical, mechanical and in vitro biological properties. The attachment, proliferation and differentiation of the MG 63 osteoblast cells on the scaffolds were analyzed by scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity assay, alizarin red stain-based (ARS) assay and collagen quantification. The reinforcement of varying concentrations of CNT from 0 to 1 wt% enhanced the mechanical properties of the nanocomposite scaffolds many folds. Amongst all, the scaffold with 1 wt% of CNT provided the most favorable microenvironment for osteoblast cell proliferation and differentiation. The higher CNT concentration (1.5 wt%) had a reduced effect on mechanical properties and in vitro cell growth. From the above studies, it can be concluded that PVA-CNT nanocomposite scaffolds with the relatively low concentration of CNT (1 wt%) are promising biomaterials for acceleration of bone tissue regeneration. The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone tissue engineering.
Author Thirugnanam, Arunachalam
Kaur, Tejinder
AuthorAffiliation Department of Biotechnology and Medical Engineering
National Institute of Technology
AuthorAffiliation_xml – name: Department of Biotechnology and Medical Engineering
– name: National Institute of Technology
Author_xml – sequence: 1
  givenname: Tejinder
  surname: Kaur
  fullname: Kaur, Tejinder
– sequence: 2
  givenname: Arunachalam
  surname: Thirugnanam
  fullname: Thirugnanam, Arunachalam
BookMark eNpNkUFrGzEQhUVJIKnjS-4BHUvAqaRdS9pjME4TMBSCc1602tlYRdZsJNnBv6d_tHIc2s5FM9L3HoPeV3IWMAAh15zdcVY1362MhmnGJHwhl4LVciaYbM7-6y_INKVfrJSccyH5Jfm9Ns5jdOGVukD3LkeknUOPr84aT03o6RbsxoSPcYw4QswOEsWBjugPexcOBfMWN-hpBBcGjBZ6-u7yhuZNhFQeempN7DDQYALmXQfUYrAQcjTZleuioW5b3PdFacH7nTexuKURQ4Ircj4Yn2D6eU7Iy8NyvXicrX7-eFrcr2ZWaJlnehCqU33fNT1jdSWU1qoywCvWDbrhqvwR1KDmYqiVtrVielC2kXpuTS-sqaoJ-XbyLYu87SDlduvScRsTAHep5ZpLJuZH2wm5PaE2YkoRhnaMbmvioeWsPYbRLuTz_UcYywLfnOCY7F_uX1jVH9zpjL8
CitedBy_id crossref_primary_10_1039_D0BM00355G
crossref_primary_10_1177_09544119231173826
crossref_primary_10_1002_mame_202200696
crossref_primary_10_1039_C6RA23384H
crossref_primary_10_1007_s13205_019_1624_9
crossref_primary_10_1039_C8RA00811F
crossref_primary_10_1039_D0TB01601B
crossref_primary_10_1080_00914037_2020_1838519
crossref_primary_10_3390_polym12092158
crossref_primary_10_1080_09276440_2021_2019372
crossref_primary_10_1016_j_ijbiomac_2017_04_055
crossref_primary_10_3390_pharmaceutics13060792
crossref_primary_10_1039_C7RA03193A
crossref_primary_10_1016_j_snb_2018_01_152
crossref_primary_10_1016_j_mtcomm_2017_06_004
crossref_primary_10_1016_j_bioadv_2022_213163
crossref_primary_10_1002_adhm_201901495
crossref_primary_10_1016_j_jare_2019_03_011
crossref_primary_10_1016_j_bioadv_2023_213468
crossref_primary_10_1088_1748_605X_aa5f76
crossref_primary_10_1016_j_mtchem_2020_100420
crossref_primary_10_1007_s13770_022_00459_z
crossref_primary_10_1002_app_53572
crossref_primary_10_1007_s00449_016_1724_4
crossref_primary_10_1016_j_ijbiomac_2019_12_127
crossref_primary_10_1016_j_bioactmat_2021_12_005
crossref_primary_10_1016_j_ijbiomac_2021_02_136
crossref_primary_10_1186_s12951_021_01228_1
crossref_primary_10_1002_app_47768
crossref_primary_10_1016_j_msec_2018_01_006
crossref_primary_10_1039_C8RA04992K
crossref_primary_10_1007_s13204_018_0803_z
crossref_primary_10_1155_2020_1852946
crossref_primary_10_1016_j_ijbiomac_2022_11_023
crossref_primary_10_1080_01694243_2016_1278070
crossref_primary_10_1134_S1070427220090141
crossref_primary_10_1021_acsami_6b16590
crossref_primary_10_1021_acsabm_2c00171
crossref_primary_10_1016_j_colsurfb_2018_09_010
crossref_primary_10_1680_jbibn_23_00055
Cites_doi 10.1016/j.biomaterials.2006.01.017
10.1039/C4BM00222A
10.1016/j.msec.2013.04.048
10.1016/j.compscitech.2014.03.004
10.1002/jbm.a.34559
10.1016/j.memsci.2011.05.047
10.1016/j.compositesa.2010.07.003
10.1021/cm0500399
10.1016/j.biomaterials.2004.02.052
10.1016/j.bej.2012.02.005
10.1007/s11706-009-0034-z
10.1016/j.colsurfb.2012.01.011
10.1088/0957-4484/19/30/305702
10.1002/jbm.a.10537
10.1016/j.colsurfb.2011.02.010
10.1016/j.carbpol.2010.08.019
10.1007/s004180050447
10.1016/j.carbon.2004.06.031
10.1021/am900423q
10.1088/1748-6041/9/3/035001
10.1016/j.carbon.2014.05.041
10.1166/jbt.2011.1011
10.1039/C5RA07806G
10.1371/journal.pone.0038995
10.1016/j.carbon.2011.08.071
10.1002/pola.24091
10.1002/jbm.a.33116
10.1039/c2ra20416a
10.1002/jbm.b.32694
10.1016/j.biomaterials.2014.05.014
10.1016/j.msec.2010.07.007
10.1016/j.colsurfb.2010.12.011
10.1039/C4RA13128B
10.1186/2194-0517-2-6
10.1021/ma902862u
10.1016/j.actbio.2012.12.019
ContentType Journal Article
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/c6ra08006e
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 39992
ExternalDocumentID 10_1039_C6RA08006E
c6ra08006e
GroupedDBID -JG
0-7
AAEMU
ABGFH
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
H~N
J3I
R7C
R7E
R7G
RCNCU
RPMJG
RRC
RSCEA
SLH
SMJ
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AENEX
AESAV
AETIL
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUNWK
BCNDV
BLAPV
CITATION
EBS
ECGLT
EJD
GROUPED_DOAJ
H13
HZ~
J3G
J3H
M~E
O9-
OK1
PGMZT
RAOCF
ROYLF
RPM
RVUXY
YAE
ZCN
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c286t-8f27b7ddb9d0043278873ae130bf8917103e4e752f478c4708f7c9685cad2ca33
ISSN 2046-2069
IngestDate Sat Aug 17 03:36:15 EDT 2024
Fri Aug 23 02:49:47 EDT 2024
Mon Jan 28 17:06:52 EST 2019
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-8f27b7ddb9d0043278873ae130bf8917103e4e752f478c4708f7c9685cad2ca33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816025887
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1816025887
rsc_primary_c6ra08006e
crossref_primary_10_1039_C6RA08006E
ProviderPackageCode J3I
R7E
RRC
R7G
AEFDR
RPMJG
-JG
AGSTE
RCNCU
AUDPV
EF-
SLH
BSQNT
EE0
SMJ
RSCEA
AFVBQ
C6K
H~N
0-7
ABGFH
AAEMU
R7C
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationTitle RSC advances
PublicationYear 2016
References Mikael (C6RA08006E-(cit8)/*[position()=1]) 2011; 1
Watari (C6RA08006E-(cit41)/*[position()=1]) 2009; 3
Yoon (C6RA08006E-(cit4)/*[position()=1]) 2014; 77
McKeon-Fischer (C6RA08006E-(cit14)/*[position()=1]) 2011; 99
Mikael (C6RA08006E-(cit25)/*[position()=1]) 2014; 9
Paradossi (C6RA08006E-(cit1)/*[position()=1]) 2003; 14
Jeon (C6RA08006E-(cit7)/*[position()=1]) 2010; 48
Thomas (C6RA08006E-(cit19)/*[position()=1]) 2009; 20
Keselowsky (C6RA08006E-(cit40)/*[position()=1]) 2003; 66
Lahiri (C6RA08006E-(cit11)/*[position()=1]) 2009; 1
C6RA08006E-(cit22)/*[position()=1]
O'Brien (C6RA08006E-(cit27)/*[position()=1]) 2005; 26
Zhao (C6RA08006E-(cit9)/*[position()=1]) 2005; 17
Andiappan (C6RA08006E-(cit38)/*[position()=1]) 2013; 2
Zhao (C6RA08006E-(cit3)/*[position()=1]) 2010; 43
Bao (C6RA08006E-(cit23)/*[position()=1]) 2012; 64
Liao (C6RA08006E-(cit15)/*[position()=1]) 2011; 84
Gaharwar (C6RA08006E-(cit33)/*[position()=1]) 2015; 3
Pati (C6RA08006E-(cit24)/*[position()=1]) 2013; 101
Yuan (C6RA08006E-(cit21)/*[position()=1]) 2013; 33
Wang (C6RA08006E-(cit36)/*[position()=1]) 2015; 5
Rodrigues (C6RA08006E-(cit17)/*[position()=1]) 2012; 50
Shirazi (C6RA08006E-(cit16)/*[position()=1]) 2011; 378
Rajavel (C6RA08006E-(cit28)/*[position()=1]) 2015; 5
Meng (C6RA08006E-(cit37)/*[position()=1]) 2012; 7
Kharaziha (C6RA08006E-(cit35)/*[position()=1]) 2014; 35
Lin (C6RA08006E-(cit12)/*[position()=1]) 2011; 83
Baker (C6RA08006E-(cit2)/*[position()=1]) 2012; 100
Venkatesan (C6RA08006E-(cit32)/*[position()=1]) 2011; 83
Haroun (C6RA08006E-(cit18)/*[position()=1]) 2009; 20
Depan (C6RA08006E-(cit39)/*[position()=1]) 2013; 9
Paiva (C6RA08006E-(cit6)/*[position()=1]) 2004; 42
Zhang (C6RA08006E-(cit31)/*[position()=1]) 2012; 32
Ma (C6RA08006E-(cit5)/*[position()=1]) 2010; 41
Naebe (C6RA08006E-(cit13)/*[position()=1]) 2008; 19
Singhal (C6RA08006E-(cit29)/*[position()=1]) 2012; 2
Chang (C6RA08006E-(cit42)/*[position()=1]) 2011
Tullberg-Reinert (C6RA08006E-(cit26)/*[position()=1]) 1999; 112
Kokubo (C6RA08006E-(cit20)/*[position()=1]) 2006; 27
Atieh (C6RA08006E-(cit30)/*[position()=1]) 2011
Seo (C6RA08006E-(cit34)/*[position()=1]) 2014; 96
Pan (C6RA08006E-(cit10)/*[position()=1]) 2012; 93
References_xml – issn: 2011
  publication-title: Cell responses to surface and architecture of tissue engineering scaffolds
  doi: Chang Wang
– volume: 27
  start-page: 2907
  year: 2006
  ident: C6RA08006E-(cit20)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.017
  contributor:
    fullname: Kokubo
– start-page: 2010
  year: 2011
  ident: C6RA08006E-(cit30)/*[position()=1]
  publication-title: Bioinorg. Chem. Appl.
  contributor:
    fullname: Atieh
– volume: 3
  start-page: 46
  year: 2015
  ident: C6RA08006E-(cit33)/*[position()=1]
  publication-title: Biomater. Sci.
  doi: 10.1039/C4BM00222A
  contributor:
    fullname: Gaharwar
– volume: 33
  start-page: 3644
  year: 2013
  ident: C6RA08006E-(cit21)/*[position()=1]
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.04.048
  contributor:
    fullname: Yuan
– volume: 96
  start-page: 31
  year: 2014
  ident: C6RA08006E-(cit34)/*[position()=1]
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2014.03.004
  contributor:
    fullname: Seo
– volume: 20
  start-page: 2527
  year: 2009
  ident: C6RA08006E-(cit18)/*[position()=1]
  publication-title: J. Mater. Sci.: Mater. Med.
  contributor:
    fullname: Haroun
– volume: 101
  start-page: 2526
  year: 2013
  ident: C6RA08006E-(cit24)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.34559
  contributor:
    fullname: Pati
– volume: 378
  start-page: 551
  year: 2011
  ident: C6RA08006E-(cit16)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.05.047
  contributor:
    fullname: Shirazi
– volume: 41
  start-page: 1345
  year: 2010
  ident: C6RA08006E-(cit5)/*[position()=1]
  publication-title: Composites, Part A
  doi: 10.1016/j.compositesa.2010.07.003
  contributor:
    fullname: Ma
– volume: 17
  start-page: 3235
  year: 2005
  ident: C6RA08006E-(cit9)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm0500399
  contributor:
    fullname: Zhao
– volume: 26
  start-page: 433
  year: 2005
  ident: C6RA08006E-(cit27)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.02.052
  contributor:
    fullname: O'Brien
– volume: 64
  start-page: 76
  year: 2012
  ident: C6RA08006E-(cit23)/*[position()=1]
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2012.02.005
  contributor:
    fullname: Bao
– volume: 3
  start-page: 169
  year: 2009
  ident: C6RA08006E-(cit41)/*[position()=1]
  publication-title: Front. Mater. Sci. China
  doi: 10.1007/s11706-009-0034-z
  contributor:
    fullname: Watari
– volume: 93
  start-page: 226
  year: 2012
  ident: C6RA08006E-(cit10)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2012.01.011
  contributor:
    fullname: Pan
– volume: 19
  start-page: 305702
  year: 2008
  ident: C6RA08006E-(cit13)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/30/305702
  contributor:
    fullname: Naebe
– volume: 66
  start-page: 247
  year: 2003
  ident: C6RA08006E-(cit40)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.10537
  contributor:
    fullname: Keselowsky
– volume: 84
  start-page: 528
  year: 2011
  ident: C6RA08006E-(cit15)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2011.02.010
  contributor:
    fullname: Liao
– volume: 83
  start-page: 569
  year: 2011
  ident: C6RA08006E-(cit32)/*[position()=1]
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2010.08.019
  contributor:
    fullname: Venkatesan
– volume: 20
  start-page: 259
  year: 2009
  ident: C6RA08006E-(cit19)/*[position()=1]
  publication-title: J. Mater. Sci.: Mater. Med.
  contributor:
    fullname: Thomas
– volume: 112
  start-page: 271
  year: 1999
  ident: C6RA08006E-(cit26)/*[position()=1]
  publication-title: Histochem. Cell Biol.
  doi: 10.1007/s004180050447
  contributor:
    fullname: Tullberg-Reinert
– volume: 42
  start-page: 2849
  year: 2004
  ident: C6RA08006E-(cit6)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.06.031
  contributor:
    fullname: Paiva
– volume: 1
  start-page: 2470
  year: 2009
  ident: C6RA08006E-(cit11)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900423q
  contributor:
    fullname: Lahiri
– volume: 9
  start-page: 035001
  year: 2014
  ident: C6RA08006E-(cit25)/*[position()=1]
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/9/3/035001
  contributor:
    fullname: Mikael
– volume: 77
  start-page: 379
  year: 2014
  ident: C6RA08006E-(cit4)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.05.041
  contributor:
    fullname: Yoon
– volume: 1
  start-page: 76
  year: 2011
  ident: C6RA08006E-(cit8)/*[position()=1]
  publication-title: J. Biomater. Tissue Eng.
  doi: 10.1166/jbt.2011.1011
  contributor:
    fullname: Mikael
– volume: 5
  start-page: 53550
  year: 2015
  ident: C6RA08006E-(cit36)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C5RA07806G
  contributor:
    fullname: Wang
– volume: 7
  start-page: e38995
  year: 2012
  ident: C6RA08006E-(cit37)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0038995
  contributor:
    fullname: Meng
– volume: 50
  start-page: 450
  year: 2012
  ident: C6RA08006E-(cit17)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.08.071
  contributor:
    fullname: Rodrigues
– volume: 14
  start-page: 687
  year: 2003
  ident: C6RA08006E-(cit1)/*[position()=1]
  publication-title: J. Mater. Sci.: Mater. Med.
  contributor:
    fullname: Paradossi
– volume: 48
  start-page: 3103
  year: 2010
  ident: C6RA08006E-(cit7)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.24091
  contributor:
    fullname: Jeon
– volume: 99
  start-page: 493
  year: 2011
  ident: C6RA08006E-(cit14)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.33116
  contributor:
    fullname: McKeon-Fischer
– volume: 2
  start-page: 7180
  year: 2012
  ident: C6RA08006E-(cit29)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c2ra20416a
  contributor:
    fullname: Singhal
– volume: 100
  start-page: 1451
  year: 2012
  ident: C6RA08006E-(cit2)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part B
  doi: 10.1002/jbm.b.32694
  contributor:
    fullname: Baker
– volume: 35
  start-page: 7346
  year: 2014
  ident: C6RA08006E-(cit35)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2014.05.014
  contributor:
    fullname: Kharaziha
– volume: 32
  start-page: 1057
  year: 2012
  ident: C6RA08006E-(cit31)/*[position()=1]
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2010.07.007
  contributor:
    fullname: Zhang
– volume: 83
  start-page: 367
  year: 2011
  ident: C6RA08006E-(cit12)/*[position()=1]
  publication-title: Colloids Surf., B
  doi: 10.1016/j.colsurfb.2010.12.011
  contributor:
    fullname: Lin
– volume: 5
  start-page: 20479
  year: 2015
  ident: C6RA08006E-(cit28)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C4RA13128B
  contributor:
    fullname: Rajavel
– ident: C6RA08006E-(cit22)/*[position()=1]
– volume: 2
  start-page: 6
  year: 2013
  ident: C6RA08006E-(cit38)/*[position()=1]
  publication-title: Progress in Biomaterials
  doi: 10.1186/2194-0517-2-6
  contributor:
    fullname: Andiappan
– volume-title: Cell responses to surface and architecture of tissue engineering scaffolds
  year: 2011
  ident: C6RA08006E-(cit42)/*[position()=1]
  contributor:
    fullname: Chang
– volume: 43
  start-page: 2357
  year: 2010
  ident: C6RA08006E-(cit3)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma902862u
  contributor:
    fullname: Zhao
– volume: 9
  start-page: 6084
  year: 2013
  ident: C6RA08006E-(cit39)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2012.12.019
  contributor:
    fullname: Depan
SSID ssj0000651261
Score 2.3760345
Snippet The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Publisher
StartPage 39982
SubjectTerms Assaying
Biomedical materials
Bones
Carbon nanotubes
Differentiation
Mechanical properties
Nanocomposites
Scaffolds
Title Tailoring in vitro biological and mechanical properties of polyvinyl alcohol reinforced with threshold carbon nanotube concentration for improved cellular response
URI https://search.proquest.com/docview/1816025887
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25QAXxKtiy0OD4LZK2c3TOa5WRRVSOZSt1FtkO14R1DpVmlQqB34IV_4oYzuOs7SHwsXaWHKyzvfFnrE_zxDyQZRiHkuZByzjPIgpFpSzOOAl-hcSPz9qzsIcf0mPTuPPZ8nZZPJrpFrqWn4gftx5ruR_UMU6xFWfkv0HZIebYgX-RnyxRISxvB_GrOoFdJWaXVdtU89sUKUhBMCF1Cd7zeWlXnZvdPxUo3Kuz2-uK3WjBcomSe6skSaIqnB69BZRvtKbUzp6NUeSKKbqtuNG3m41nYNOsTJLE9hS7wMYYWtjtbdbQqOTryunOfBbSKyznJHfdeDGQSq8_lbpFMtMWcIum04x7Mo5uxivUyzG6xRmOAvRE0f0bGKWA3lHXT8epyPaxePBFW0pm6ion6nx2ubRuzUNzCMdRXWVniy1QZwe-snObfD_NQcOykSzJx_lhW-7Qx6EWZ5ouejxT79-h6bbIjTheIdOuOi3Uf7RN9-2d7wTs9O4DDPGklk_IY97FwSWlk9PyUSqZ-ThymX-e05-D7yCSoHhFXheAfIKPK_A8wrqDQy8gp5X4HkFmlcw8Aosr8DxCrZ4BdgGHK_A8Qocr16Q00-H69VR0CfzCERI0zagmzDjWVnyvDRhILWKNWISTSi-ofkCDd1IxjJLwk2cURFnc7rJRJ7SRLAyFCyK9siuqpV8SUA7MbmUCcsEQ3s6pblYJCXL8Dk5pSKakvfulReXNmZLcRvXKXnn0Cjw_ep-MCXr7qpAozdFVwD_4JTsIUzDTUTaMNNY7t_rEa_II_8lvCa7bdPJN2jDtvytIdMfse2luQ
link.rule.ids 315,786,790,27955,27956
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+in+vitro+biological+and+mechanical+properties+of+polyvinyl+alcohol+reinforced+with+threshold+carbon+nanotube+concentration+for+improved+cellular+response&rft.jtitle=RSC+advances&rft.au=Kaur%2C+Tejinder&rft.au=Thirugnanam%2C+Arunachalam&rft.date=2016-01-01&rft.issn=2046-2069&rft.eissn=2046-2069&rft.volume=6&rft.issue=46&rft.spage=39982&rft.epage=39992&rft_id=info:doi/10.1039%2FC6RA08006E&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C6RA08006E
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon